
Neural Procedural Reconstruction for

Residential Buildings

Huayi Zeng1, Jiaye Wu1 and Yasutaka Furukawa2

1 Washington University in St. Louis, USA
{zengh, jiaye.wu}@wustl.edu

2 Simon Fraser University, Canada
furukawa@sfu.ca

Abstract. This paper proposes a novel 3D reconstruction approach,
dubbed Neural Procedural Reconstruction (NPR). NPR infers a sequence
of shape grammar rule applications and reconstructs CAD-quality mod-
els with procedural structure from 3D points. While most existing meth-
ods rely on low-level geometry analysis to extract primitive structures,
our approach conducts global analysis of entire building structures by
deep neural networks (DNNs), enabling the reconstruction even from in-
complete and sparse input data. We demonstrate the proposed system
for residential buildings with aerial LiDAR as the input. Our 3D models
boast compact geometry and semantically segmented architectural com-
ponents. Qualitative and quantitative evaluations on hundreds of houses
demonstrate that the proposed approach makes significant improvements
over the existing state-of-the-art.

Keywords: 3D reconstruction, CAD, deep learning, procedural modeling

1 Introduction

Procedural modeling (PM) has revolutionized the practice of urban planning,
architecture, and entertainment. PM procedurally applies shape transformation
rules in a shape grammar to synthesize realistic 3D models, which have CAD
quality geometries with procedural structures [9, 26, 8].

Discovering such procedural structure and reconstructing CAD quality ge-
ometry from raw sensor data, such as images or 3D point-clouds, is a similar but
completely different problem [27], which we call procedural reconstruction (PR).
A successful PR system could turn city-scale LiDAR scans into high-quality 3D
city models with procedural structures, opening doors for novel applications in
digital mapping, urban study, civil engineering, and entertainment. Unfortu-
nately, most existing PR algorithms start from low-level geometry analysis in
a bottom-up process (e.g., RANSAC for plane detection), requiring dense and
near complete 3D points.

This paper proposes a novel approach, dubbed Neural Procedural Recon-
struction (NPR), which trains deep neural networks (DNNs) to procedurally



2 Huayi Zeng, Jiaye Wu and Yasutaka Furukawa

Fig. 1. Neural procedural reconstruction learns to procedurally apply shape grammar
rules to reconstruct CAD-quality models from raw 3D points. The procedural represen-
tation allows easy geometry augmentation (e.g., roof thickening) and texture mapping.

apply shape grammar rules and reconstruct CAD-quality geometry models from
3D points (See Fig. 1). DNNs detect primitive structures via global analysis of
entire buildings, making the reconstruction possible even from incomplete and
sparse 3D data. We demonstrated the framework for a shape grammar of resi-
dential buildings in England, where LiDAR point-clouds are publicly accessible.
Qualitative and quantitative evaluations over hundreds of houses demonstrate
that our approach makes significant improvements over the state-of-the-art. We
will publicly share code and data to promote further research.

2 Related work

This paper makes contributions at the intersection of architectural reconstruc-
tion, procedural modeling, and procedural reconstruction. We focus the descrip-
tion to automated techniques in these fields.
Reconstruction with geometric regularities: Geometric regularities, such
as planarity or orthogonality, have been effective for architecture reconstruc-
tion [10, 33, 39, 3, 38, 16, 37, 28]. Global geometric regularities can further improve
the model quality [41]. Their 3D models are clean and compact, but miss pro-
cedural structure, limiting the range of applications.
Procedural modeling and shape analysis: Procedural modeling of architec-
tural buildings has been a big success with many commercial products [9, 26]. A
binary image or a volume guides the procedural modeling process of buildings by
Markov Chain Monte Carlo (MCMC) [34]. However, their goal is to synthesize
virtual scenes as opposed to faithfully reconstructing existing ones from sensor
data. The analysis of man-made shapes through a structured representation has
also been presented for objects [18, 19], buildings [6], indoor floorplans [24], and
raw 3D point-clouds [5]. The analysis further enables model manipulation for
interactive modeling [5] or even the discovery of a grammar [21]. Our problem is
different: turning noisy sensor data into 3D models with procedural structure.
Procedural reconstruction: Procedural reconstruction has been an active re-
search topic for building facades [27, 22], plants [31], and trees [35]. For building
architecture, a seminal work by Dick et al. [7] employs MCMC to reconstruct
structured building models from multiple images. MCMC is also used for the
reconstruction of roof structures from laser scanned 3D points [14]. Recent tech-
niques rely on machine learning to incorporate semantics [36, 20]. However, these



