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Abstract. This work extends popular star-convexity and other more
general forms of convexity priors. We represent an object as a union of
“convex” overlappable subsets. Since an arbitrary shape can always be
divided into convex parts, our regularization model restricts the number
of such parts. Previous k-part shape priors are limited to disjoint parts.
For example, one approach segments an object via optimizing its k cov-
erage by disjoint convex parts, which we show is highly sensitive to local
minima. In contrast, our shape model allows the convex parts to over-
lap, which both relaxes and simplifies the coverage problem, e.g. fewer
parts are needed to represent any object. As shown in the paper, for
many forms of convexity our regularization model is significantly more
descriptive for any given k. Our shape prior is useful in practice, e.g.
biomedical applications, and its optimization is robust to local minima.

1 Introduction

Regularization is common in computer vision problems/applications such as
photo or video editing, biomedical image analysis, weakly-supervised training of
semantic CNN segmentation, etc. Typical regularization techniques often corre-
spond to imposing various priors, e.g. smoothness [1–3], shape [4–8], hierarchical
[9–11], volumetric [12], or other priors. This work proposes a particularly simple,
yet sufficiently discriminant and efficient model of a general shape prior based
on the geometric concept of convexity. While our main ideas could be expressed
in either discrete or continuous settings, for simplicity we focus on the former
and propose a combinatorial optimization technique based on graph-cuts [2, 6].

Convexity is a powerful regularization concept for segmentation [8, 4, 13, 14].
However, in practical applications it is rare that objects are strictly convex. Our
premise is that an object of interest can be represented as a union of a small
number of convex parts. We propose a form of multi-convexity shape prior,
namely k-convexity, to regularize the problem of segmenting such objects. Our
definition of k-convexity is a generalization of k-stars in computational geometry
literature [15], but it differs from how k-convexity is used in [16]. Our general
k-convexity approach can be based on different forms of convexity, e.g. star [4],
geodesic-star [13], hedgehog [14], or regular convexity [8]. In segmentation, the
concept of k-convexity was first discussed by [13] in the context of stars [4], but
citing NP-hardness they focused on an easier-to-optimize multi-star prior with
a predefined region for each star, see k-regions versus k-convexity in Table 1.
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Predefined regions for object parts [13] could be avoided by segmenting these
parts as independent objects with appropriate convexity priors a la [14]. This is
a viable alternative to k-convexity, see k-disjoint in Table 1, but we found that
representing an object via disjoint convex parts leads to local minima. Moreover,
compared to overlapping convex parts in k-convexity, a larger number of disjoint
convex parts may be needed to represent the same shape, see Table 1.

Similar to [6, 4], our shape prior methodology is presented within graph-cut
optimization framework, but other optimization techniques are possible. Besides
multi-part object modeling, our approach easily adapts to segmenting indepen-
dent overlapping objects, e.g. cells, addressed earlier by other priors in active
contours [7, 17], level-sets [18] and graph cuts [19].

(a) regular (b) star [4] (c) geodesic-star [13] (d) hedgehog [14]

Fig. 1. Different types of convexity: (a) regular convexity; yellow shape is convex and
green is not. (b) star-convexity; green shape is star-convex w.r.t. center c while red
is not. (c) shows geodesic paths to c for which the red shape is geodesic-star-convex.
(d) shows vector field V for which the red shape is hedgehog-convex. Lines, rays and
vector fields in (a-d) are used to define convexity constraints, see text for details.

Types of Convexity: there is more than one way to define convexity. A shape S is
considered to be convex in the regular sense if it forms a convex set, i.e. if p, q ∈ S

then line pq also lies in S. In practice regular convexity is usually approximated
by enforcing convexity constraints only along a predefined number of orientations
[8] as shown in Fig. 1(a). Furthermore, even when segmenting a single convex
object the resulting function is non-submodular [8], i.e. NP-Hard. Alternatively
easier-to-optimize types of convexity are used in practice, e.g. star-convexity [4].

A shape S is considered star-convex w.r.t. a center c if for any pixel p ∈ S

the line cp lies in S, see Fig. 1(b). Star-convexity was first used as a shape
prior in [4]. Later on [13] proposed geodesic-star-convexity, which imposes the
same constraints as star-convexity but along a geodesic path between c and p,
see Fig. 1(c). The paths are computed using image color information and the
distance between c and p. Both [4] and [13] encode their shape priors as local
pairwise pixels constraints which requires ray or path tracing.

