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Abstract. State-of-the-art temporal action detectors inefficiently search
the entire video for specific actions. Despite the encouraging progress
these methods achieve, it is crucial to design automated approaches that
only explore parts of the video which are the most relevant to the actions
being searched for. To address this need, we propose the new problem
of action spotting in video, which we define as finding a specific action
in a video while observing a small portion of that video. Inspired by the
observation that humans are extremely efficient and accurate in spotting
and finding action instances in video, we propose Action Search, a novel
Recurrent Neural Network approach that mimics the way humans spot
actions. Moreover, to address the absence of data recording the behavior
of human annotators, we put forward the Human Searches dataset, which
compiles the search sequences employed by human annotators spotting
actions in the AVA and THUMOS14 datasets. We consider temporal
action localization as an application of the action spotting problem. Ex-
periments on the THUMOS14 dataset reveal that our model is not only
able to explore the video efficiently (observing on average 17.3% of the
video) but it also accurately finds human activities with 30.8% mAPﬂ

Keywords: Video understanding - Action localization - Action spotting

1 Introduction

Similar to many video-related applications, such as video object detection and
video surveillance, temporal action localization requires an efficient search for
different visual targets in videos. With the recent exponential growth in the
number videos online (e.g. over 400 video hours are uploaded to YouTube every
minute), it is crucial today to develop methods that can simultaneously search
this large volume of videos efficiently and spot actions accurately. Thus, we
propose the new problem of action spotting in video, which we define as finding
a specific action in a video sequence while observing a small portion of that video.
Since the computational cost is directly impacted by the number of observations
made in a video, this spotting problem brings search efficiency to the forefront.

The first two authors contributed equally to this work. Authors ordering was de-
termined by three coin flips.
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Fig. 1: Left: A partial search sequence a human performed to find the start of a
Long Jump action (the shaded green area). Notably, humans are efficient in spot-
ting actions without observing a large portion of the video. Right: An efficiency
comparison between humans, Action Search, and other detection/proposal meth-
ods on THUMOS14 [24]. Our model is 5.8x more efficient than other methods.

Obviously, the overall computational cost of such an action search can be reduced
by making the per-observation computation faster, as done in many previous
work; however, as the video becomes long and the action instances sparse in the
video, the number of observations needed dominates this cost.

To get intuitions on how to automatically perform an efficient action search
in video, we take notice of how humans approach the problem. In Figure (left),
we show part of a search sequence a human observer carries out when asked to
find the beginning of a Long Jump action in a long video. This sequence reveals
that the person can quickly find the spotting target (in 22 search steps) without
observing the entire video, which indicates the possible role temporal context
plays in searching for actions. In this case, only a very small portion of the video
is observed before the search successfully terminates. In fact, we observe a similar
search pattern for different action targets and across different annotators.

Early approaches for temporal action localization rely on trimmed data to
learn sophisticated models [29J4TJ46]. These methods achieve great success at de-
tecting human actions. Despite the encouraging progress in action localization
and the attention it is recently attracting, the goal of accurate detection remains
elusive to automated systems. A main drawback of current detection methods
is that they do not exploit (and totally discard) the search process human an-
notators follow to produce the final temporal annotations, which are inherently
the only information from the annotation process used to train these detection
models. As such, these methods need to scan the whole video in an exhaustive
manner (either by observing all video frames or a uniform temporal subsampling
of them) to detect human actions. This is inefficient; thus, it is crucial to inves-
tigate methods that observe the smallest percentage of the video and maintain
a state-of-the-art mAP. This naturally leads to faster, more efficient methods,
which implies that action spotting is essential for temporal action localization.



Action Search: Spotting Actions in Videos 3

In this paper, we focus on action spotting as a precursor to temporal action
localization, since one can reformulate action localization as an action spotting
problem followed by a regression task to define the action length. Based on ob-
servations drawn from the user study in Section[3] we believe that action spotting
is an effective precursor that departs from the focus of the traditional action pro-
posal precursor. Action proposal generation aims to localize the temporal bounds
of actions as tightly as possible, while the goal of action spotting is to search for
action instances as efficiently as possible. Moreover, action proposal generation
is class-agnostic, while action spotting is class-specific. Figure (right) compares
the efficiency of action localization using traditional approaches (e.g. proposals)
against using our action spotting-based method.

