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Abstract. Most conventional photometric stereo algorithms inversely
solve a BRDF-based image formation model. However, the actual imag-
ing process is often far more complex due to the global light transport on
the non-convex surfaces. This paper presents a photometric stereo net-
work that directly learns relationships between the photometric stereo
input and surface normals of a scene. For handling unordered, arbitrary
number of input images, we merge all the input data to the intermediate
representation called observation map that has a fixed shape, is able to
be fed into a CNN. To improve both training and prediction, we take
into account the rotational pseudo-invariance of the observation map
that is derived from the isotropic constraint. For training the network,
we create a synthetic photometric stereo dataset that is generated by a
physics-based renderer, therefore the global light transport is considered.
Our experimental results on both synthetic and real datasets show that
our method outperforms conventional BRDF-based photometric stereo
algorithms especially when scenes are highly non-convex.
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1 Introduction

In 3-D computer vision problems, the input data is often unstructured (i.e., the
number of input images is varying and the images are unordered). A good exam-
ple is the multi-view stereo problem where the scene geometry is recovered from
unstructured multi-view images. Due to this unstructuredness, 3-D reconstruc-
tion from multiple images less relied on the supervised learning-based algorithms
except for some structured problems such as binocular stereopsis [1] and two-view
SfM [2] whose number of input images is always fixed. However, recent advances
in deep convolutional neural network (CNN) have motivated researchers to ad-
dress unstructured 3-D computer vision problems with deep neural networks.
For instance, a recent work from Kar et al. [3] presented an end-to-end learned
system for the multi-view stereopsis while Kim et al. [4] presented a learning-
based surface reflectance estimation from multiple RGB-D images. Either work
intelligently merged all the unstructured input to a structured, intermediate
representation (i.e., 3-D feature grid [3] and 2-D hemispherical image [4]).
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Photometric stereo is another 3-D computer vision problem whose input is
unstructured, where surface normals of a scene are recovered from appearance
variations under different illuminations. Photometric stereo algorithms typically
solved an inverse problem of the pointwise image formation model which was
based on the Bidirectional Reflectance Distribution Function (BRDF). While
effective, a BRDF-based image formation model generally cannot account the
global illumination effects such as shadows and inter-reflections, which are of-
ten problematic to recover non-convex surfaces. Some algorithms attempted the
robust outlier rejection to suppress the non-Lambertian effects [5–8], however
the estimation failed when the non-Lambertian observation was dominant. This
limitation inevitably occurs due to the fact that multiple interactions of light
and a surface are difficult to be modeled in a mathematically tractable form.

To tackle this issue, this paper presents an end-to-end CNN-based photomet-
ric stereo algorithm that learns the relationships between surface normals and
their appearances without physically modeling the image formation process. For
better scalability, our approach is still pixelwise and rather inherit from con-
ventional robust approaches [5–8], which means that we learn the network that
automatically “neglects” the global illumination effects and estimate the surface
normal from “inliers” in the observation. To achieve this goal, we will train our
network on as much as possible synthetic patterns of the input that is “cor-
rupted” by global effects. Images are rendered with different complex objects
under the diverse material and illumination condition.

Our challenge is to apply the deep neural network to the photometric stereo
problem whose input is unstructured. In similar with recent works [3, 4], we
merge all the photometric stereo data to an intermediate representation called
observation map that has a fixed shape, therefore is naturally fed to a standard
CNN. As many photometric stereo algorithms were, our work is also primarily
concerned with isotropic materials, whose reflections are invariant under rotation
about the surface normal. We will show that this isotropy can be taken advan-
tages of in a form of the rotational pseudo-invariance of the observation map
for both augmenting the input data and reducing the prediction errors. To train
the network, we create a synthetic photometric stereo dataset (CyclesPS) by
leveraging the physics-based Cycles renderer [9] to simulate the complex global
light transport. For covering diverse real-world materials, we adopt the Disney’s
principled BSDF [10] that was proposed for artists to render various scenes by
controlling small number of parameters.

We evaluate our algorithm on the DiLiGenT Photometric Stereo Dataset [11]
which is a real benchmark dataset containing images and calibrated lightings. We
compare our method against conventional photometric stereo algorithms [12–15,
5, 6, 16, 7, 17, 18, 8, 19–21] and show that our end-to-end learning-based algorithm
most successfully recovers the non-convex, non-Lambertian surfaces among all
the algorithms concerned.