Recently [14] proposed hedgehog-convexity that gives the user more control
over the shape space and, unlike [4, 13], does not require ray or path tracing.
Instead, hedgehog-convexity requires some vector field V to constrain the shape
normals ⇀np | p ∈ ∂S} to be within a certain tolerance θ, i.e. ∠⇀npVp ≤ θ, see
Fig. 1(d). Hedgehog-convexity is more general than star and geodesic-star con-
vexity [4, 13]. For example, it reduces to star-convexity for radial vector field V

centered at c and θ = π
2 . Furthermore, if θ = 0 in the aforementioned case then

shape S must be a circle centered at c, as in the examples shown in Fig. 2.
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Table 1. Different types of multi-convexity based on (1): the additional constraints
corresponding to each type of multi-convexity are shown in the second row. The last two
rows show examples for k=2. Shape S is shown in solid red, while internal boundaries
between parts {Si} are shown in dotted red. The additional constraints limit k-regions
and k-disjoint shape representational power, e.g. they require more than two parts to
describe the top example of k-convexity.

As mentioned earlier, in practice objects of interest are rarely convex but
any arbitrary object can always be divided into convex parts. Multi-convexity
is a regularization model where an object of interest is assumed to be the union
of convex parts. Different forms of multi-convexity where introduced in [13] and
[14] in the context of geodesic-star and hedgehog convexity, respectively.

Multi-Convexity: without lost of generality we will review multi-convexity in
the context of regular convexity but our arguments are general and apply to all
types of convexity covered earlier. In multi-convexity the final segmentation S

is the union of k parts

S =

k⋃

i=1

Si (1)

where each part Si is convex. Note that multi-convexity does not guarantee
connectivity of S, i.e. S could contain more than one connected component.
This could be addressed by adding a connectivity prior but such priors are NP-
hard [20]. Shape connectivity is beyond the scope of this paper.

Previous forms of multi-convexity enforce additional constraints that either
simplify optimization [13] or inherently appear in a different context, e.g. seg-
mentation of independent objects [14]. We observe that such constraints un-
necessarily limit the descriptiveness of the multi-convexity shape prior in the
context of multi-part object segmentation.
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In [13] the image domain is split into k disjoint predefined regions, e.g. Voronoi
cells of the star-centers in the context of star-convexity. In addition, each Si is
constrained to be convex and restricted to be within its corresponding region.
In the case of star, geodesic-star or hedgehog convexity tying each part to a
predefined region results in a submodular energy, i.e. could be solved optimally
in polynomial time. We refer to this approach by k-regions [13], see Table 1.

Unlike [13], [14] does not tie an object part to a predefined region. However,
[14] enforces mutual exclusion between parts. Mutual exclusion was a reasonable
assumption in [14] as the authors introduced multi-convexity in the context of
multi-object segmentation not multi-part. Nonetheless, [14] could be applied to
segmenting multi-part objects but in practice it is very sensitive to local minima.
We refer to [14] multi-convexity approach by k-disjoint, see Table 1.

Our main contribution is a novel multi-convexity shape prior, k-convexity.
Unlike [13, 14], our approach does not impose any additional constraints on
parts besides convexity. Table 1 juxtaposes k-convexity with the previous multi-
convexity approaches. Figure 2 demonstrates k-regions and k-disjoint practical
drawbacks. Although k-regions could be solved optimally, it is clear that its
shape representational power is limited, see Fig. 2(b). While k-disjoint removes
the restriction of parts to predefined regions, it is sensitive to initialization and
prone to local minima, see Fig. 2(c). Our k-convexity overcomes these drawbacks
by relaxing the solution space, i.e. allowing the parts to overlap, see Fig. 2(d).

(a) user seeds (b) k-regions [13] (c) k-disjoint [14] (d) k-convexity (ours)

Fig. 2. Limitations of multi-convexity approaches: to emphasize them, this synthetic ex-
ample uses a tight form of convexity shape prior (hedgehogs with θ ≈ 0 and radial vec-
tor field) enforcing near-circularity for each part. In fact, circularity priors are useful in
practice, e.g. cell segmentation [17, 7], see Fig. 7. In (b) regions shown in dotted cyan.