Recent temporal action localization datasets [6/24I37] use human annotators
to label the action boundaries in a video. Although these datasets are opening
new and exciting challenges in the field, they lack an important component: the
sequence of steps the human annotator follows to produce the final annotation.
These search sequences can be collected for free when creating new datasets or
extending current ones, and they are a valuable resource for action spotting.

Inspired by the observation that humans are extremely efficient and accurate
in finding individual action instances in a video, we aim to solve the action
spotting problem in this paper by imitating how humans search in videos.
Contributions. (i) To address the lack of data on the behavior of human an-
notators, we put forward the Human Searches dataset, a new dataset composed
of the search sequences of human annotators for the AVA [2I] and THUMOS14
[24] datasets (Section [3)). (ii) We propose Action Search, a novel Recurrent Neu-
ral Network approach that mimics the way humans spot actions in untrimmed
videos (Section[d). (iii) We validate Action Search in the action spotting problem
by demonstrating it requires on average 16.6% and 22.3% fewer observations
to successfully spot an action than two baseline models (Section [5.1)). More-
over, when our model is used in the domain of temporal action localization, it
achieves state-of-the-art detection results on the THUMOS14 [24] dataset with
30.8% mAP while only observing on average 17.3% of the video (Section .

2 Related Work

Datasets. Recognizing and localizing human activities in video often require an
extensive collection of annotated data. In recent years, several datasets for tem-
poral action localization have become available. For instance, Jiang et al. [24]
introduce THUMOS14, a large-scale dataset of untrimmed video sequences with
20 different sports categories. Concurrently, ActivityNet [6] establishes a large
benchmark of long YouTube videos with 200 annotated daily activities. Later,
Sigurdsson et al. [37] release Charades, a day-to-day indoor actions database cap-
tured in a crowdsourced manner. More recently, Google introduced AVA [21],
short for atomic visual actions, a densely annotated dataset localizing human
actions in space and time. All four datasets use human annotators to localize
intended activities in a video. Although these datasets are opening new chal-
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lenges in the field, they all miss an important component: the search sequence
the human annotator follows to produce the final annotation, which is a form of
supervised annotation that can be collected for free during the annotation pro-
cess. In Section [3] we introduce the Human Searches dataset, which allows us
to disrupt the current paradigm on how action datasets are structured/collected
and how action spotting/localization models can potentially be trained.

Temporal Action Localization. A large number of works have successfully
tackled the task of action recognition [R[9I28)38/42] and spatio-temporal local-
ization [T0/IRI27I30I3339]. Here, we briefly review some of the influential works
in the realm of temporal action localization. Early methods have relied on
the sliding-window-plus-classifier combination to produce the actions tempo-
ral boundaries [I3JT5J23]29]. Recently, a series of works have explored the idea
of action proposals to reduce the computational complexity incurred by slid-
ing window-based approaches. Notably, Shou et al. [35] introduce a multi-stage
system that finds and classifies interest regions to produce temporal action loca-
tions. Meanwhile, Caba Heilbron et al. [7] propose a sparse learning framework
to rank a segment based on its similarity to training samples. In the same spirit,
contemporary works [AT4[T7] produce action proposals by exploiting the effec-
tiveness of deep neural networks. More recently, end-to-end methods have proven
to boost the performance of two-stage approaches, demonstrating the importance
of jointly optimizing the feature extraction and detection process [3I4TI43/46].
Other researchers have used language models [32], action progression analysis
[26/34], and high-level semantics [5] to produce high-fidelity action detections.