Neural Procedural Reconstruction for Residential Buildings 3

approaches critically rely on low-level geometry analysis for primitive extraction
(e.g., RANSAC for plane detection), which is vulnerable to noisy or incomplete
input data. Poor data quality is the key challenge for our problem, where the data
comes from a country-scale survey [4] with much lower resolution than what has
been commonly used [36, 20]. Our approach employs DNNs and conducts global
analysis of entire buildings to detect primitive structures.

Integrating primitive detection with shape-rule inference robustifies the pro-
cess [23], but the approach has been only demonstrated on one special build-
ing type: Greek temples. Top-down procedural reconstruction without primitive
detection was proposed for indoor scenes [15], but the system requires many
heuristics and hand-coded algorithms. A Support Vector Machine (SVM) per-
forms roof type classification to generate CAD-quality building models [13], but
their method requires rectangular building footprints as input. DNNs are used
to guide the reconstruction of stroke-graphics [32]. They have a simple grammar
for 2D strokes, while we handle 3D architectural buildings with more complex
grammar.

The closest work to ours is the one by Nishida et al. [30], which utilizes
DNNs to predict geometric primitives from user-strokes. While the fundamental
role of DNNs is the same (i.e., classification of a rule-branch and regression of
geometric parameters), our problem is substantially more challenging, requiring a
different algorithmic solution. First, their input is clean feature-curves, while ours
is raw sensor data. Second, their rules are limited to the generation of a single
primitive at a time as an interactive system, while our rules need to generate
an arbitrary number of primitives (e.g., multiple foundational blocks, dormers
or chimneys). Third, their system infers a single rule application given user
strokes, while our system needs to infer a complete sequence of rule applications
as an automated reconstruction algorithm. To our knowledge, this work is one
of the first 3 to demonstrate the use of DNNs for procedural reconstruction of
architectural buildings from raw sensor data.

3 Shape grammar for residential buildings

Our shape-grammar has seven rules, forming five reconstruction phases (See
Fig. 2 ). We modified a default grammar in CityEngine [9] to focus on houses in
England. Rules are applied in a fixed sequential order over the phases.

Each rule is associated with several branches and each branch has its own
geometric parameters. We defer the full specification of our parameterization to
the supplementary material, as the grammar definition is not our contribution.

• The “foundation-rule” first determines the 2D shape of a house from six types
(i.e., rule-branches): I, II, III, L, U, or C. Houses consisting of one, two, and three

3 About one week before the deadline, we encountered a future publication [29], which
utilizes DNNs to reconstruct procedural building models from a RGB image. DNNs
are used to parse each rectified facade image. This is not considered to be a prior
work, but we cite the paper here for a reference.



4 Huayi Zeng, Jiaye Wu and Yasutaka Furukawa

Fig. 2.Our NPR system for residential buildings has 5 stages, consisting of seven shape-
grammar rules. The application order of the rules are fixed while DNNs are trained to
1) select a rule-branch and 2) regress geometric parameters for each rule-application.

rectangular blocks have I, II, and III types, respectively. L (or U) types refer to
L-shaped (or U-shaped) buildings.

The last type C is for houses with complex shapes beyond our grammar
or non-architectural structures such as trees, where our system would stop the
reconstruction process. Geometric parameters are the position, the shape, and
the height of each foundational block.
• Three “roof-rules” determine the roof structures for each foundational block,
namely, I-, L-, or U-component. Hip and gable are the two popular types in
England, and each rule has two branches. Geometric parameters determine the
hip roof shape (i.e. hip ratio) and the roof height.
• The “dormer-rule” adds arbitrary number of dormers to each foundation com-
ponent. We model dormers as a block primitive plus a gable roof. Therefore, the
geometric parameters are the position and the shape of a block plus the roof
height. The “chimney-rule” is the same as the dormer except that we assume its
roof to be flat and its shape to be square.
• The “garage-rule” adds arbitrary number of surrounding sub-structures such
as garages, balconies, or shelters as I- or L-polygons. The roof is fixed to flat.

