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Abstract. Due to the succinct nature of free-hand sketch drawings,
sketch-based image retrieval (SBIR) has abundant practical use cases
in consumer electronics. However, SBIR remains a long-standing un-
solved problem mainly because of the significant discrepancy between
the sketch domain and the image domain. In this work, we propose a
Generative Domain-migration Hashing (GDH) approach, which for the
first time generates hashing codes from synthetic natural images that are
migrated from sketches. The generative model learns a mapping that the
distributions of sketches can be indistinguishable from the distribution
of natural images using an adversarial loss, and simultaneously learns
an inverse mapping based on the cycle consistency loss in order to en-
hance the indistinguishability. With the robust mapping learned from the
generative model, GDH can migrate sketches to their indistinguishable
image counterparts while preserving the domain-invariant information of
sketches. With an end-to-end multi-task learning framework, the gener-
ative model and binarized hashing codes can be jointly optimized. Com-
prehensive experiments of both category-level and fine-grained SBIR on
multiple large-scale datasets demonstrate the consistently balanced su-
periority of GDH in terms of efficiency, memory costs and effectiveness.4
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1 Introduction

The prevalence of touchscreen in consumer electronics (range from portable de-
vices to large home appliance) facilitates human-machine interactions free-hand
drawings. The input of sketches is succinct, convenient and efficient for visually
recording ideas, and can beat hundreds of words in some scenarios. As an ex-
tended application based on sketches, sketch-based image retrieval (SBIR) [39,
56, 1, 55, 40, 48, 9] has attracted increasing attention.

⋆ Corresponding author: Fumin Shen
4 Models and code at https://github.com/YCJGG/GDH



2 J. Zhang, F. Shen, L. Liu, F. Zhu, M. Yu, L. Shao, H. Shen, L. Van Gool

The primary challenge in SBIR is that free-hand sketches are inherently ab-
stract and iconic, which magnifies cross-domain discrepancy between sketches
and real-world images. Recent works attempt to employ cross-view learning
methods [39, 9, 29, 38, 13, 34, 4, 14, 37, 32] to address such a challenge, where the
common practice is to reduce the domain discrepancy by embedding both sketches
and natural images to a common space and use the projected features for re-
trieval. The most critical deficiency of this line of approaches is the learned map-
pings within each domain cannot be well-generalized to the test data, especially
for categories with large variance. Similar to other image-based retrieval prob-
lems, the query time grows increasingly with the database size and exponentially
with the dimension of sketch/image representations. To this end, Deep Sketch
Hashing (DSH) [29] is introduced to replace the full-precision sketch/image rep-
resentations with binary vectors. However, the quantization error introduced by
the binarization procedure can destroy both domain-invariant information and
the semantic consistency across domains.

In this work, our primary goal is to improve deficiencies in aforementioned
works and provide a practical solution to the scalable SBIR problem. We pro-
pose a Generative Domain-migration Hashing (GDH) method that improves the
generalization capability by migrating sketches into the natural image domain,
where the distribution migrated sketches can be indistinguishable from the dis-
tribution of natural images. Additionally, we introduce an end-to-end multi-task
learning framework that jointly optimizes the cycle consistent migration as well
as the hash codes, where the adversarial loss and the cycle consistency loss can
simultaneously preserve the semantic consistency of the hashing codes. GDH
also integrates an attention layer that guides the learning process to focus on
the most representative regions.

While SBIR aims to retrieve natural images that shares identical category la-
bels with the query sketch, fine-grained SBIR aims to preserve the intra-category
instance-level consistency in addition to the category-level consistency. For the
consistency purpose, we refer to standard SBIR as category-level SBIR and the
fine-grained version as fine-grained SBIR respectively throughout the paper.
Since the bidirectional mappings learned in GDH are highly under-constrained
(i.e., does not require the pixel-level alignment [15] between sketches and natural
images), GDH can naturally provide an elegant solution for preserving the geo-
metrical morphology and detailed instance-level characteristic between sketches
and natural images. In addition, a triplet ranking loss is introduced to enhance
the fine-grained learning based on visual similarities of intra-class instances. The
pipeline of the proposed GDH method for both category-level and fine-grained
SBIR tasks is illustrated in Fig. 1. Extensive experiments on various large-scale
datasets for both category-level and fine-grained SBIR tasks demonstrate the
consistently balanced superiority of GDH in terms of memory cost, retrieval
time and accuracy. The main contributions of this work are as follows:

– We for the first time propose a generative model GDH for the hashing-based
SBIR problem. Comparing to existing methods, the generative model can
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essentially improve the generalization capability by migrating sketches into
their indistinguishable counterparts in the natural image domain.