The large body of work on temporal action localization has mostly focused on
improvements in detection performance and/or speed, while very few works have
targeted the development of efficient search mechanisms. The dominant search
strategy in prior work has focused on exhaustively observing the entire video (ei-
ther by observing all frames or a uniform temporal subsampling of them) at least
once. The pioneering approach of Yeung et al. [44] comes as a departure from
this paradigm, whereby they introduce the Frame Glimpses method to predict
the temporal bounds of an action by observing very few frames. Their reinforce-
ment learning-based method tries to learn a policy to intelligently jump through
the video for the immediate purpose of detection. While it shares a similar goal,
our model avoids the subtleties of learning such policies by exploiting ground
truth data depicting how humans sequentially annotate actions. Using such in-
formation for action localization, our method outperforms Frame Glimpses and
achieves state-of-the-art detection results on THUMOS14 [24] (see Section [5.2).

Sequence Prediction. Recurrent Neural Networks (RNNs) and specifically
Long Short Term Memory (LSTM) networks have successfully tackled several
sequence prediction problems [II2[T9J20]. For instance, Alahi et al. [I] introduce
an LSTM based model to predict human motion trajectories in crowded scenes.
Graves et al. [19] propose an RNN that learns to predict the next stroke in online
handwriting prediction. Motivated by the success of these approaches, Section [4]
introduces our novel Learning-to-Search strategy, which formulates the problem
of action spotting as a sequence prediction problem.
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3 Action Spotting: What do Humans do?

In this section and motivated by how well humans spot and localize actions in
videos, we investigate some factors that intuitively seem to play a role in this
process. Specifically, we address the following questions: are humans distracted
when they are asked to find multiple action classes? and is spotting an action
easier than finding its temporal boundaries? Finally, we describe our key idea.
Single vs. Multiple Class Search. To investigate whether humans are dis-
tracted when asked to find multiple action classes, we conduct an online user
study on Amazon Mechanical Turk. We ask participants to find an instance of
a particular action class in a 15 minute video. We design a user interface that
includes a time bar, which allows Turkers to navigate over the video quickly
until the action is found. Typically, the action instances last three seconds, are
sparsely localized, and at least one occurs in the video.

We investigate two variants of the task: (i) a single class search to find one in-
stance of a given action class and (ii) a multiple class search, which asks Turkers
to find one instance from a larger set of action classes. By logging Turker inter-
actions with the user interface, we measure the number of observed frames they
require to find an action instance. As compared to single class search, we find
that Turkers observe 190% and 210% more frames when asked to find an action
instance among 10 and 20 action classes, respectively. This observation motivates
our intuition that action search can be performed more efficiently when the tar-
get task is “simpler” (i.e. it incorporates a smaller number of action classes).
See the supplementary material for more details about this experiment.
Spotting vs. Localization. Action spotting is the process of finding any tem-
poral occurrence of an action (e.g. any frame inside a Long Jump instance) while
observing as little as possible from a video. In contrast, action localization fo-
cuses on pinpointing precise temporal extents of an action (i.e. the exact start
and end of a Long Jump instance), which usually leads to fine-grained and ex-
haustive search mechanisms. To measure the effects of searching for fine-grained
targets, we ask Turkers to find the starting time of a single target action in a
video. We note that Turkers tend to first spot the action and then refine its
temporal boundaries. Interestingly, while searching, Turkers perform three times
more search steps to refine the temporal boundaries of an action, as compared to
the number of search steps needed for spotting the same action. This observation
motivates our intuition that action spotting can be performed more efficiently
than action localization, especially when action instances are short in duration
and sparse in frequency within a video. We partially attribute this behavior to
the fact that determining precise temporal extents of some actions is ambiguous
[36]. See the supplementary material for more details about this experiment.
Key Idea. Searching for and localizing actions in video is a task humans can
do efficiently. However, current automatic methods lack such ability. This short-
coming arises primarily from the fact that existing models are trained without
an intelligent search mechanism. This is in part due to the limitations of existing
datasets which only provide supervision about the action’s temporal location in
the video, while ignoring the entire process the annotator follows to find this
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Fig. 2: Illustration of two human search sequences from our Human Searches
dataset for an AVA [21] training video (first row) and a THUMOS14 [24] training
video (second row). The shaded green areas are where the search targets occur.

action. To address these limitations, we collect two novel datasets of Human
Searches, where videos are annotated with the search steps a human follows
to temporally spot/localize actions. We refer to such step sequences as search
sequences. Below, we describe these collected datasets (refer to the supplemen-
tary material for the annotation process details and additional statistics).