4 Neural Procedural Reconstruction

Neural procedural reconstruction (NPR) applies shape-grammar rules in a fixed
sequential order to reconstruct 3D models. NPR solves two fundamental tasks
at each rule application: 1) classifying a rule-branch, and 2) regressing geometric



Neural Procedural Reconstruction for Residential Buildings 5

Fig. 3. Typical rule branch classifier and geometric parameter regressor. A variant of
the ResNet [12] performs the classification. A standard encoder-decoder performs the
regression. The regressors estimate the corners of building foundations for example.
Our input is a 4-channel (surface normal + depth) image of resolution 64× 64. The
binary mask optionally specifies the region of interests.

parameters associated with the branch. DNNs perform all the branch classifica-
tions. For the parameter regression, DNNs play important roles, while we also use
standard heuristics for some parameters, whose training data collection would
require excessive manual work (e.g., 3D model manipulation). For DNNs, our
input image has 4 channels encoding the surface normal and the depth, whose
values are normalized to the intensity range [0, 255]. The resolution is 64 × 64.
As part of pre-processing, we apply the orientation rectification DNN introduced
in [25] and assume that building structures are axis-aligned.

4.1 Foundation-rule

A variant of the ResNet [12] performs the rule branch classification (i.e., I, II,
III, L, U, or C) with one modification: We add one more fully-connected layer
between the global pooling and the output layers with softmax. A simple one-hot
encoding is used with a cross-entropy loss (See Fig. 3). At test time, we simply
pick a branch corresponding to the maximum probability.

I-, L-, or U-shaped 2D polygons are the regression targets. Directly regressing
the parameters did not work even with DNNs. We borrow a standard encoder-
decoder network to detect corner points in the output activation image [2]. We
then enumerate possible polygon candidates, and pick the best one with a simple
metric. We now explain the details for each rule branch.
• For I-shape, a DNN detects four types of corners in four activation images
(i.e., top-left, top-right, bottom-left, or bottom-right). We extract peaks above a
certain threshold (0.5 in our experiments) after the non-local max suppression.
This process usually results in 2 to 3 corner candidates for each corner type.
We then exhaustively pick three corner candidates from three corner types, and
find the tight enclosing rectangle as a candidate. We find the rectangle with the
maximum intersection over union (IoU) score against the binary mask of a house
(the set of pixels with heights more than 2m) as the foundation.
• For II- or III-shapes, the process is the same except that we generate a pair or
a triple of rectangles sequentially as one candidate.



6 Huayi Zeng, Jiaye Wu and Yasutaka Furukawa

• For L- or U-shapes, DNNs also detect four types
of corners, whose types are defined in a scheme
independent of the rotations (see the right fig-
ure). For instance, “internal” concave points are
detected in the first activation image regardless of
the rotations. We generate candidate polygons as
follows. L-polygon has six corners and we exhaus-
tively enumerate the set of six points to make one
candidate (i.e., one from type-1, two from type-2,
two from type-3, and one from type-4). Adjacent
corners must have the same X or Y coordinate, and
we simply take the average to make them consistent. We generate more candi-
dates by enumerating five points (excluding one from the complete set), while
inferring the missing one from its neighbors. The same process is used for U.

We extrude 2D polygons vertically after shape regression, while estimating
the height by the average of the bottom 10% height values inside the polygon.
Note that the final optimization refines all the parameters, and the parameters
do not have to be precise in this step.

4.2 Roof-rules

The same DNN architecture classifies the roof types (i.e., gable or hip). For II-
or III-shapes, which consist of multiple I-shaped components with different roof
types, a binary mask specifies an I-shaped component of interests by setting the
mask values to 1 inside the corresponding I-component. Each height value is
estimated by the average of the top 5% of the height values in the corresponding
foundation. The ratios for hip-roofs are initialized with a common value 0.1.

4.3 Dormer-rule and chimney-rule

The dormer roof structure is fixed to gable, and the rule has only a regression
DNN-branch. The same encoder-decoder network [2] detects the center location
of each dormer in a single activation image. We further apply the non-local
maxim suppression and remove peaks lower than 0.5. For II- or III-foundations,
we use the binary mask to specify I-components to add dormers. Dormers are
initialized with an axis-aligned rectangle whose width and length are set to
2.0m. The roof height is initialized so that a roof angle is 30 degrees from the
horizontal surface. The chimney-rule follows the same process except that its
shape is initialized with a 0.7m×0.7m square, and its height is initialized by
2.5m plus the roof height at the center position.