– Guided by an adversarial loss and a cycle consistency loss, the optimized
binary hashing codes can preserve the semantic consistency across domains.
Meanwhile, training GDH does not require the pixel-level alignment across
domains, and thus allows generalized and practical applications.

– GDH can improve the category-level SBIR performance over the state-of-the-
art hashing-based SBIR method DSH [29] by up to 20.5% on the TU-Berlin
Extension dataset, and up to 26.4% on the Sketchy dataset respectively.
Meanwhile, GDH can achieve comparable performance with real-valued fine-
grained SBIR methods, while significantly reduce the retrieval time and
memory cost with binary codes.
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Fig. 1. Illustration of our deep model for the domain-migration networks and compact
binary codes learning. The domain-migration module consists of GI , GS , DI and DS .
The bottom right module is the hashing network H. The red arrows represent the
cycle between real sketches and fake natural while the purple arrows represent the
cycle between real natural images and fake sketches.

2 Related Work

In this section, we discuss the following four directions of related works.
Category-level SBIR: The majority of existing category-level SBIR methods
[39, 9, 29, 38, 13, 34, 4, 14, 37, 32, 22] rely on learning a common feature space for
both sketches and natural images. However, learning such a common feature
space based on that can end up with an overfitting solution to the training data.
Hashing-based SBIR: If the learned common feature space is real-valued, the
retrieval time depends on the database size, and the scalability of the algorithms
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can be consequently restrained. In order to to improve the efficiency, hashing-
based methods [42, 26, 30, 31, 44, 51, 61, 28, 46, 36, 28, 45, 43] are introduced to solve
the SBIR problem. The state-of-the-art hashing-based SBIR method DSH [28]
employed an end-to-end semi-heterogeneous CNNs to learn binarized hashing
codes for retrieval. However, the generalization issue remains in DSH since the
learned semi-heterogeneous CNNs are also non-linear mappings across the two
domains.
Generative Adversarial Networks: The success of Generative Adversarial
Networks (GANs) [10] in various image generation [6] and representation learn-
ing [33] tasks is inspiring in a way that sketches can be migrated into the natural
image domain using the adversarial loss, where the migrated sketches cannot be
distinguished from natural images. Image-to-image translation methods [41, 16]
can serve this purpose and are capable of migrating sketches into natural images,
however, the pixel-level alignment between each sketch and image pair required
for training are impractical. In order to address such an issue, Zhu et al. [62]
introduced a cycle consistency loss. In this work, we employ such a cycle consis-
tency loss and force the bidirectional mappings to be consistent with each other.
Benefiting from the highly under-constrained cycled learning, sketches can be
migrated to their indistinguishable counterparts in the natural image domain.
Fine-grained SBIR: Among a limited number of fine-grained SBIR methods
[55, 40, 48, 3, 53, 21, 35, 54, 20], Yu et al. [55] proposed the multi-branch networks
with triplet ranking loss, which preserved the visual similarities of intra-class
sketch and natural image instances. In our work, we also exploit the triplet
ranking loss for preserving the visual similarity of intra-class instances. With
improved generalization capability to the test data and the binarized hashing
codes, the proposed GDH method can achieve comparable performance with [55]
on the fine-grained SBIR task, while requiring much less memory and retrieval
time.

3 Generative Domain-migration Hash

3.1 Preliminary

Given n1 training images I = {Ii}
n1

i=1 and n2 training sketches S = {Si}
n2

i=1, the

label vectors (row vectors) for all the training instances are Y I =
{

yI
i

}n1

i=1
∈

{0, 1}n1×c and Y S =
{

yS
i

}n2

i=1
∈ {0, 1}n2×c, respectively, where yI

i and yS
i are

one-hot vectors and c is the number of classes. We aim to learn the migration
from sketches to natural images, and simultaneously learn the hashing function
H : {I, Ifake} → {−1,+1}

K
, where K is the length of hash codes. Such that the

semantic consistency can be preserved between the extracted hashing codes of
both authentic and generated natural images.

3.2 Network Architecture

To serve the above purposes, we simultaneously optimize a pair of generative
and discriminative networks and a hashing network.
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Generative networks: Let GI and GS be two parallel generative CNNs for
migrating sketches to the natural images and vice versa: GI : S → I and
GS : I → S. Considering natural images contain much more information than
their sketch counterparts, migrating sketches to natural images is essentially an
upsampling process and potentially requires more parameters.