Our k-convexity prior can also be motivated by shape reconstruction via
medial axis transform (MAT) [21], which is the union of overlapping skeleton-
centered circles with given radii. As discussed earlier, circle can be seen as a
particularly tight form of convexity shape prior. Thus, segmentation with our
k-convexity shape prior could be seen as a relaxation of MAT shape reconstruc-
tion: instead of the union of circles we compute the union of convex parts, we do
not assume fixed radii or scales, and we use partial skeletons, e.g. user-scribbles,
instead of full skeletons. Note that segmentation with k-convexity shape prior
estimates the scale of each part based on image data (e.g. object color model),
while MAT reconstruction assumes known circle radii. These differences are il-
lustrated in Fig. 3.
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(a) MAT shape reconstruction (b) k-convexity segmentation

Fig. 3. illustrates shape reconstruction from skeleton/partial-skeleton (red). The recon-
structed shape is the union of the blue parts. (a) reconstruction using a skeleton and
radial function. (b) reconstruction using partial skeleton, color cues, and k-convexity
with k=2 and hedgehog-convexity [14] where θ ≈ 0. Note, for hedgehog-convexity using
the gradient of the scribble’s distance map as V and θ ≈ 0, limits the set of allowed
shapes to the level-sets (black dashed contours) of the distance map.

Our list of contributions are summarized below:

• a novel multi-convexity shape prior for multi-part object or overlapping ob-
jects segmentation, namely k-convexity.

• a graph-cuts optimization framework for k-convexity based on [2, 6].
• experimental results comparing our k-convexity shape prior to existing multi-
convexity approaches [13, 14]. We also show k-convexity results for different
types of convexity.

• for completeness, a proof that our general formulation of k-convexity is NP-
Hard.

The paper is organized as follows. In Section 2 we formulate k-convexity as
multi-labeling energy that permits labels to overlap. We show how to optimize
k-convexity in Section 3. We compare and validate our approach in the context
of biomedical segmentation in Section 4, and apply k-convexity to different types
of convexity. Finally, Section 5 concludes and discusses future work.

2 Energy

Let Ω be the set of all image pixels, and L = {1, . . . , k} be the set of indices
of k overlappable foreground parts, i.e. labels. Also, let f = {fp | ∀p ∈ Ω} be a
labelling of Ω where fp is a pixel labelling such that fp = {f i

p ∈ {0, 1} | ∀i ∈ L}.

A pixel p belongs to label i if f i
p = 1 and 0 otherwise. Furthermore, a pixel is

considered a background pixel if it is not assigned to any foreground label. For
notational simplicity in identifying background pixels we will use an indicator
function φ(fp)

φ(fp) =

{

1 if f i
p = 0 ∀i ∈ L

0 otherwise.
(2)
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Our k-convexity multi-part segmentation energy is

E(f) =

data
︷ ︸︸ ︷
∑

p∈Ω

Dp(φ(fp))+

smoothness
︷ ︸︸ ︷

λ
∑

p,q∈N

V (fp, fq)+

convexity
︷ ︸︸ ︷
∑

i∈L

Ci(f , θ), (3)

where λ is a normalization constant, N is the pixels’ neighborhood system, and
the energy terms are described in more details below.

In our data term, Dp(φ(fp)) measures how well a pixel fits the background
(Bg) or foreground (Fg) color model depending on in its current labeling. One
of the most commonly used data terms is the negative log likelihood

Dp(φ(fp)) =

{

− ln Pr(Ip | Bg) φ(fp) = 1

− ln Pr(Ip | Fg) φ(fp) = 0
(4)

where Ip is the image intensity at pixel p. Since we are segmenting a single object
as a multiple convex parts, we assume that the foreground parts have the same
color model. Nonetheless, the color models of foreground parts could different if
needed, similar to [6].

The smoothness term is a regularizer that discourages labeling discontinuities
between neighboring pixels p, q ∈ N . A discontinuity occurs whenever a pixel is
assigned to background while its neighbor is assigned to at least one foreground3.
The simplest form of pairwise discontinuity is,

V (fp, fq) = wpq[φ(fp) 6= φ(fq)] (5)

where [ ] is the Iverson bracket and wpq is a non-increasing function of Ip and
Iq. Note that our energy only penalizes the outside boundary of the union of the
foreground parts.