The summary of contributions is following:
(1) We firstly propose a supervised CNN-based calibrated photometric stereo
algorithm that takes unstructured images and lighting information as input.
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(2) We present a synthetic photometric stereo dataset (CyclesPS) with a careful
injection of the global illumination effects such as cast shadows, inter-reflections.
(3) Our extensive evaluation shows that our method performs best on the DiLi-
GenT benchmark dataset [11] among various conventional algorithms especially
when the surfaces are highly non-convex and non-Lambertian.

Henceforth we rely on the classical assumptions on the photometric stereo
problem (i.e., fixed, linear orthographic camera and known directional lighting).

2 Related Work

Diverse appearances of real world objects can be encoded by a BRDF ρ, which
relates the observed intensity Ij to the associated surface normal n ∈ R

3, the
j-th incoming lighting direction lj ∈ R

3, its intensity Lj ∈ R, and the outgoing
viewing direction v ∈ R

3 via

Ij = Ljρ(n, lj ,v)max (n⊤lj , 0) + ǫj , (1)

where max (n⊤lj , 0) accounts for attached shadows and ǫj is an additive error to
the model. Eq. (1) is generally called image formation model. Most photometric
stereo algorithms assumed the specific shape of ρ and recovered the surface
normals of a scene by inversely solving Eq. (1) from a collection of observations
under m different lighting conditions (j ∈ 1, · · · ,m). All the effects that are not
represented by a BRDF (image noises, cast shadows, inter-reflections and so on)
are typically put together in ǫj . Note that when the BRDF is Lambertian and
the additive error is removed, it is simplified to the traditional Lambertian image
formation model [12].

Since Woodham firstly introduced the Lambertian photometric stereo algo-
rithm, the extension of its work to non-Lambertian scenes has been a prob-
lems of significant interest. Photometric stereo approaches to dealing with non-
Lambertian effects are mainly categorized into four classes: (a) robust approach,
(b) reflectance modeling with non-Lambertian BRDF, (c) example-based re-
flectance modeling and (d) learning-based approach.

Many photometric stereo algorithms recover surface normals of a scene via
a simple diffuse reflectance modeling (e.g., Lambertian) while treating other ef-
fects as outliers. For instance, Wu et al. [5] have proposed a rank-minimization
based approach to decompose images into the low-rank Lambertian image and
non-Lambertian sparse corruptions. Ikehata et al. extended their method by
constraining the rank-3 Lambertian structure [6] (or the general diffuse struc-
ture [7]) for better computational stability. Recently, Queau et al. [8] have pre-
sented a robust variational approach for inaccurate lighting as well as various
non-Lambertian corruptions. While effective, a drawback of this approach is that
if it were not for dense diffuse inliers, the estimation fails.

Despite their computational complexity, various algorithms arrange the para-
metric or non-parametric models of non-Lambertian BRDF. In recent years,
there has been an emphasis on representing a material with a small number
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of fundamental BRDF. Goldman et al. [22] have approximated each fundamen-
tal BRDF by the Ward model [23] and Alldrin et al. [13] later extended it
to non-parametric representation. Since the high-dimensional ill-posed problem
may cause the instability of the estimation, Shi et al. [18] presented a compact
biquadratic representation of isotropic BRDF. On the other hand, Ikehata et

al. [17] introduced the sum-of-lobes isotropic reflectance model [24] to account
all frequencies in isotropic observations. For improving the efficiency of the op-
timization, Shen et al. [25] presented a kernel regression approach, which can be
transformed to an eigen decomposition problem. This approach works well as
far as a resultant image formation model is correct without model outliers.

A few amount of photometric stereo algorithms are grouped into the example-

based approach, which takes advantages of the surface reflectance of objects
with known shape, captured under the same illumination environment with the
target scene. The earliest example-based approach [26] requires a reference object
whose material is exactly same with that of target object. Hertzmann et al. [27]
have eased this restriction to handle uncalibrated scenes and spatially varying
materials by assuming that materials can be expressed as a small number of basis
materials. Recently, Hui et al. [20] presented an example-based method without
a physical reference object by taking advantages of virtual spheres rendered with
various materials. While effective, this approach also suffers from model outliers
and has a drawback that the lighting configuration of the reference scene must
be taken over at the target scene.