In order to suppress the background information and guide the learning pro-
cess to concentrate on the most representative regions, we integrate an attention
module [47, 60] in GS . The attention module contains a convolutional layer with
1×1 kernel size, where a softmax function with a threshold is applied to the
output for obtaining a binary attention mask. Element-wise ⊙ multiplication
can be performed between the binary attention mask and the feature map from
ResBlocks.
Discriminative networks: Along with two generators, two discriminative net-
works are correspondingly integrated in GDH, where DI aims to distinguish the
images with its mask (I⊙mask) and the generated images GI (S), and DS aims
to distinguish the real sketches S and the generated sketches GS (I).
Hashing network: The hashing network H aims to generate binary hashing
codes of both real images I and generated images GI (S), and can be trained
based on both real image with its mask (I ⊙mask) and generated image GI (S)
from the domain-migration network. The hashing network H is modified from
the 18-layer Deep Residual Network (Resnet) [12] by replacing the softmax layer
with a fully-connected layer with a binary constraint on the values, where the
dimension of the fully-connected layer equals to the length of the hashing codes.

We denote the parameters of the shared-weight hashing network as θH . For
natural images and sketches, we formulate the deep hash function (i.e., the

Hashing network ) as BI = sgn(H(I ⊙ mask;θH)) ∈ {0, 1}n1×K and BS =
sgn(H(GI(S);θH)) ∈ {0, 1}n2×K , respectively, where sgn(·) is the sign function.
Note that we use the row vector of the output for the convenience of computation.
In the following section, we will introduce the deep generative hashing objective
of joint learning of binary codes and hash functions.

We denote the parameters of the shared-weight hashing network as θH . For
natural images and sketches, we formulate the deep hash function (i.e., the

Hashing network ) as BI = sgn(H(I ⊙ mask;θH)) ∈ {0, 1}n1×K and BS =
sgn(H(GI(S);θH)) ∈ {0, 1}n2×K , respectively, where sgn(·) is the sign function.
Note that we use the row vector of the output for the convenience of computation.
In the following section, we will introduce the deep generative hashing objective
of joint learning of binary codes and hash functions.

3.3 Objective Formulation

There are five losses in our objective function. The adversarial loss and the cycle
consistency loss guide the learning of the domain-migration network. The se-
mantic and triplet losses preserve the semantic consistency and visual similarity
of intra-class instances across domains. The quantization loss and unification
constraint can preserve the feature space similarity of pair instances. Detailed
discussion of each loss is provided in following paragraphs.
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Adversarial and Cycle Consistency Loss: Our domain-migration networks
are composed of four parts:GI ,GS ,DI andDS [62]. We denote the parameters of
GI ,GS ,DI andDS as θC . Specifically, θC |GI

is the parameter ofGI and so forth.
Note that the inputs of domain-migration networks should be image-sketch pairs
and usually we have n1 ≫ n2. Thus we reuse the sketches from same category to
match the images. Sketches from the same category are randomly repeated and
S will be expanded to Ŝ = {S1, · · · , S1, S2 · · · , S2, · · · , Sn2

, · · · , Sn2
} to make

sure |Ŝ| = |I|. Suppose the data distributions are I ∼ pI and Ŝ ∼ p
Ŝ
. For the

generator GI : Ŝ → I and its discriminator DI , the adversarial loss can be
written as

min
θC |GI

max
θC |DI

LG(GI , DI , Ŝ, I) := EI∼pI
[logDI(I ⊙mask,θC |DI

)]

+E
Ŝ∼p

Ŝ
[log(1−DI(GI(Ŝ,θC |GI

),θC |DI
)],

(1)

where the generator and the discriminator compete in a two-player minimax
game: the generator tries to generate images GI(Ŝ) that look similar to the
images from domain I and its corresponding mask, while the discriminator tries
to distinguish between real images and fake images. The adversarial loss of the
other mapping function GS : I → Ŝ is defined in the similar way. The Cycle
Consistency Loss can prevent the learned mapping function GI and GS from
conflicting against each other, which can be expressed as

min
θC |GI

,θC |GS

Lcyc(GI , GS) := EI∼pI
‖GS(GI(Ŝ,θC |GI

),θC |GS
)− Ŝ‖

+E
Ŝ∼p

Ŝ
‖GI(GS(I,θC |GS

),θC |GI
)− I ⊙mask‖.