The convexity term is used to forbid (or penalize) solutions with non-convex
parts. In (3) Ci(f , θ) encodes the convexity prior of label i, while θ is a prior
specific parameter(s). It is possible to enforce any of the following convexity
priors; star [4], geodesic-star [13], hedgehog [14], or regular [8] convexity. For
instance, to enforce hedgehog convexity [14] we define Ci as follows

Ci(f , θ) = w∞

∑

(p,q)∈Ei(θ)

[f i
p = 1, f i

q = 0], (6)

where w∞ is a very large constant, θ is the shape tightness parameter, and
Ei(θ) is, as defined in [14] eq (3), the set of pairwise directed edges used to
approximate the hedgehog shape prior for label i given θ. From now on we will
adhere to hedgehog-convexity as a show case.

3 Discontinuities between foreground labels could be penalized, as in cell segmentation.



K-convexity shape priors for segmentation 7

3 Optimization

In Appendix A we prove that (3) isNP-hard. To find an approximate solution we

follow in the foot steps of [2, 6]. They maintain a current labeling f̂ and iteratively

try to decrease the energy by switching from f̂ to a near by labeling. Similar to
[6], at each iteration in our approach, Alg. 1, a label α ∈ L is randomly chosen
and its support region is allowed to simultaneously expand and contract without
affecting other foreground parts’ support regions. We refer to the aforementioned
move by Expansion-Contraction Move (EC-Move), and it is a binary submodular
move, see Fig. 4. The algorithm stops when it cannot find an α-EC-Move that
decreases the energy anymore.

Algorithm 1: Alpha-Expansion-Contraction

1 f̂ := initial labeling
2 repeat

3 for each α ∈ L

4 fα := argminf E(f ) where f is an α-expansion-contration of f̂

5 if E(fα) < E(f̂ )

6 f̂ := fα

7 until converged

(a) current labeling (b) EC-Move binary choices (c) feasible EC-Move
when α=1 from (a) when α=1

Fig. 4. EC-Move illustration: (a) shows a current labeling for a 3-part object. (b) shows
the binary choices for each pixel when applying EC-Move for α=1. As you can see in
(c) any pixel is allowed to gain or lose α, while other foreground parts remain intact.
During an α-EC-Move only the convexity prior of α is taken into account.

3.1 Expansion-Contraction Move (EC-Move)

An α-EC-Move allows α to gain or lose pixel support, which is a binary move.
We only apply EC-Moves to foreground labels, because an EC-Move on the
background label is a non-submodular multi-label move, since a background pixel
has more than one foreground label to choose from when contracting. However,
it is possible to only allow the background to expand as in [14].

Given current labeling f̂ an EC-Move on α ∈ L can be formulated as a binary
energy as follows:

Eα(x) =
∑

p∈Ω

Dα
p (xp) + λ

∑

p,q∈N

wpqV
α(xp, xq) + Cα(x, θ), (7)
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where x = {xp ∈ {0, 1} | ∀p ∈ Ω} such that xp = 1 means that p adds α to its

current set of labels f̂p while xp = 0 means removing α, and functions Dα, V α

and Cα are discussed below.
The data term in (7) is defined as

Dα
p (xp) =

{

Dp(0) xp = 1

Dp(φ(f̂p)) xp = 0,
(8)

the smoothness term is defined as

V α(xp, xq) =







[φ(f̂p) 6= φ(f̂q)] xp = 0, xq = 0

[φ(f̂p) 6= 0] xp = 0, xq = 1

[φ(f̂q) 6= 0] xp = 1, xq = 0

0 xp = 1, xq = 1,

(9)

and the convexity term is defined as

Cα(x, θ) = w∞

∑

(p,q)∈Eα(θ)

[xp = 1, xq = 0]. (10)

Submodularity: as shown in [22], any first-order binary function could be exactly
optimized if its pairwise terms are submodular. A binary function h of two
variables is submodular if h(0, 0) + h(1, 1) ≤ h(1, 0) + h(0, 1). Our energy (7)
is submodular as it could be written as the sum of submodular pairwise binary
energies over all possible pairs of p and q. We prove that V α is a submodular by
showing that