Machine learning techniques have been applied in a few very recent photo-
metric stereo works [21, 19]. Santo et al. [19] presented a supervised learning-
based photometric stereo method using a neural network that takes as input
a normalized vector where each element corresponds to an observation under
specific illumination. A surface normal is predicted by feeding the vector to one
dropout layer and adjacent six dense layers. While effective, this method has lim-
itation that lightings remain the same between training and test phases, making
it inapplicable to the unstructured input. One another work by Taniai and Mae-
hara [21] presented an unsupervised learning framework where surface normals
and BRDFs are predicted by the network trained by minimizing reconstruction
loss between observed and synthesized images with a rendering equation. While
their network is invariant to the number and permutation of the images, the
rendering equation is still based on a point-wise BRDF and intolerant to the
model outliers. Furthermore, they reported slow running time (i.e., 1 hour to do
1000 SGD iterations for each scene) due to its self-supervision manner.

In summary, there is still a constant struggle in the design of the photometric
stereo algorithm among its complexity, efficiency, stability and robustness. Our
goal is to solve this dilemma. Our end-to-end learning-based algorithm builds
upon the deep CNN trained on synthetic datasets, abandoning the modeling
of complicated image formation process. Our network accepts the unstructured
input (i.e., our network is invariant to both number and order of input images)
and works for various real-world scenes where non-Lambertian reflections are
intermingled with global illumination effects.
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Fig. 1. We project pairs of images and lightings to a fixed-size observation map based
on the bijective mapping of a light direction from a hemisphere to the 2-D coordinate
system perpendicular to the viewing axis. This figure shows observation maps for (a) a
point on a smooth convex surface and (b) a point on a rough non-convex surface. We
also projected the true surface normal at the point onto the same coordinate system
of the observation map for reference.

3 Proposed Method

Our goal is to recover surface normals of a scene of (a) spatially-varying isotropic
materials and with (b) global illumination effects (e.g., shadows and interreflec-
tions) (c) where the scene is illuminated by unknown number of lights. To achieve
this goal, we propose a CNN architecture for the calibrated photometric stereo
problem which is invariant to both the number and order of input images. The
tolerance to global illumination effects is learned from the synthetic images of
non-convex scenes rendered with the physics-based renderer.

3.1 2-D observation map for unstructured photometric stereo input

We firstly present the observation map which is generated by a pixelwise hemi-
spherical projection of observations based on known lighting directions. Since a
lighting direction is a vector spanned on a unit hemisphere, there is a bijective
mapping from lj , [ljx ljy ljz]

⊤ ∈ R
3 to [ljx ljy]

⊤ ∈ R
2 (s.t., l2x + l2y + l2z = 1)

by projecting a vector onto the x-y coordinate system which is perpendicular
to a viewing direction (i.e.,v = [0 0 1]).2 Then we define an observation map
O ∈ R

w×w as

Oint(w(lx+1)/2),int(w(ly+1)/2) = αIj/Lj ∀ j ∈ 1, · · · ,m, (2)

where “int” is an operator to round a floating value to an integer and α is a
scaling factor to normalize data (i.e., we simply use α = max Lj/Ij). Once
all the observations and lightings are stored in the observation map, we take
it as an input of the CNN. Despite its simplicity, this representation has three

2 We preliminarily tried the projection on the spherical coordinate system (θ, φ), but
the performance was worse than one on the standard x-y coordinate system.
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Fig. 2. (a) Isotropy guarantees that the appearance of a surface from v is invariant
of the rotation of l and n around the view axis. (b) Our network architecture is a
variation of DenseNet [28] that outputs a normalized surface normal from a 32 × 32
observation map. Numbers of the filter are presented below each layer.

major benefits. First, its shape is independent of the number and size of input
images. Second, the projection of observations is order-independent (i.e., the
observation map does not change when swapping i-th and j-th images). Third,
it is unnecessary to explicitly feed the lighting information into the network.

Fig. 1 illustrates examples of the observation map of two objects namely
SPHERE and PAPERBOWL, one is purely convex and the other is highly non-
convex. Fig. 1-(a) indicates that the target point could be on the convex surface
since the values of the observation map gradually decrease to zero as the light
direction is going apart from the true surface normal (nGT ). The local con-
centration of large intensity values also indicates the narrow specularity on the
smooth surface. On the other hand, the abrupt change of values in Fig. 1-(b)
evidences the presence of cast shadows or inter-reflections on the non-convex sur-
face. Since there is no local concentration of intensity values, the surface is likely
to be rough. In this way, an observation map reasonably encodes the geometry,
material and behavior of the light at around a surface point.