(2)

where ‖ · ‖ is the Frobenius norm. The full optimization problem for domain-
migration networks is

min
θC |GI

θC |GS

max
θC |DI

θC |DS

Lgan := LG(GI , DI , Ŝ, I) + LG(GS , DS , I, Ŝ) + υLcyc(GI , GS). (3)

We set the balance parameter υ = 10 in the experiment according to the previous
work [62].
Semantic Loss: The label vectors of images and sketches are Y I and Y S .
Inspired by Fast Supervised Discrete Hashing [11], we consider the following
semantic factorization problem with the projection matrix D ∈ R

c×K :

min
BI ,BS ,D

Lsem :=
∥

∥BI − Y ID
∥

∥

2
+
∥

∥BS − Y SD
∥

∥

2
+ ‖D‖

2
,

s.t. BI ∈ {−1,+1}n1×K ,BS ∈ {−1,+1}n2×K .

(4)

Lsem aims to minimize the distance between the binary codes of the same cate-
gory, and maximize the distance between the binary codes of different categories.
Quantization Loss: The quantization loss is introduced to preserve the intrinsic
structure of the data, and can be formulated as follows:

min
θH

Lq :=
∥

∥H (I;θH)−BI
∥

∥

2
+
∥

∥H (GI (S,θC |GI
) ;θH)−BS

∥

∥

2
. (5)
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Triplet Ranking Loss: For the fine-grained retrieval task, we integrate the
triplet ranking loss into the objective function for preserving the similarity of
paired cross-domain instances within an object category. For a given triplet
(

Si, I
+
i , I−i

)

, specifically, each triplet contains a query sketch Si and a positive

image sample I+i and a negative image sample I−i . We define the triplet ranking
loss function as follow:

min
θH

Ltri :=
∑

i

max
(

0, ∆+
∥

∥H (GI (Si,θC |GI
) ;θH)−H

(

I+i ;θH
)
∥

∥

2

−
∥

∥H (GI (Si,θC |GI
) ;θH)−H

(

I−i ;θH
)
∥

∥

2 )
,

(6)

where the parameter ∆ represents the margin between the similarities of the
outputs of the two pairs (Si, I

+
i ) and (Si, I

−
i ). In other words, the hashing net-

work ensures that the Hamming distance between the outputs of the negative
pair (Si, I

−
i ) is larger than the Hamming distance between the outputs of the

positive pair (Si, I
+
i ) by at least a margin of ∆. In this paper, we let ∆ equal to

half of the code length (i.e., ∆ = 0.5K).
Full Objective Function: We also desire the binary codes of a real natural
image and a generated image to be close to each other. Thus, we employ a
unification constraint Lc = ‖H(I;θH)−H(GI(Ŝ,θC |GI

);θH)‖2 is added to the
final objective function which is formulated as follows:

min
BI,BS,D,θC ,θH

Ltotal := Lgan + Lsem + λLtri + αLq + βLc,

s.t. BI ∈ {−1,+1}n1×K ,BS ∈ {−1,+1}n2×K ,
(7)

where λ is a control parameter, which equals 1 for fine-grained task and equals
0 for semantic-level SBIR only, The hyper-parameters α and β control the con-
tributions of the two corresponding terms.

3.4 Joint Optimization

Due to the non-convexity of the joint optimization and NP-hardness to output
the discrete binary codes, it is infeasible to find the global optimal solution.
Inspired by [11], we propose an optimization algorithm based on alternating
iteration and sequentially optimize one variable while the others are fixed. In
this way, variables D, BI , BS , parameter θC of the domain-migration networks,
and parameter θH of the hash function will be iteratively updated.

D-Step. By fixing all the variables except D, Eq. (7) can be simplified as a
classic quadratic regression problem:

min
D

∥

∥BI − Y ID
∥

∥

2
+
∥

∥BS − Y SD
∥

∥

2
+ ‖D‖

2

= min
D

tr
(

D⊤
(

Y I⊤Y I + Y S⊤
Y S + I

)

D
)

− 2tr
(

D⊤
(

Y I⊤BI + Y S⊤
BS

))

,

(8)
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where I is the identity matrix. Taking the derivative of the above function with
respect to D and setting it to zero, we have the analytical solution to Eq. (8):

D =
(

Y I⊤Y I + Y S⊤
Y S + I

)−1 (

Y I⊤BI + Y S⊤
BS

)

. (9)

BI-Step. When all the variables are fixed except BI , we rewrite Eq. (7) as

min
BI

∥

∥BI − Y ID
∥

∥

2
+ α

∥

∥H (I;θH)−BI
∥

∥

2
. (10)