(i) AVA searches (targets are actions): We collect search sequences from
the AVA v1.0 dataset [21], which is composed of feature films and contains 192
15-minute-long videos. We select 15 action classes (out of the original 80 actions)
based on the two conditions: (1) the average action coverage is relatively small;
and (2) the action class has at least 10 videos in the training set. Based on these
two conditions, actions such as talk to, stand, or watch (a person) are discarded
due to their extremely large coverage. Moreover, actions like shovel, kick, or
exit are discarded because they only have a few training samples. To gather the
search sequences, we assign Turkers the task of spotting action instances in the
AVA training videos. In other words, the Turker’s task is to spot any frame
inside the temporal bounds of a given action. We only accept workers with more
than 1000 HITs submitted. In addition, we use the existing AVA dataset ground
truth to filter out noisy annotations. We use a total of 139 AVA training videos
and collect 3988 search sequences. Notably, humans only observe a very small
portion of the video (less than 1%) before spotting the action.

(if) THUMOS14 searches (targets are actions starting times): We
collect 1761 search sequences from the training videos of THUMOS14 [24], a
large-scale dataset of untrimmed videos with 20 different sports categories. We
alm to use this searches dataset for action spotting with the purpose of action
localization. Using the same collection process as in the AVA searches, we ask
Turkers to find an action’s starting time. We choose to define the Turkers’ task
this way because defining the action’s starting time is easier than defining its
end time [30]. Analyzing the collected data, we observe that humans find the
actions in 6 steps on average and define the starting points with an additional
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Fig.3: Our model harnesses the temporal context from its current location and
the history of what it has observed to predict the next search location in the
video. At each step, (i) a visual encoder transforms the visual observation ex-
tracted from the model’s current temporal location to a representative feature
vector; (i) an LSTM consumes this feature vector plus the state and temporal
location produced in the previous step; (iii) the LSTM outputs its updated state
and the next search location; (iv) the model moves to the new temporal location.

16 steps. This translates into observing only 5% of the video. Figure shows two
examples from the collected dataset. With its release, we hope Human Searches
will enable new research directions in the video understanding field.

4 Proposed Action Search Model

In this section, we discuss the Action Search model architecture, the approach
used to train it, and some specific implementation details. Figure [3| gives an
overview of the main architecture of our approach.

4.1 Model Architecture

The input to Action Search is a sequence of visual observations (X1, Xs,...,X,)
and the output is a sequence of temporal locations (f(X1), f(X2),..., f(Xn)),
i.e. a search sequence, produced by the search process. For a given video and at
the i search step, a visual encoder represents the observation X; extracted from
the model’s current temporal location in the video by a feature vector v;. We cast
the search mechanism as a sequential decision making process modeled by an
LSTM search network. This LSTM takes three inputs (h;_1, f(X;_1),Vv;), where
h;_; is the LSTM state from the previous step (an aggregation of information
from previous steps), f(X;_1) is the predicted temporal location from the previ-
ous step (the model’s current location), and v; is the feature vector representing
the current visual observation. Finally, a fully-connected layer transforms h; (the
updated state) to produce f(X;), the next location to search in the video.
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4.2 Learning to Search

We employ a multi-layer LSTM network in training Action Search to produce
search sequences that align with human search sequences in the same video.
Following the observations from the user study in Section action spotting
should be class-driven, and thus we train a separate LSTM for each action class.

For a training video and at each search step, the network consumes visual
observations at its current temporal location, along with the temporal location
from the previous step. After running for n steps, the network produces a search
sequence (f(X1), f(Xz2),..., f(X,)). Given the search sequence of a human an-
notator (y1,¥2,.-.,Yn) for the same video in our Human Searches dataset, we
compute the loss L as the average Huber loss at each search step

L= %ZHé(yi,f(Xi))7 (1)