4.4 Garage-rule

The garage-rule resembles the foundation-rule. However, we take a different ap-
proach, because arbitrary number of sub-structures are to be added, whose can-
didate enumeration would be challenging. We use the regression branch to infer



Neural Procedural Reconstruction for Residential Buildings 7

a set of pixels belonging to the sub-structures in an activation image. More pre-
cisely, the encoder-decoder network [2] performs pixel-wise regression. Higher
value indicates the higher possibility of garage existence in each pixel. We keep
pixels with values at least 0.5, find connected components whose diameters are
at least 3 pixels, and try fitting rectangular or L-shaped polygons (with four
rotation variants). Specifically, a tight bounding box is calculated for each con-
nected component as a rectangle candidate. Starting from this bounding box, L
polygon candidates are composed by replacing one corner by an internal point
at least 4 pixels away from the boundary. We enumerate all possible polygon
candidates and pick the best one based on the IoU against the binary mask of a
house (i.e., same as the foundation-rule).

4.5 Model refinement

We apply a standard non-linear least squares technique to optimize all the geo-
metric parameters by minimizing the discrepancy against the input height values.
We defer the details to the supplementary material.

5 Dataset creation

The section explains how we generate input depth, surface normal images, and
ground-truth annotations.

5.1 Depth and normal image generation

UK Environment Agency provides aerial LiDAR data over England as Digital
Terrain Model (DTM) and Digital Surface Model (DSM). DTM only contains
the terrain while DSM also contains buildings, vegetation, and other objects.
The LiDAR data is arranged on the British National Grid [1]. Each grid covers
a roughly square region. 25cm resolution (i.e., one sample per 25cm) is the
highest resolution but covers only a small portion of the land. We downloaded
50cm resolution data of all the 10km × 10km grids. This amounts to roughly
500 grids. A grid with few houses has a small file size in a compressed form.
We chose the top twenty grids based on the compressed file sizes, while skipping
certain grids manually (e.g., complex mountainous terrains without houses).

For each grid data, we subtract DTM from DSM to remove terrain influences.
To isolate houses, we discard points below 2.0 meters, identify connected compo-
nents, and remove small ones (i.e., areas less than 64 pixels). To further discard
outliers, we use building footprints from Ordance Survey (Britain’s mapping
agency). We enlarge each footprint by a factor of two around the bounding-box
center, and keep only components that are fully inside at least one of the ex-
panded footprints. The discarded components in the last step are marked as
non-building structures for complex class (C).

For each remaining component, we estimate the rectification angle by an ex-
isting DNN-based system [25]. Bilinear interpolation is used for image sampling.



8 Huayi Zeng, Jiaye Wu and Yasutaka Furukawa

We find the tight axis-aligned rectangle, turn it into a square while keeping the
center, then add a 20% margin all around. Lastly, we linearly map the height
range in each square to [0, 255]. We use a finite-difference to also compute a sur-
face normal image, which directly captures roof orientations. We linearly-map
each vector element from its valid range ([-1.0, 1.0] or [0.0, 1.0]) to [0, 255].

5.2 Manual annotation

The right figure illustrates our typi-
cal annotations. For each normal im-
age, we specify its foundational shape
type (i.e., I, II, III, L, U, or C) with its
2D polygons and roof type(s) (i.e., hip
or gable). Garage structures are anno-
tated with either I- or L-polygons. The
center locations are annotated for the
dormers or chimneys. 4 We do not annotate the remaining geometric parameters,
which require time-consuming manual work: 1) shapes of dormers and chimneys;
2) heights of foundations and roofs; and 3) internal roof structures for hip. These
parameters are initialized by default values or standard heuristics instead of the
regression as described in Sect.4. We also rectify rotations manually to collect
data for the rotation rectification DNN [25]. In total, we annotated 3,210 exam-
ples, in particular, 720, 1025, 142, 524, 247, and 552 samples for the foundation
types I, II, III, L, U, and C, respectively.