Since tr
(

BI⊤BI
)

is a constant, Eq. (10) is equivalent to the following problem:

min
BI

−tr
(

BI⊤
(

Y ID+ αH (I;θH)
)

)

. (11)

For BI ∈ {−1,+1}n1×K , BI has a closed-form solution as follows:

BI = sgn
(

Y ID+ αH (I;θH)
)

. (12)

BS-Step. Considering all the terms related to BS , it can be learned by a similar
formulation as Eq.(12):

BS = sgn
(

Y SD+ αH (GI (S,θC |GI
) ;θH)

)

. (13)

(θC ,θH)-Step. After the optimization for D, BI and BS , we update the network
parameters θC and θH according to the following loss:

min
θC ,θH

L := Lgan + λLtri + αLq + βLc. (14)

We train our networks on I and Ŝ, where the sketch-image pairs are randomly
select to compose of the mini-batch, and then backpropagation algorithm with
SGD is adopted for optimizing two networks. In practice, we use deep learning
frameworks (e.g., Pytorch) to achieve all the steps. We iteratively update D →
BI → BS → {θC ,θH} in each epoch. As such, GDH can be finally optimized
within L epochs, where 20 ≤ L ≤ 30 in our experiment. The algorithm of GDH
is illustrated in Algorithm 1.

Once GDH model is learned, for a given query sketch sq, we can infer its
binary code bsq = sgn (H (GI (Sq,θC |GI

) ;θH)) through the GI network and the
hash networkH. For the image gallery, the hash codes bI = sgn (H (I ⊙mask;θH))
of each image is computed through the hash network, where mask can be easily
obtained by GS (I;θC |GS

). Note that fake images generated by GI (Sq,θC |GI
)

are non-background and thus they don’t need multiply mask before feed into
the hashing network.
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Algorithm 1: Generative Domain-migration Hash (GDH)

Input: Training natural images I = {Ii}
n1

i=1
and the corresponding sketches

S = {Si}
n2

i=1
; the label information Y I and Y S ; the code length K; the

number of training epochs L; the balance parameters α, β, λ.
Output: Generative models GI and GS ; deep hash function H.
1: Randomly initialize BI ∈ {−1,+1}n1×K and BS ∈ {−1,+1}n2×K ;
2: For l = 1, 2, · · · , L do
3: Update D according to Eq. (9);
4: Update BI according to Eq. (12);
5: Update BS according to Eq. (13);
6: Update the network parameters θC and θH according to Eq. (14) by
training with the l-th epoch data;

7: End
8: Return the network parameters θC and θH .

4 Experiments and Results

In the experiment section, we aim to address the following three questions:

– How does GDH perform as compared to other state-of-the-art binary or
real-valued methods for category-level SBIR?

– How does GDH perform as compared to other state-of-the-art real-valued
methods for fine-grained SBIR?

– How does each component or constraint contribute to the overall perfor-
mance of GDH?

4.1 Datasets and Settings

Category-level Retrieval. GDH is evaluated on two largest SBIR datasets:
Sketchy [40] and TU-Berlin [8] Extension. The Sketchy database contains 125
categories with 75,471 sketches of 12,500 object images. We additionally utilize
another 60,502 natural images [29] collected from ImageNet [5]. Hence, the whole
image database contains 73,002 images in total. TU-Berlin is a sketch dataset
with 250 object categories, where each category contains 80 sketches. An addi-
tional 204,489 natural images associated with TU-Berlin provided by [59] are
used to construct the image database. Similar to previous hashing experiments
[29], 50 and 10 sketches are respectively selected as the query sets for TU-Berlin
and Sketchy, where the remaining are used as the gallery for training.

We compare GDH with 8 existing category-level SBIR methods, including
4 hand-crafted methods: LSK [38], SEHLO [37], GF-HOG [13] and HOG [4];
and 4 deep learning based methods: 3D shape [50], Sketch-a-Net (SaN) [56], GN
Triplet [40] and Siamese CNN [35]. Furthermore, we also compare GDH with
7 state-of-the-art cross-modality hashing methods: Collective Matrix Factoriza-
tion Hashing (CMFH) [7], Cross-Model Semi-Supervised Hashing (CMSSH) [2],
Cross-View Hashing(CVH) [19], Semantic Correlation Maximization (SCMSeq
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Table 1. Comparison with previous SBIR methods w.r.t. MAP, retrieval time per
query (s) and memory cost (MB) on TU-Berlin Extension and Sketchy.