3.2 Rotation pseudo-invariance for the isotropy constraint

An observation map O is sparse in a general photometric stereo setup (e.g., as-
suming that w = 32 and we have 100 images as input, the ratio of non-zero
entries in O is about 10%). The missing data is generally considered problem-
atic as CNN input and often interpolated [4]. However, we empirically found
that smoothly interpolating missing entries degrades the performance since an
observation map is often non-smooth and zero values have an important mean-
ing (i.e., shadows). Therefore we alternatively try to improve the performance
by taking into account the isotropy of the material.

Many real-world materials exhibit identically same appearance when the sur-
face is rotated along a surface normal. The presence of this behavior is referred to
as isotropy [29, 30]. Isotropic BRDFs are parameterized in terms of three values



CNN-PS 7

instead of four [31] as
ρ = f(n⊤l,n⊤v, l⊤v), (3)

where f is an arbitrary reflectance function.3 Combining Eq. (3) with Eq. (1),
we get following image formation model.

I = Lf(n⊤l,n⊤v, l⊤v)max (n⊤l, 0). (4)

Note that lighting index and model error are omitted for brevity. Let’s consider
the rotation of surface normal n and lighting direction l around the z-axis (i.e.,
viewing axis) as n′ = [(R[nx ny]

⊤)⊤ nz]
⊤, l′ = [(R[lx ly]

⊤)⊤ lz]
⊤ where n ,

[nx ny nz]
⊤ and R ∈ SO(2) is an arbitrary rotation matrix. Then,

n′⊤l′ = [(R[nx ny]
⊤)⊤ nz][(R[lx ly]

⊤)⊤ lz]
⊤ (5)

= [nx ny]R
⊤R[lx ly]

⊤ + nzlz = n⊤l,

n′⊤v′ = [(R[nx ny]
⊤)⊤ nz][0 0 1]⊤ = nz = n⊤v, (6)

l′
⊤
v′ = [(R[lx ly]

⊤)⊤ lz][0 0 1]⊤ = lz = l⊤v. (7)

Feeding them into Eq. (4) gives following equation,

I = Lf(n′⊤l′,n′⊤v, l′
⊤
v)max (n′⊤l′,0) (8)

= Lf(n⊤l,n⊤v, l⊤v)max (n⊤l, 0).

Therefore, the rotation of lighting and surface normal around z-axis does not
change the appearance as illustrated in Fig. 2-(a). Note that this theorem holds
even for the indirect illumination in non-convex scenes by rotating all the ge-
ometry and environment illumination around the viewing axis. This result is
important for our CNN-based algorithm. We suppose that a neural network is a
mapping function g : x 7→ g(x) that maps x (i.e., a set of images and lightings)
to g(x) (i.e., a surface normal) and r is a rotation operator of lighting/normal
at the same angle around z-axis. From Eq. (8), we get r(g(x)) = g(r(x)). We
call this relationship as rotational pseudo-invariance (the standard rotation in-
variance is g(x) = g(r(x))). Note that this rotational pseudo-invariance is also
applied on the observation map since the rotation of lightings around the viewing
axis results in the rotation of the observation map around the z-axis4.

We constrain the network with the rotational pseudo-invariance in the similar
manner that the rotation invariance is achieved. Within the CNN framework,
two approaches are generally adopted to encode the rotation invariance. One is
applying rotations to the input image [33] and the other is applying rotations
to the convolution kernels [34]. We adopt the first strategy due to its simplicity.
Concretely, we augment the training set with many rotated versions of lightings
and surface normal, which allows the network to learn the invariance without
explicitly enforcing it. In our implementation, we rotate the vectors at 10 regular
intervals from 0 to 360.
3 Note that there are other parameterizations of an isotropic BRDF [32].
4 Strictly speaking, we rotate the lighting directions instead of the observation map
itself. Therefore, we do not need to suffer from the boundary issue unlike the standard
rotational data augmentation.
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Fig. 3. The illustration of the prediction module. For each surface point, we gener-
ate K observation maps taking into account the rotational pseudo-invariance. Each
observation map is fed into the network and all the output normals are averaged.