V α(0, 0) + V α(1, 1) ≤ V α(0, 1) + V α(1, 0) (11)

[φ(f̂p) 6= φ(f̂q)] + 0 ≤ [φ(f̂p) 6= 0] + [φ(f̂q) 6= 0] (12)

holds for any φ(f̂p) and φ(f̂q)

if φ(f̂p) = 0, φ(f̂q) = 0 then (12) reduces to 0 + 0 ≤ 0 + 0

if φ(f̂p) = 0, φ(f̂q) = 1 then (12) reduces to 1 + 0 ≤ 0 + 1

if φ(f̂p) = 1, φ(f̂q) = 0 then (12) reduces to 1 + 0 ≤ 1 + 0

if φ(f̂p) = 1, φ(f̂q) = 1 then (12) reduces to 0 + 0 ≤ 1 + 1.

Finally, the hedgehog-convexity constraint h(xp, xq) = [xp = 1, xq = 0] is sub-
modular

h(0, 0) + h(1, 1) ≤ h(1, 0) + h(0, 1) (13)

0 + 0 ≤ 1 + 0. (14)

Optimal EC-Move: the authors in [22] showed how to find the global optimal
solution of a submodular energy such as (7) by computing the min-cut of a graph
that encodes the submodular energy. It should be noted that not all convexity
priors lead to a submodular EC-Move, e.g. [4, 13, 14] are submodular while [8] is
non-submodular which renders the EC-Move NP-hard.
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4 Experiments

In this section k refers to the number of object seeds provided by the user. We
applied k-convexity to liver and overlapping cells segmentation. When applicable
we compared our approach to other forms of multi-convexity, i.e. k-regions [13]
and k-disjoint [14]. Furthermore, we tested k-convexity on submodular [14] and
non-submoudlar [8] convexity priors. Unless stated otherwise parts’ convexity
prior is assume to be hedgehog-convexity for all multi-convexity approaches.
Also, user-seeds were used to compute color models and convexity constraints.
In all of our experiments, spatial discontinuity costs, i.e. wpq, were non-negative
weights computed using a non-increasing function of the difference in p and q

intensities, similar to [23].

4.1 Liver Segmentation

As shown in Fig. 5 column 2, k-regions usually resulted in k disjoint regions. For
tight θ, using k-regions often lead to conflicting shape constraints between those
regions. In those cases, there was no single contour that would satisfy the con-
flicting constraints, thus the liver was over segmented as k independent contours.
As shown in column 3, k-disjoint was prone to local minima and sensitive to the
order in which the foreground parts expanded. Unlike k-regions, our approach
was more likely to result in liver segmentation with one connected-component,
because each part/label shape constraints were enforced independently. Fur-
thermore, our approach was more robust towards local minima compared to
k-disjoint because of its relaxed solution space that allow parts to overlap.

Table 2 shows the average F1 score of 3D liver segmentation over 12 different
subjects. It is clear that our approach is more robust towards the selected θ

in comparison to k-regions and k-disjoint. Table 3 shows the average number
of connected-components of the segmentation results. In contrast to k-regions
and k-disjoint, our approach was more likely to result in a liver segmentation
with one connected-component. Note that none of the three methods guarantee
connectivity of the shape parts, unless the user provided a single seed. Figure 6
shows a sample of 3D liver segmentation for three different subjects.

4.2 Cells

Penalizing discontinuities between foreground parts is the main difference be-
tween segmenting overlapping objects, e.g. cells, and a multi-part object, e.g. liver.
Unlike multi-part object segmentation, when segmenting cells we penalized the
discontinuities between the foreground parts, i.e. cells, as follows

V (fp, fq) = wpq

∑

i∈L

[f i
p 6= f i

q]. (15)

Figure 7 shows various cell segmentation results. Figure 8 compares our approach
to a specialized fluorescently stained cell nuclei segmentation approach [17]. In
contrast to our approach, [17] used a more complex unary potential that took
into consideration that overlapping regions are expected to be brighter than
non-overlapping ones. This insight is specific to fluorescently stained nuclei.
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seeds + k-regions [13] k-disjoint [14] k-convexity (ours)
ground truth

Fig. 5. shows 2D liver segmentation of three different subjects. Different object parts
are shown in different colors, their union is the liver segmentation (solid multi-colored
contour). Also, 0 cost internal boundaries between parts are shown as dotted lines.
k-regions was less likely to result in a single connected-component, especially for tight
θ. k-disjoint was prone to local minima. Our approach out performed k-regions and
k-disjoint. Results are shown for θ = 20◦, λ = 1 and N was the 8-neighborhood.