Methods Dimension
TU-Berlin Extension Sketchy

MAP
Retrieval time
per query (s)

Memory cost (MB)
(204,489 images)

MAP
Retrieval time
per query (s)

Memory cost (MB)
(73,002 images)

HOG [4] 1296 0.091 1.43 2.02× 103 0.115 0.53 7.22× 102

GF-HOG [13] 3500 0.119 4.13 5.46× 103 0.157 1.41 1.95× 103

SHELO [37] 1296 0.123 1.44 2.02× 103 0.182 0.50 7.22× 102

LKS [38] 1350 0.157 0.204 2.11× 103 0.190 0.56 7.52× 102

Siamese CNN [35] 64 0.322 7.70×10−2 99.8 0.481 2.76×10−2 35.4
SaN [56] 512 0.154 0.53 7.98× 102 0.208 0.21 2.85× 102

GN Triplet∗ [40] 1024 0.187 1.02 1.60× 103 0.529 0.41 5.70× 102

3D shape∗ [50] 64 0.072 7.53×10−2 99.8 0.084 2.64 ×10−2 35.6

Siamese-AlexNet 4096 0.367 5.35 6.39× 103 0.518 1.68 2.28× 103

Triplet-AlexNet 4096 0.448 5.35 6.39× 103 0.573 1.68 s 2.28× 103

GDH
(Proposed)

32 (bits) 0.563 5.57×10−4 0.78 0.724 2.55×10−4 0.28
64 (bits) 0.690 7.03×10−4 1.56 0.810 2.82×10−4 0.56
128 (bits) 0.659 1.05×10−3 3.12 0.784 3.53×10−4 1.11

“∗” denotes that we directly use the public models provided by the original papers without any
fine-tuning on the TU-Berlin Extension and Sketchy datasets.

and SCM-Orth) [57], Semantics-Preserving Hashing(SePH) [25], Deep Cross-
Modality Hashing (DCMH) [17] and Deep Sketch Hash (DSH) [29]. Finally, we
also compare our method to other four cross-view feature embedding methods:
CCA [49], PLSR [27], XQDA [24] and CVFL [52]. The implementation details
and experimental results of above methods are reported in [29].

We use the Adam solver [18] with a batch size of 32. Our balance parameters
are set to α = 10−5, β = 10−5 and λ = 0 for both datasets. All networks are
trained with an initial learning rate lr = 0.0002. After 25 epochs, we decrease the
learning rate of the hashing network lr → 0.1lr and terminate the optimization
after 30 epochs for both datasets. Our method is implemented by Pytorch with
dual 1080Ti GPUs and an i7-4790K CPU.

Fine-grained Retrieval. We conduct experiments of GDH on the QMUL-
Shoes and QMUL-Chairs datasets [55]. The two datasets are fine-grained instance-
level SBIR datasets which contain 419 shoes sketch-photo pairs and 297 chairs
sketch-photo pairs, respectively.

We compare our proposed GDH method with several fine-grained meth-
ods including 2 hand-crafted methods: HOG+BoW+RankSVM [23] and Dense
HOG+RankSVM [55], and 3 deep feature baselines: Improved Sketch-a-Net
(ISN) [56], 3D shape (3DS) [50] and Triplet Sketch-a-Net (TSN) [55]. All of
these algorithms are real-valued methods. It is noteworthy that the networks
in TSN [55] are heavily pre-trained and the data have been processed by com-
plex augmentation. However, to emphasize the ability of our domain-migration
model, data augmentation is not included in our experiment.

Note that, QMUL-Shoes and QMUL-Chairs are unique fine-grained datasets,
in which only contains one category for each of them. Therefore, it is unnecessary
to optimize the semantic loss in Eq. (7). To better fit the task of fine-grained
retrieval, we skip the first five steps in Algorithm 1 and directly update the
parameters of θC and θH . Our balance parameters are set to λ = 1. The imple-
mentation details are the same as the settings for category-level retrieval.
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Table 2. MAP comparison with different cross-modality retrieval methods for
category-level SBIR on TU-Berlin Extension and Sketchy.