5.3 Data augmentation

First, we rotate depth images with an increment of 90 degrees with or without
mirroring (factor of 8 augmentation). Second, since only a small percentage
of houses contain dormers, we synthetically add dormer structures to the depth
images, specially for the training of the dormer regression DNN. More concretely,
for each house, we synthesize a new depth image by adding 1 to 5 synthetic
dormers (the number randomly picked with uniform probabilities). Each dormer
has five parameters (See supplementary materials) and we randomly specify each
parameter with uniform probabilities within a specified range: 1) the center can
be anywhere inside an image; 2) each lateral size is from 3 to 6 pixels; and 3)
the height is from 0.5 to 2.5 meters. We repeat the process until the synthesized
dormer is valid: 1) not colliding with any other dormers; and 2) residing inside
only one foundational shape (i.e., not at the intersection of multiple I-shapes).

5.4 Synthetic data generation

The shape grammar allows generation of synthetic building models with ground-
truth annotations via standard procedural modeling. While synthetic examples

4 Dormers are annotated only for II-buildings to save time, as the trained model works
on all the other cases. The dormer detection will be evaluated for all building types.



Neural Procedural Reconstruction for Residential Buildings 9

Table 1. Training and testing performance. Accuracies, IoU scores against the ground-
truth, and (precision, recalls) are reported for the classification, foundation/garage
regressions, and dormer/chimney regressions, respectively.

would not replace real data, it is still interesting to study how much they help
training. We use Esri CityEngine [9] to generate synthetic house models, then
sample 3D points at every 50cm to simulate the LiDAR scanning process. More
specifically, we manually modify a default shape-grammar in CityEngine to bet-
ter match the house examples in our data (See the rule-file in the supplementary
document). To minimize the appearance gap between the real and synthetic im-
ages, we add uniform noise in a range [-0.3m, 0.3m] to the z coordinate (i.e.,
height) of each 3D point with probability 70%. Synthetic examples are axis-
aligned at this point, and we randomly rotate each model around the gravity by
uniformly picking an angle in the range [0, 360]. We generated 150,000 synthetic
examples, in particular, 30,000 examples for each foundation type (i.e., I, II, III,
L, or U).

6 Experimental results

We implemented the proposed system in C++ and PyTorch, using a standard
PC with NVIDIA Titan X. We trained 4 classification DNNs (for the foundation
and the three roof-rules), 8 regression DNNs (except the roof-rules), and 1 DNN
for rotation rectification as pre-processing [25]. We used two thirds of the real
data for training and the rest for testing after random sampling. Synthetic and
augmented samples are used only for training. The encoder-decoder network has
been initialized with a pre-trained model [2]. At test time, the network inference
is instant (i.e., 100 to 150 instances per second), while the most expensive step
is the model refinement, which takes about 10 seconds per house. We show only
reconstruction results in the testing set. Please see the supplementary file for
more results.
Evaluations: Figure 4 shows some of our representative reconstructions with
intermediate results. A satellite image of the corresponding region is also shown
at the left for reference. Our method successfully turns noisy raw sensor data into
CAD-quality geometries with architectural components, whose segmentations
are highlighted in colors in the 3D model renderings.

Table 1 shows the training and testing performance of our trained DNNs.
Accuracies, IoU scores against the ground-truth, and precision/recalls are re-
ported for the classification, foundation-garage regressions, and dormer-chimney
detections (correct if within 3 pixels from the ground-truth), respectively. The



10 Huayi Zeng, Jiaye Wu and Yasutaka Furukawa

Fig. 4. Representative reconstructions with intermediate results. The satellite image
is shown for reference from Google Maps.

trained networks demonstrate good generalization performance for many tasks,
but the testing accuracy su�ers for U-roof classi�cation, where U-shapes are rare
and lack in real training data.

The confusion matrix of the foun-
dation classi�cation in the right �gure
also illustrates that U-shapes are one of
the challenging cases together with III.
The matrix shows confusion between II
and L or III and U, where these cases
are not clearly distinguishable even to
human eyes. We also observe the con-
fusion between III and C, because some III-shaped houses are quite complex.

Figure 5 illustrates a few major failure cases: 1) the misclassi�cation of foun-
dation types; 2) missing dormers or chimneys; 3) local minima in the �nal re�ne-
ment; and 4) unique architectural styles beyond our grammar. While thelack
of ground-truth 3D models prevents quantitative evaluations, to our eyes, 20 to
25% of the examples fall into those failure modes.

Comparative evaluations : Figure 6 compares our algorithm against four com-
peting methods: Poisson Surface Reconstruction (PSR) [17], piecewise planar
reconstruction (PPR) [33], dual-contouring method (USC) [40], and semantic
