3.3 Architecture details

In this section, we describe the framework of training and prediction. Given
images and lightings, we produce observation maps followed by Eq. (2). Data is
augmented to achieve the rotational pseudo-invariance by rotating both lighting
and surface normal vectors around the viewing axis. Note that a color image is
converted to a gray-scale image. The size of the observation map (w) should be
chosen carefully. As w increases, the observation map becomes sparser. On the
other hand, the smaller observation map has less respresentability. Considering
this trade-off, we empirically found that w = 32 is a reasonable choice (we tried
w = 8, 16, 32, 64 and w = 32 showed the best performance when the number of
images is less than one thousand).

A variation of densely connected convolutional neural network (DenseNet [28])
architecture is used to estimate a surface normal from an observation map. The
network architecture is shown in Fig. 2-(b). The network includes two 2-layer
dense blocks, each consists of one activation layer (relu), one convolution layer
(3× 3) and a dropout layer (20% drop) with a concatenation from the previous
layers. Between two dense blocks, there is a transition layer to change feature-
map sizes via convolution and pooling. We do not insert a batch normalization
layer that was found to degrade the performance in our experiments. After the
dense blocks, the network has two dense layers followed by one normalization
layer which convert a feature to an unit vector. The network is trained with a
simple mean squared loss between predicted and ground truth surface normals.
The loss function is minimized using Adam solver [35]. We should note that since
our input data size is relatively small (i.e., 32×32×1), the choice of the network
architecture is not a critical component in our framework.5

5 We compared architectures of AlexNet, VGG-NET and densenet as well as much sim-
pler architectures with only two or three convolutoinal layers and the dense layer(s).
Among the architectures we tested, the current architecture was slightly better.
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Parameter Value

baseColor Ͳ.Ͳ to ͳ.Ͳ
metallic Ͳ.Ͳ (Diffuse, Specular) or ͳ.Ͳ (Metallic)

specular Ͳ.Ͳ to ͳ.Ͳ (Diffuse, Metallic) or Ͳ.Ͳ to 4.Ͳ (Specular)

roughness 0.0 to 1.0 (Diffuse, Specular) or 0.3 to 0.7 (Metallic)

sheen Ͳ.Ͳ to ͳ.Ͳ
sheen tint Ͳ.Ͳ to ͳ.Ͳ

IOR ʹ/ሺͳ − Ͳ.Ͳ8 ∗ ሻݎ������ݏ − ͳ
(a) (b)

baseColor

roughness

Principled 
BSDF

Rendered image

object

Fig. 4. (a) The range of each parameter in the principled BSDF [10] is restricted by
three different material configurations (Diffuse, Specular, Metallic). (b) The material
parameters are passed to the renderer in the form of a 2-D texture map.

The prediction module is illustrated in Fig. 3. Given observation maps, we
predict surface normals based on the trained network. Since it is practically
impossible to train the perfect rotational pseudo-invariant network, estimated
surface normals for differently rotated observation maps were not identical (typ-
ically the difference of angular errors between every two different rotations was
less than 10%-20% of their average). For further emphasizing the rotational
pseudo-invariance, we again augment the input data by rotating lighting vectors
at a certain angle θ ∈ θ1, · · · θK and then merge the outputs into one. Suppose
the surface normal (nθ) is a prediction from the input data rotated by Rθ, then
we simply average the inversely rotated surface normals as follows,

n̄ =
1

K

K∑

k=1

R⊤

θk
nθk , (9)

n = n̄/‖n̄‖.

3.4 Training dataset (CyclesPS dataset)

In this section, we present our CyclesPS training dataset. DiLiGenT [11], the
largest real photometric stereo dataset contains only ten scenes with fixed light-
ing configuration. Some works [18, 17, 19] attempted to synthesize images with
MERL BRDF database [29], however only one hundred measured BRDFs cannot
cover the tremendous real-world materials. Therefore, we decided to create our
own training dataset that has diverse materials, geometries and illumination.

For rendering scenes, we collected high quality 3-D models under royalty free
license from the internet.6 We carefully chose fifteen models for training and
three models for test whose surface geometry is sufficiently complex to cover the
diverse surface normal distribution. Note that we empirically found 3-D models
in ShapeNet [36] which was used in a previous work [4] are generally too simple
(e.g., models are often low-polygonal, mostly planar) to train the network.