Method
TU-Berlin Extension Sketchy
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

Cross-Modality
Hashing Methods
(binary codes)

CMFH [7] 0.149 0.202 0.180 0.320 0.490 0.190
CMSSH [2] 0.121 0.183 0.175 0.206 0.211 0.211

SCM-Seq [57] 0.211 0.276 0.332 0.306 0.417 0.671
SCM-Orth [57] 0.217 0.301 0.263 0.346 0.536 0.616

CVH [19] 0.214 0.294 0.318 0.325 0.525 0.624
SePH [25] 0.198 0.270 0.282 0.534 0.607 0.640
DCMH [17] 0.274 0.382 0.425 0.560 0.622 0.656
DSH [29] 0.358 0.521 0.570 0.653 0.711 0.783

Cross-View Feature
Learning Methods
(real-valued vectors)

CCA [49] 0.276 0.366 0.365 0.361 0.555 0.705
XQDA [27] 0.191 0.197 0.201 0.460 0.557 0.550
PLSR [24] 0.141 (4096-d) 0.462 (4096-d)
CVFL [52] 0.289 (4096-d) 0.675 (4096-d)

Proposed GDH 0.563 0.690 0.651 0.724 0.811 0.784
For end-to-end deep methods, raw natural images and sketches are used. For others, 4096-d

AlexNet fc7 image features and 512-d SaN fc7 sketch features are used. PLSR and CVFL are both
based on reconstructing partial data to approximate full data, so the dimensions are fixed to

4096-d.

4.2 Results and Discussions

Comparison with Category-level SBIR Baselines. We compare our GDH
method with the 10 baseline methods in terms of Mean Average Precision
(MAP), retrieval time and memory cost on two datasets. The code lengths of out-
puts are 32, 64 and 128 bits. As reported in Table 1, GDH consistently achieves
the best performance with much faster query time and much lower memory cost
compared to other SBIR methods on both datasets. Also, GDH largely improves
the state-of-the-art performance of Triplet-AlexNet by 24.2% and 23.7% on the
TU-Berlin and Sketchy datasets, respectively. The performance of 128 bits is
lower than the performance of 64 bits can be explained with the quantization
error accumulation [44]. We also notice that the performance of compared meth-
ods on both datasets is much lower than reported in previous papers[50, 55]. The
reason is that the data they previously used are all well-aligned with perfect back-
ground removal and the edge of objects can almost fit the sketches. Meanwhile,
our experiments adopt realistic images with complicated background, which are
greatly different from sketches.

Comparison with Cross-modality Hashing. In Table 2, we compare our
GDH method with cross-modality hashing/feature learning methods with 32,
64 and 128 bits binary codes. We use the learned deep features as the inputs
for non-end-to-end learning methods for a fair comparison with GDH. GDH
achieves the best performance compared to all the cross-modality baselines on
both datasets. Specifically, GDH can outperform the best-performing hashing-
based SBIR method DSH [29]by 20.5%/7.1%, 16.9%/10% and 8.1%/0.1% at
different code lengths on both datasets, respectively.
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Table 3. Accuracy comparison with different real-valued methods for fine-grained
SBIR on QMUL-shoes and QMUL-chairs.

Methods QMUL-shoes.acc@1 QMUL-shoes.acc@10 QMUL-chairs.@1 QMUL-chairs.@10

Real-valued
vectors

BoW-HOG + rankSVM [23] 0.174 0.678 0.289 0.670
Dense-HOG + rankSVM [55] 0.244 0.652 0.526 0.938
ISN Deep + rankSVM [56] 0.200 0.626 0.474 0.825
3DS Deep + rankSVM [50] 0.052 0.217 0.061 0.268
TSN without data aug. [55] 0.330 0.817 0.644 0.956
TSN with data aug. [55] 0.391 0.878 0.691 0.979

Binary codes
GDH @ 32-bit 0.286 0.720 0.392 0.876
GDH @ 64-bit 0.323 0.783 0.556 0.959
GDH @ 128-bit 0.357 0.843 0.671 0.990

To emphasize the ability of our domain-migration model, data augmentation [55] is not included.
Even so, our binary results are competitive and promising compared to other real-valued methods.

Comparison for Fine-grained SBIR. In Table 3, we report the top-1 and
top-10 accuracies of GDH over other five methods on the Shoes and Chairs
datasets for fine-grained SBIR. Compared to the state-of-the-art real-valued
TSN (without data augmentation), the 128-bit GDH achieves 2.7%/2.7% and
2.6%/3.4% improvements in terms of top-1 and top-10 accuracies on both the
Shoes and Chairs datasets respectively. Specifically, the top-10 accuracy on the
Chairs dataset reaches 99%, which is even higher than the performance of TSN
with data augmentation.