Sy - f(X))? if |y — f(X)| <6,

2
§ly — f(X)| — 302 otherwise. @

where § > 0. We choose the mean Huber loss over the mean squared loss,
LS (i — f(X4))?, in order to overcome the effects of outliers that might
arise from the different Turkers searching the same video. Moreover, the mean
Huber loss is convex and differentiable in a local neighborhood around its mini-
mum, giving it an advantage over the mean absolute loss, % Yoy — f(X5)]

4.3 Implementation Details

Training Stage. Although our pipeline is differentiable and can be trained
end-to-end, we simplify and expedite training by fixing the visual encoder to
precomputed ResNet-152 [22] features (pretrained on ImageNet [12]) extracted
from the average-pooling layer. We reduce the feature dimensionality to 512 using
PCA. We employ teacher forcing for trainig the LSTMs. For a stable training
process, we represent each f(X;) and y; as relative steps to the previous search
location and normalize the ground truth output search sequence in a per-class
fashion. Each LSTM network is trained using the Adam optimizer [25] with an
exponential learning rate decay. We unroll the LSTM for a fixed number of steps,
ranging from 22 to 2%, for the backpropagation computation. To regularize the
multi-layer LSTM network, we follow the RNN dropout techniques introduced
by Pham et al. [31] and Zaremba et al. [45]. We set § = 1 in the Huber loss.

Inference Stage. Since videos typically contain multiple instances of the same
action class, we initialize our model at multiple random points. Each search is run
for a fixed number of steps. The number of initial points and the search sequence
length are cross-validated per class using the validation subset. However, we
prefer to launch many short search sequences as opposed to few long ones, since
LSTM states tend to saturate and become unstable after a large number of
iterations [40]. Thus, one may view the Action Search model as a random sampler
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with a smart local search: the first search steps are a random sampling of the
video (exploration), while the later search steps are fine-grained steps (local
search) that rely on the temporal context accumulated throughout the search.

4.4 Model Variants

Here, we present different variants of Action Search network structure and train-
ing. Experiments using these flavors show minimal effects on the final results.
Training with Weighted Loss. In order to put more emphasis on learning the
steps towards the end of the ground truth search sequence, each term in the loss
L is weighted inversely proportional to how close the search step is to the target
action instance. We consider this variant to give less weight to learning the first
search steps a human annotator makes (seemingly random) before accumulating
enough temporal context knowledge to guide subsequent search steps.

Early Stopping Confidence Score. Another flavor integrates a new module
that consumes the LSTM state h along with the feature vector v at each step
and produces a probability p to determine if the search sequence has reached the
spotting target. To train this model variant, we assign a probability p = 1 to all
frames inside the spotting targets and p = 0 elsewhere. We add to L a new term
that computes the softmax cross-entropy loss of this confidence score.

5 Experiments

5.1 Action Search for Action Spotting

In this subsection, we demonstrate that our model is able to mimic the human
search process when spotting actions in the AVA dataset [21]. We first introduce
our experimental protocol including a brief description of the dataset and metric
used. Then, we compare Action Search against two spotting baseline models.
Dataset. We conduct this experiment using the AVA v1.0 dataset [2I], which is
among the largest annotated action datasets and is composed of feature films. We
pick 15 action categories out of the original 80 set of actions. We train our model
using the collected AVA searches from our Human Searches dataset. However,
we prune off the search sequences with less than 8 steps. Refer to Section
for a description of the AVA searches and details about the action categories
selection criteria. We evaluate our model on 35 testing videos. We use AVA
3-second annotations to define temporal boundaries for each action instance.
Metric. We compare our model against other approaches according to the action
spotting metric, which we define to be the expected number of unique observa-
tions made per video until spotting an action. An action is spotted if the model
lands anywhere between its ground truth temporal bounds.

Baseline Methods. To demonstrate the effectiveness of our approach in learn-
ing to search efficiently, we consider two baseline models, Random Baseline and
Direction Baseline (refer to the supplementary material for more baselines).
Random Baseline: This model picks both the search direction and step size
randomly. In particular, if the current search step is at time ¢ of the video, it
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Fig. 4: Action spotting results for the AVA testing set for 1000 independent search
trials per video. We report the cumulative spotting metric results on videos with
action coverage (i.e. the percentage of video containing actions) < 5%. Action
Search takes 22%, 17%, and 13% fewer observations than the Direction Baseline
on videos with at most 0.5%, 2.5%, and 5% action coverage, respectively.

randomly picks between searching before ¢ in the interval [0,¢] or after ¢ in the
interval [t, d], where d is the duration of the video. The model then picks the next
search location randomly from a uniform distribution on the selected interval.