The representation of the reflectance is also important to make the net-
work robust to wide varieties of real-world materials. Due to its representability,

6 References to each 3-D model are included in supplementary.
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we choose Disney’s principled BSDF [10] which integrates five different BRDFs
controlled by eleven parameters (baseColor, subsurface, metallic, specular, specu-
larTint, roughness, anisotropic, sheen, sheenTint, clearcoat, clearcoatGloss). Since
our target is isotropic materials without subsurface scattering, we neglect pa-
rameters such as subsurface and anisotropic. We also neglect specularTint that
artistically colorizes the specularity and clearcort and clearcoatGloss that does
not strongly affect the rendering results. While principled BSDF is effective, we
found that there are some unrealistic combinations of parameters that we want
to skip (e.g., metallic = 1 and roughness = 0, or metallic = 0.5). For avoiding
those unrealistic parameters, we divide the entire parameter sets into three cat-
egories, (a) Diffuse, (b) Specular and (c) Metallic. We generate three datasets
individually and evenly merge them when training the network. The value of
each parameter is randomly selected within specific ranges for each parameter
(see Fig. 4-(a)). To realize spatially varying materials, we divide the object re-
gion in the rendered image into P (i.e., 5000 for the training data) superpixels
and use the same set of parameters at pixels within a superpixel (See Fig. 4-(b)).

For simulating complex light transport, we use Cycles [9] renderer bundled
in Blender [37]. The orthographic camera and the directional light are specified.
For each rendering, we choose a set of an object, BSDF parameter maps (one for
each parameter), and lighting configuration (i.e., Once roughly 1300 lights are
uniformly distributed on the hemisphere, small random noises are added to each
light). Once images were rendered, we create CyclesPS dataset by generating
observation maps pixelwisely. For making the network robust to the test data
of any number of images, observation maps are generated from a pixelwisely
different number of images. Concretely, when generating an observation map,
we pick a random subset of images whose number is whithin 50 to 1300 and
whose corresponding elevation angle of the light direction is more than a random
threshold value within 20 to 90 degrees.7 The training process takes 10 epochs
for 150 image sets (i.e., 15 objects × 10 rotations for the rotational pseudo-
invariance). Each image set contains around 50000 samples (i.e., number of pixels
in the object mask).

4 Experimental Results

We evaluate our method on synthetic and real datasets. All experiments were
performed on a machine with 3×GeForce GTX 1080 Ti and 64GB RAM. For
training and prediction, we use Keras library [38] with Tensorflow background
and use default learning parameters. The training process took around 3 hours.

4.1 Datasets

We evaluated our method on three datasets, two are synthetic and one is real.

7 The minimum number of images is 50 for avoiding too sparse observation map and
we only picked the lights whose elevation angles were more than 20 degrees since it
is practically less possible that the scene is illuminated from the side.
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Fig. 5. Evaluation on the MERLSphere dataset. A sphere is rendered with 100 mea-
sured BRDF in MERL BRDF database [29]. Our CNN-based method was compared
against a model-based algorithm (IA14 [7]) based on the mean angular errors of pre-
dicted surface normals in degree. We also showed some examples of rendered images
and observation maps for further analysis (See Section 4.2).

MERLSphere is a synthetic dataset where images are rendered with one hun-
dred isotropic BRDFs in MERL database [29] from diffuse to metallic. We gen-
erated 32-bit HDR images of a sphere (256 × 256) with a ground truth surface
normal map and a foreground mask. There is no cast shadow and inter-reflection.

CyclesPSTest is a synthetic dataset of three objects, SPHERE, TURTLE
and PAPERBOWL. TURTLE and PAPERBOWL are non-convex objects where
the inter-reflection and cast shadow appear on rendered images. This dataset
was generated in the same manner with the CyclesPS training dataset except
that the number of superpixels in the parameter map was 100 and the material
condition was either Specular or Metallic (Note that objects and parameter maps
in CyclesPSTest are NOT in CyclesPS). Each data contains 16-bit integer images
with a resolution of 512× 512 under 17 or 305 known uniform lightings.

DiLiGenT [11] is a public benchmark dataset of 10 real objects of general re-
flectance. Each data provides 16-bit integer images with a resolution of 612×512
from 96 different known lighting directions. The ground truth surface normals
for the orthographic projection and the single-view setup are also provided.