λ = 0.1 λ = 0.5 λ = 1
θ k-reg. k-dis. ours k-reg. k-dis. ours k-reg. k-dis. ours

10◦ 0.07 0.39 0.57 0.06 0.38 0.56 0.06 0.29 0.49

20◦ 0.36 0.60 0.79 0.33 0.59 0.79 0.24 0.50 0.73

30◦ 0.82 0.63 0.87 0.83 0.61 0.87 0.83 0.61 0.88

45◦ 0.84 0.74 0.83 0.86 0.75 0.86 0.87 0.74 0.87

Table 2. shows the average F1 scores of 3D liver segmentation results for various
smoothness λ and shape tightness θ. The three methods behave consistently over dif-
ferent values of λ. Unlike k-regions [13] and k-disjoint [14], our method is more robust
towards θ. For 45◦ < θ < 70◦ k-regions and our results were comparable. For θ ≥ 70◦

all methods suffered from hedgehog discretization artifacts, i.e. under-constraining [24].

λ = 0.1 λ = 0.5 λ = 1
θ k-reg. k-dis. ours k-reg. k-dis. ours k-reg. k-dis. ours

10◦ 5.83 2.50 1.92 5.83 2.75 2.00 5.83 3.75 2.67

20◦ 4.58 1.25 1.17 4.58 1.42 1.17 5.00 2.00 1.67

30◦ 1.58 1.25 1.00 1.42 1.33 1.00 1.58 1.42 1.08

45◦ 1.08 1.00 1.00 1.08 1.00 1.00 1.08 1.00 1.08

Table 3. shows the average number of connected-components of 3D liver segmentation
results. Ideally, the number of connected components should be 1. Our method was
the most likely method to result in small number of connected-components, if not one.
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k-regions [13] k-disjoint [14] ours

Fig. 6. shows a sample of 3D liver segmentation results where each row corresponds
to a different test subject. For most test cases, k-regions was sensitive to the selected
θ while k-disjoint usually converged to a poor local minima. In contrast, our approach
showed robustness towards the selected θ and k-disjoint local minima. These results
were generated using θ = 20◦, λ = 0.5 and N was the 26-neighborhood system.

Fig. 7. (Top) shows user seeds, while (Bottom) shows our results. Left column is human
red blood cells, while the others are frog blood cells. Results shown for θ = 5◦ and λ = 1.
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user seeds our approach active-contours [17]

Fig. 8. shows segmentation of fluorescently stained nuclei using k-convexity (with
hedgehog-convexity) and [17]. Active-contours result copied from [17]. Note that [17]
uses a different unary potential than ours, they assume overlapping regions are brighter.

4.3 Regular Convexity

Regular convexity is usually approximated by enforcing convexity constraints
only along a predefined number of orientations [8] as illustrated in Fig. 1(a).
In this section we will refer to regular convexity and its approximation [8] by
regular convexity.

Enforcing regular convexity [8] renders energy (3) harder to optimize, since
a single EC-move becomes non-submodular and therefore NP-hard. To address
this problem we optimize each EC-Move with Trust Region based optimization
proposed in [8], modifying it to account for the overlap between convex parts. We
enforced convexity in an annealing fashion by gradually increasing the convexity
term weight.

Figure 9 shows a proof of concept example for k- convexity when using regular
convexity [8]. Based on our experience, employing regular convexity prior usually
resulted in final segmentation with minimal overlap between parts. However,
allowing labels to overlap helped during the optimization intermediate steps.