Remark. For fine-grained SBIR, despite binary hashing codes are used, com-
parable or even improved performance over the real-valued state-of-the-art meth-
ods can be observed in Table. 3. On the other side, the binary codes in GDH allow
much reduced memory costs and retrieval time than the real-valued approaches.
However, GDH generally shows degraded performance on the fine-grained SBIR
when comparing to its performance on category-level SBIR. Our explanation
towards such a phenomenon is that the geometrical morphology and detailed
instance-level characteristic within a category can be much more difficult to
capture with binary hashing codes than the inter-category discrepancies. In Fig.
2, some examples based on the retrieval results of GDH are illustrated. More
illustrations and experiments can be found in the Supplementary Material.

4.3 Ablation Study

We demonstrate the effectiveness of each loss component of GDH in Table 4.
The detailed descriptions of the unification constraint Lc, the quantization loss
Lq and the adversarial and cycle consistent loss Lgan are provided in Section 3.3.
It can be observed that all these components are complementary and beneficial
to the effectiveness of GDH. Especially, the adversarial and cycle consistent loss
Lgan and the quantization loss Lq are equivalently critical for category-level
SBIR, and he triplet ranking loss Ltri is essential for fine-grained SBIR. It can
also be observed that the attention layer is consistently effective for improving
the overall performance with a stable margin.

Inspired by the mix-up operation [58], in order to further reduce the domain
discrepancy, we propose a feature fusion method that employs a linear mix-up of
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Fig. 2. Example query sketches with their top-10 retrieval accuracies on the Sketchy
dataset by using 128-bit GDH codes. Orange boxes indicate the groundtruth results.

two types of hashing binary codes: 1) sgn( 12H(GI(GS(Ii,θC |GI
),θC |GS

);θH) +
1
2H(Ii;θH)) and 2) sgn(H (GI (Si,θC |GI

) ;θH)). Besides the linear embedding,
we also evaluated other fusion strategies such as concatenation and the Kronecker
product. However, none of these fusion methods is helpful. In Fig. 3, we illustrate
that the generated sketches of GDH can well represent corresponding natural
images. It is obviously observed that using sketches to generate fake natural
images are more difficult than the inverse generation. Additionally, we conduct
another experiment in the sketch domain rather than the natural image domain.
By using a similar hashing technique in the sketch domain, all the sketches S

and the corresponding generated fake sketches GS(I) are embedded into the
Hamming space as H(Si) = H (Si;θH) and H(Ii) = H (GS (Ii) ;θH). However,
it resulted in a dramatically decreased performance, especially when handling
images that have complex backgrounds.

5 Conclusion

In this paper, we proposed a Generative Domain-migration Hashing method for
both category-level and fine-grained SBIR tasks. Instead of mapping sketches
and natural images into a common space, GDH for the first time employs a gener-
ative model that migrates sketches to their indistinguishable counterparts in the
natural image domain. Guided by the adversarial loss and the cycle consistency
loss, robust hashing codes for both real and synthetic images (i.e., migrated from

sketches) can be obtained with an end-to-end multi-task learning framework that
does not rely on the pixel-level alignment between cross-domain pairs. We ad-
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Table 4. Effectiveness (MAP/accuracy with 128-bit) of different components (Sketchy
for category-level SBIR and QMUL-Shoes for fine-grained SBIR).

Methods
Category-level
MAP (Sketchy)

Fine-grained acc. (QMUL-Shoes)
top-1 top-10

without Lc 0.727 - -
without Lq 0.104 - -
without Lgan 0.221 0.226 0.671

without attention layer 0.798 0.335 0.823
Linear mix-up 0.782 0.282 0.744

Concatenation mix-up 0.642 0.182 0.654
Kronecker product mix-up 0.735 0.242 0.704

Embed images into sketch domain 0.310 0.263 0.791

Our model GDH @ 128-bit (binary) 0.811 0.357 0.843

Sketch

Fake Image

Image

Fake Sketch

Fig. 3. Visualization of our domain-migration networks. The first two rows are sketch-
to-image results and the last two rows are image-to-sketch results, which indicates that
our domain-migration networks are capable to transfer domains from both directions.

ditionally integrated an attention layer to effectively suppress the background
information and guide the learning process of GDH to concentrate on the most
critical regions. Extensive experiments on large-scale datasets demonstrated the
consistently balanced superiority of GDH in terms of efficiency, memory costs
and performance on both category-level and fine-grained SBIR tasks. GDH also
outperformed the best-performing hashing-based SBIR method DSH [29] by up
to 20.5% on the TU-Berlin Extension dataset, and up to 26.4% on the Sketchy
dataset respectively.
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