4.2 Evaluation on MERLSphere dataset

We compared our method (with K = 10 in Eq. (9)) against one of the state-of-
the-art isotropic photometric stereo algorithms (IA14 [17]8) on the MERLSphere

dataset. Without global illumination effects, we simply evaluate the ability of
our network in representing wide varieties of materials compared to the sum-of-
lobes BRDF [24] introduced in IA14. The results are illustrated in Fig. 5. We
observed that our CNN-based algorithm performs comparably well, though not

8 We used the authors’ implementation of [17] with N1 = 2, N2 = 4 and turning on the
retro-reflection handling. Attached shadows were removed by a simple thresholding.
Note that our method takes into account all the input information unlike [17].
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Table 1. Evaluation on the CyclesPSTest dataset. Here m is the number of input
images in each dataset and {S,M} are types of material i.e., Specular (S) or Metallic
(M) (See Fig. 4 for details). For each cell, we show the average angular errors in degrees.

m=17 m=305

OBJECT
SPHERE 

(S)
SPHERE 

(M)
TURTLE 

(S)
TURTLE 

(M)
PAPERBOWL 

(S)
PAPERBOWL 

(M)
SPHERE 

(S)
SPHERE 

(M)
TURTLE 

(S)
TURTLE 

(M)
PAPERBOWL 

(S)
PAPERBOWL 

(M)
OURS (K=1) 4.9 11.9 12.9 20.2 22.2 36.8 1.6 2.0 4.2 6.5 6.8 11.1

OURS (K=10) 3.3 9.0 9.9 17.8 20.1 34.2 0.9 1.4 3.3 5.7 6.0 9.5
IA14 [17] 2.7 41.0 13.4 39.1 37.2 43.1 2.8 50.7 16.5 39.0 41.7 42.0
IW12 [6] 1.6 31.0 9.0 35.1 27.7 42.0 1.6 41.7 9.3 37.8 27.6 39.6
IW14 [7] 1.4 23.1 10.5 28.4 36.9 44.2 1.2 20.5 10.2 25.9 37.4 39.5
ST14 [18] 4.4 36.3 12.0 40.6 31.4 41.1 1.0 19.0 19.9 25.5 51.0 50.3

BASELINE[12] 4.6 35.4 12.3 39.7 29.4 39.3 5.0 44.5 12.6 40.2 28.8 37.0

Table 2. Evaluation on the DiLiGenT dataset. We show the angular errors averaged
within each object and over all the objects. (*) Our method discarded first 20 images
in BEAR since they are corrupted (We explain about this issue in the supplementary).

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVE. ERR RANK
OURS (K=10) 2.2 4.1 7.9 4.6 8.0 7.3 14.0 5.4 6.0 12.6 7.2 1
OURS (K=1) 2.7 4.5 8.6 5.0 8.2 7.1 14.2 5.9 6.3 13.0 7.6 2
HS17 [20] 1.3 5.6 8.5 4.9 8.2 7.6 15.8 5.2 6.4 12.1 7.6 2
TM18 [21] 1.5 5.8 10.4 5.4 6.3 11.5 22.6 6.1 7.8 11.0 8.8 4
IW14 [7] 2.0 4.8 8.4 5.4 13.3 8.7 18.9 6.9 10.2 12.0 9.0 5
SS17 [20] 2.0 6.3 12.7 6.5 8.0 11.3 16.9 7.1 7.9 15.5 9.4 6
ST14 [18] 1.7 6.1 10.6 6.1 13.9 10.1 25.4 6.5 8.8 13.6 10.3 7
SH17 [25] 2.2 5.3 9.3 5.6 16.8 10.5 24.6 7.3 8.4 13.0 10.3 7
IA14 [17] 3.3 7.1 10.5 6.7 13.1 9.7 26.0 6.6 8.8 14.2 10.6 9
GC10 [14] 3.2 6.6 14.9 8.2 9.6 14.2 27.8 8.5 7.9 19.1 12.0 10

BASELINE [12] 4.1 8.4 14.9 8.4 25.6 18.5 30.6 8.9 14.7 19.8 15.4 -

*
*

better than IA14, for most of materials, which indicates that Disney’s princi-
pled BSDF [10] covers various real-world materials. We should note that as was
commented in [10], some of very shiny materials, particularly the metals (e.g.,
chrome-steel and tungsten-carbide), exhibited asymmetric highlights suggestive
of lens flare or perhaps anisotropic surface scratches. Since our network was
trained on purely isotropic materials, they inevitably degrade the performance.