Fig. 9. (Left) shows user-seeds and (Right) shows our results when using regular (non-
submodular) convexity [8]. Allowing the labels to overlap helped during the optimiza-
tion intermediate steps by avoiding local minima. This result was generated using
λ = 0.01 and w∞ annealing schedule was [0.002, 0.003, 0.005, 0.01, 0.1].
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5 Conclusion

Our novel multi-convexity shape prior, i.e. k-convexity, regularizes an object seg-
mentation under the assumption that it consists of k overlappable convex parts.
We showed that k-convexity has higher shape representational power compared
to existing multi-convexity priors [13, 14]. In contrast to our approach, [13, 14]
use additional constraints that negatively impacts their shape representational
power either to simplify the optimization problem [13] or to target a specific
problem [14], i.e. multiple independent object segmentation. In addition, we em-
pirically showed that k-convexity is more robust towards local minima and shape
prior parameters compared to [14] and [13], respectively.

Our k-convexity approach is not tied to a specific type of convexity and
could be used to enforce a multitude of convexity priors, e.g. star [4], geodesic-
star [13], hedgehog [14], and regular convexity [8]. In addition, we illustrated the
practicality of k-convexity when using hedgehog-convexity [14] in biomedical
applications such as liver and overlapping cells segmentation.

Automating cell segmentation, i.e. dropping the user-seeds requirement, could
be achieved by generating a large set of cell proposals, e.g. using Hough Trans-
form for circles, and adding a sparsity prior [25] on top of k-convexity. By adding
sparsity prior solutions that use fewer number of convex parts, i.e. cells, will
become more favorable. The sparsity prior would not affect the EC-Move sub-
modularity. However, in that case EC-Moves are expected to be prone to weak
local minima. Thus, a more powerful move which would allow the removal of
multiple parts simultaneously should be considered (a non-submodular move),
we leave this as future work.

As discussed earlier multi-convexity priors do not impose parts connectiv-
ity. However, we empirically showed that k-convexity is more likely to result
in a smaller number of connected components, if not one, compared to other
multi-convexity approaches. In general, parts connectivity could be enforced by
extending existing connectivity priors [26] to handle overlapping labels, but this
will cause α-EC-Move to be non-submodular.

A NP-Hardness Proof

Optimization problem (3) is NP-hard. To prove this we will reduce a Set Cover
problem instance to (3) in polynomial time. In Set Cover problem we are given a
universe U = {u1, u2, . . . un}, and a set of m subsets S = {Si ⊆ U | ∀i ∈ [1,m]}.
The Set Cover objective is to find the least number of subsets in S such that their
union covers U . Given a Set Cover problem we can construct its corresponding
k-convexity (3) instance as follows:

Label set: L := {i | ∀i ∈ [1,m]} where label i corresponds to subset Si.
Pixel set: Ω := {U ∪ A} where A = {ai | ∀i ∈ [1,m]}. A is a set of auxiliary

pixels/nodes. In this section we refer to pixels as nodes. For each set Si, we
introduce an auxiliary node ai that will be used as an indicator of whether Si is
one of the selected sets to cover U or not.
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Data term: we define the data term as follows

Dp(i) =







0 p ∈ U, p ∈ Si (16)

∞ p ∈ U, p 6∈ Si (17)

1 p ∈ A, p = ai (18)

0 p ∈ A, p 6= ai (19)

Equations (16) and (17) prohibit a node u 6∈ Si to gain label i. Equations (18)
and (19) ensure that our energy increases by 1 if ai is assigned to label i.

Neighbour system: in Set Cover there is no notion of neighborhood between
the nodes, thus N := φ.

Shape constraints: for a given set Si we define the corresponding shape con-
straints as a set of pairwise edges Ei as follows:

Ei := Ci ∪ Ii,

where the set of connectedness edges is Ci := {(u, v) | ∀u, v ∈ Si, u 6= v} and the
set of indicator edges is Ii := {(u, ai) | ∀u ∈ Si, ai ∈ A}. The edges in Ci ensure
that if a node u ∈ Si gained label i then every other node in the set Si will also
gain label i. The edges in Ii ensures that if any node u ∈ Si gains label i then
the corresponding auxiliary node ai of Si gains label i as well.

Objective: the reduced Set Cover problem (3) objective counts the number of
selected subsets to cover U . Notice that if a node u ∈ Si decides to gain label
i then ai will also gain label i. And, since Dai

(i) = 1 by definition then we can
conclude that our energy counts the number of subsets used in the final solution.
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