Direction Baseline: This model picks the search direction using a trained di-
rection network and chooses the search step size randomly. In particular, if the
current search step is at time ¢ of the video, its direction network uses the visual
observation of the current frame to decide between searching before or after ¢,
and then picks the next search location randomly from a uniform distribution
on the selected interval. The direction network is based on a ResNet-152 [22] ar-
chitecture with a binary softmax classifier. To train this network, we annotated
each video frame with the search direction that leads to the nearest ground
truth instance boundary. The direction network is class-specific and achieves an
average of 95% training and 91% validation accuracy per class.

Results and Analysis. We run Action Search and the two baseline methods
for 1000 independent search trials per test video to compute the action spotting
metric. At each trial, we initialize each model at a random temporal location
in the video, and we reinitialize the search model if it fails to spot an action
after 500 steps. Figure [] shows the cumulative performance of all three mod-
els over videos with different action coverage (i.e. the percentage of the video
length that contains action instances). Unlike both the Direction Baseline and
Random Baseline, Action Search is able to harness temporal context to expedite
the search process and, as a result, takes on average 16.6% and 22.3% less ob-
servations, respectively, before successfully spotting actions. Notably, there is a
great performance difference between our model and the two baselines in videos
with very sparse actions (i.e. action coverage < 1%). We attribute this to the
importance of temporal context when searching for sparse actions in video.
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5.2 Action Search for Action Localization

In this subsection, we combine Action Search with an off-the-shelf action classi-
fier to temporally localize human actions. Our approach achieves state-of-the-art
detection performance on THUMOS14 [24], one of the most challenging tempo-
ral action localization datasets, while observing only 17.3% of the video frames
on average. We first explain how action spotting is used as a precursor to tempo-
ral action localization, and then introduce our experimental protocol, including
a brief description of the dataset and metric. Finally, we compare our method
against state-of-the-art detectors and present an ablation study of our model.
From Action Spotting to Localization. We train Action Search to spot
the start of actions using the THUMOS1/ searches dataset described in Sec-
tion [3] To define the spotted action length, we use a simple heuristic based on
class-specific fixed prior lengths. Specifically, from an output search sequence
(f(X1), f(X2),..., f(X,)), produced by our model, we generate the temporal
segments Q = {[f(X;), f(X;) +d] | i € {1,...,n}; d € D}, where D is a set
of class-specific fixed action duration priors precomputed from the validation
videos. In pursuit of assigning a class label to each segment, we use a pretrained
classifier to provide probabilistic action scores. Finally, we follow the standard
practice of applying non-mazimum-suppression to remove duplicate detections.
Prediction. To reduce the number of search models we apply on a video to
obtain its temporal predictions, we perform the following steps. We uniformly
sample a small random set of N fixed-length segments from a given test video.
These N segments are then classified using an off-the-shelf action classifier in
order to obtain the top-k likely global class labels for the test video. To reduce
complexity, Action Search then only runs the LSTM search models associated
with these k activity classes to produce a set of temporal search sequences.
These sequences are then aggregated and transformed into a set of final temporal
predictions using the class-specific duration priors described above.