4.3 Evaluation on CyclesPSTest dataset

To evaluate the ability of our method in recovering non-convex surfaces, we
tested our method on CyclesPSTest. Our method was compared against two ro-
bust algorithms IW12 [6] and IW14 [7]9, two model-based algorithms ST14 [18]10

and IA14 [17] and BASELINE [12]. When running algorithms except for ours, we
discarded samples whose intensity values were less than 655 in a 16-bit integer
image for the shadow removal. In this experiment, we also studied the effects
of number of images and rotational merging in the prediction.11 Concretely, we
tested our method on 17 or 305 images with K = 1 and K = 10 in Eq. (9).

9 We used authors’ implementation and set parameters of [6] as λ = 0, σ = 1.0−6 and
parameters of [7] as λ = 0, p = 3, σa = 1.0.

10 We used our implementation of [18] and set Tlow = 0.25.
11 We still augument data by rotations in the training step.
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Ours (K=1) Ours (K=10) IA14 IW12 IW14 ST14 BaselineGT

(a) TURTLE (S), Uniform 305 lightings

(b) PAPERBOWL (S), Uniform 305 lightings
(6.8) (6.0) (41.7) (27.6) (37.4) (51.0) (28.8)
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Fig. 6. Recovered surface normals and error maps for (a) TURTLE and (b) PAPER-
BOWL of Specular material. Images were rendered under uniform 305 lightings.

We show the results in Table 1 and Fig. 6. We observed that all the algorithms
worked well on the convex specular SPHERE dataset. However, when surfaces
were non-convex, all the algorithms except ours failed in the estimation due to
strong cast shadow and inter-reflections. It is interesting to see that even the ro-
bust algorithms (IA12 [6] and IA14 [7]) could not deal with the global effects as
outliers. We also observed that the rotational averaging based on the rotational
pseudo-invariance definitely improved the accuracy, though not very much.

4.4 Evaluation on DiLiGenT dataset

Finally, we present a side-by-side comparison on the DiLiGenT dataset [11].
We collected existing benchmark results for the calibrated photometric stereo
algorithms [12–15, 5, 6, 16, 7, 17, 18, 8, 19–21]. Note that we compared the mean
angular errors of [12–15, 5, 16–18] reported in [11], ones reported in their own
works [19–21] and ones from our experiment using authors’ implementation [6–
8].12 The results are illustrated in Table 2. Due to the space limit, we only show
the top-10 algorithms13 w.r.t the overall mean angular, and BASELINE [12].
We observed that our method achieved the smallest errors averaged over 10 ob-
jects, best scores for 6 of 10 objects. It is valuable to note that other top-ranked
algorithms [20, 21] are time-consuming since HS17 [20] requires the dictionary
learning for every different light configuration and TM18 [21] needs the unsu-
pervised training for every estimation while our inference time is less than five
seconds (when K = 1) for each dataset on CPU. Taking a close look at each

12 As for [8], we used the default setting of their package except that we gave the
camera intrinsics provided by [11] and changed the noise variance to zero.

13 Please find the full comparison in our supplementary.
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(a) HARVEST

Ours (K=10) TM18 IW14 ST14 BaselineGT
(14.0) (22.6) (18.9) (25.4) (30.6)

(b) READING
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Fig. 7. Recovered surface normals and error maps for (a) HARVEST and (b) READ-
ING in the DiLiGenT dataset.

object, Fig. 7 provides some important insights. HARVEST is the most non-
convex scene in DiLiGenT and other state-of-the art algorithms (TM18 [21],
IW14[7], ST14 [18]) failed in the estimation of normals inside the “bag” due to
strong shadow and inter-reflections. Our CNN-based method estimated much
more reasonable surface normals there thanks to the network trained based on
the carefully created CyclesPS dataset. On the other hand, our method did not
work best (though not bad) for READING which is another non-convex scene.
Our analysis indicated that this is because of the inter-reflection of high-intensity
narrow specularities that were rarely observed in our training dataset (Narrow
specularities appear only when roughness in the principled BSDF is near zero).

5 Conclusion

In this paper, we have presented a CNN-based photometric stereo method which
works for various kind of isotropic scenes with global illumination effects. By pro-
jecting photometric images and lighting information onto the observation map,
unstructured information is naturally fed into the CNN. Our detailed experi-
mental results have shown the state-of-the-art performance of our method for
both synthetic and real data especially when the surface is non-convex. To make
better training set for handling narrow inter-reflections is our future direction.
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