Dataset. We conduct our experiment using THUMOS14 [24], one of the most
popular datasets for temporal localization. It contains 200 and 213 videos for
training and testing, respectively. To train our Action Search model, we use
the THUMOS14 searches dataset described in Section [3[ (discarding the search
sequences with less than 8 search steps). Following the standard evaluation pro-
tocol, we evaluate our approach on the testing videos. We choose to do our ex-
periments in THUMOS14 instead of other large-scale datasets such as Charades
[37] or ActivityNet [6] due to the expensive costs of re-annotating such datasets
with search sequences. However, we provide an experiment in the supplemen-
tary material where we evaluate Action Search (trained on THUMOS14) on
the ActivityNet v1.2 validation videos with the same THUMOS14 classes.
Metric. We compare our model against other methods according to the mean
Average Precision (mAP) and penalize duplicate detections. We report the mAP
at multiple temporal Intersection-over-Union (tIoU) thresholds.
Implementation Details. We initialize Action Search at random temporal
locations in the video. We use the Res3D (4 S-CNN) classifier [35/41] as an
off-the-shelf pretrained action classifier to classify the N random fixed-length
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Table 1: Temporal localization results (mAP at tIoU) on the THUMOS14 testing
set. We assign ‘—’ to unavailable mAP values. We report the average percentage
of observed frames (S) for each approach. (a) Comparison against state-of-the-
art methods: Our method (Action Search + Priors + Res3D + S-CNN) achieves
state-of-the-art results while observing only 17.3% of the video; (b) Video fea-
tures effect: We compare C3D for Action Search visual encoder + the C3D-based
classifier from [35] vs. ResNet for Action Search visual encoder + the Res3D-
based classifier from [41]; (c) The trade-off between Action Search training size
and performance: mAP and S score improve as we increase the training size.

(a) (b)
mAP at tIoU Backbone mAP at tIoU
Method 03 04 05 06 07| S Arch. [[0.3 04 05 06 0.7] S
Frame Glimpses [44] |[36.0 26.4 17.1 — — [40[ RC31\]? é‘{fg i;i ;gz ;(8)2 141'31 Afi;
Shou et al. [35] 36.3 28.7 19.0 —  — | 100 eslVet L LR EAE
Shou et al. [34] 40.1 29.4 23.3 13.1 7.9 | 100
Gao et al. [I7] 44.1 34.9 256 - - |100 (c)
1 . =4

Dai et al. [II] 33.3 25.6 15.9 9.0 | 100 Teaining — SO
Xu et al. [E3)] 44.8 35.6 28.9 - - |100 size 103 04 05 06 07! s
Buch et al. [3] 45.7 - 292 — 9.6 100 5% I [[20.6 52.6 225 125 6.4[100
Zhao et al. [46) 51.9 41.0 29.8 — — | 100 95%  ||41.1 32.0 22.4 12.1 6.4 |63.5
Gao et al. [I8] 50.1 41.3 31.0 19.1 9.9 | 100 50% ||47.5 38.3 26.1 16.6 8.1 |34.4
Res3D + S-CNN [1]|[40.6 32.6 22.5 12.3 6.4 | 100 75% ||50.2 41.0 29.5 18.1 9.4 |24.1
Our method 51.8 42.4 30.8 20.2 11.1|17.3 100% ||51.8 42.4 30.8 20.2 11.1]17.3

segments, as well as, to classify the temporal action segments generated by our
method. After cross-validating on the validation subset, we set N = 24, as it
achieves the highest average recall while maintaining a small number of segments.
Empirically, we find setting k = 4 provides the best trade-off between global
video classification accuracy and number of search models to run.
Results and Analysis. In Table [Ta] we compare our localization approach
with state-of-the-art techniques. We assess methods in terms of mAP and the
average percentage of observed frames (S). Our approach achieves state-of-the-
art detection performance while observing much less of the video. For instance,
at 0.5 tloU, we achieve a competitive 30.8% mAP (compared to [16]’s 31.0%
mAP) and observe on average 17.3% of each video. To understand the strengths
of our method, we break down the results and discuss the following findings:
(1) Our method outperforms its baseline (Res3D + S-CNN [41]) by 8.3%
mAP (0.5 tIoU). This baseline uses the same classifier Action Search uses, but
its action proposals are generated by a CNN. We attribute this improvement to
our approach’s ability to discard irrelevant portions of the video, which allows the
detector to prune false positive detections. This finding indicates the importance
of Action Search as a precursor to localization.

*We assume each of the 20 Frame Glimpses [44] models observes 2% of the video
and report an upper-bound of 40% frames observed.
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(2) Our method outperforms Frame Glimpses [44] in both mAP and S. We
observe a 13.7% mAP (0.5 tIoU) improvement and a 22.7% reduction in S.
We attribute the improvement on S to the strategy we follow to train Action
Search. Instead of relying on a reinforcement policy to explore the video, as
Frame Glimpses does, we learn to search by imitating humans. Thus, we argue
that their search policy is unable to learn temporal context reasoning as well as
Action Search. This finding justifies the need for the Human Searches dataset
(Section |3) and the supervised strategy we follow to train our model.

(3) Although it uses a naive approach to detect actions, our method sur-
passes state-of-the-art approaches [BJT6J46]. Opting for simplicity, we build our
detector by combining Action Search with a pretrained off-the-shelf classifier.
This straightforward approach allows us to achieve state-of-the-art results while
only observing 17.3% of video frames. We argue further improvements can be
obtained by combining Action Search with sophisticated models such as [16/46].
Ablation Study. We investigate two aspects of our model: (i) the backbone
architecture for the Action Search visual encoder and the off-the-shelf classifier
(refer to Table[Lh), and (ii) the trade-off between Action Search training set size
and performance in terms of mAP and S (refer to Table .

(i) Table shows using a C3D architecture (i.e. C3D for Action Search
visual encoder + the C3D-based classifier from [35]) improves the performance
of the baseline [35] by 4.9% mAP (0.5 tIoU) while observing 54.9% less frames.
However, a ResNet backbone architecture gives better results in both mAP and
S. We attribute this to the facts that ResNet offers a richer feature space, the
off-the-shelf classifier from [41] is more sophisticated compared to the classifier
from [35], and ResNet uses 1 frame per observation while C3D needs 16 frames.

(ii) Action Search is trained on THUMOS14 searches dataset, which contains
on average 8.8 human searches per video. Training on more human searches
would lead to a better performing model, but collecting human searches for
existing datasets is expensive (although free for new datasets). Nonetheless, we
observe in Table that training Action Search on half of the THUMOS1
searches dataset (i.e. 4.4 human searches per video), the model improves the
detection performance of [4I] by 3.6% mAP (0.5 tIoU) while observing only
S=34.4% of the frames. Notably, training on as little as 2.2 human searches per
video cuts the percentage of observed frames by 36.5% while keeping a similar
mAP performance. In general, as we decrease the training set size, the efficiency
of the search degrades (S increases) since the model is not exposed to as many
human searches variations. These findings further justify the need for the Human
Searches dataset and the supervised strategy we follow to train our model.

5.3 Spotting at a Glance

Figure [f] depicts qualitative search sequences of our Action Search model, which
exploits temporal context to spot the actions quickly. For example, it uses infor-
mation about scenes/concepts such as gala dinner and fights to spot actions such
as clink glass and shoot, respectively (top two rows, left column). Furthermore,
when spotting the start times of actions, our model seems to understand the
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Fig. 5: Qualitative search sequences produced by Action Search. The left column
corresponds to AVA [21] testing videos, and the right column corresponds to
THUMOS14 [24] testing videos. The top two rows depict examples when our
model successfully spots the target action location (in green). The last row illus-
trate failure cases, i.e. when the action location (in red) is not spotted exactly.
We observe that Action Search uses temporal context to reason about where to
search next. In failure cases, we notice that our model often oscillates around
actions without spotting frames within the exact temporal location.

inherent temporal structures of actions. Action Search surprisingly understands
when an action finishes and is able to rewind (jump back) and spot the begin-
ning of the action (top row, right column). Typical failure cases (actions are not
spotted) occur when the search sequences oscillate around the target action but
they miss its exact location (last row, left column). Additionally, Action Search
may fail when action boundaries are ambiguous. When our model finds content
visually similar to the target action, it remains static for a few search steps and
then decides to explore the video further (last row, right column).

6 Conclusion

In this paper, we introduced Action Search, a new learning model to imitate how
humans search for actions in videos, and a new dataset called Human Searches to
train such model. Extensive experiments demonstrated that Action Search pro-
duces reliable action detections. We plan to release our Human Searches dataset
to the vision community and expect that further works can extend the use of
search processes for action detection and other applications.
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