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Abstract. Semi-Global Matching (SGM) uses an aggregation scheme
to combine costs from multiple 1D scanline optimizations that tends to
hurt its accuracy in difficult scenarios. We propose replacing this aggre-
gation scheme with a new learning-based method that fuses disparity
proposals estimated using scanline optimization. Our proposed SGM-
Forest algorithm solves this problem using per-pixel classification. SGM-
Forest currently ranks 1st on the ETH3D stereo benchmark and is ranked
competitively on the Middlebury 2014 and KITTI 2015 benchmarks. It
consistently outperforms SGM in challenging settings and under difficult
training protocols that demonstrate robust generalization, while adding
only a small computational overhead to SGM.

1 Introduction

Semi-Global Matching (SGM) is a popular stereo matching algorithm proposed
by Hirschmüller [15] that has found widespread use in applications ranging from
3D mapping [17, 34, 39, 40], robot and drone navigation [38, 19], and assisted
driving [8]. The technique is efficient and parallelizable and suitable for real-
time stereo reconstruction on FPGAs and GPUs [9, 2, 19]. SGM incorporates
regularization in the form of smoothness priors, similar to global stereo methods
but at lower computational cost. The main idea in SGM is to approximate a
2D Markov random field (MRF) optimization problem with several independent
1D scanline optimization problems corresponding to multiple canonical scanline
directions in the image (typically 4 or 8). These 1D problems are optimized
exactly using dynamic programming (DP) by aggregating matching costs along
the multi-directional 1D scanlines. The costs of the minimum cost paths for the
various directions are then summed up to compute a final aggregated cost per
pixel. Finally, a winner-take-all (WTA) strategy is used to select the disparity
with the minimum aggregated cost at each pixel.

Summation of the aggregated costs from multiple directions and the final
WTA strategy are both ad-hoc steps in SGM that lack proper theoretical jus-
tification. The summation was originally proposed to reduce 1D streaking arti-
facts [15] but is ineffective for weakly textured slanted surfaces and also generally
inadequate when multiple scanline optimization solutions are inconsistent.

Our main motivation in this work is to devise a better strategy to fuse 1D
scanline optimization costs from multiple directions. We argue that the scan-
line optimization solutions should be considered as independent disparity map
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Fig. 1. Fusing Multiple Scanline Proposals. Left: Visualization of disparity maps
from SGM, two (out of 8) scanline optimizations (SO) and our proposed SGM-Forest
method. While SGM is more accurate than each SO on the whole image, each SO
solution is better in some specific areas. SGM-Forest identifies the best SO proposal
at each pixel and produces the best overall result. Right: Error plots for SGM, SO
and SGM-Forest solutions (solid line) and upper bounds for oracles making optimal
selections (dotted line). In this example, SGM-Forest gets close to the upper bounds.

proposals and the WTA step should be replaced by a more general fusion step.
Figure 1 shows two of the eight scanline optimization solutions for the Adiron-

dack pair from the Middlebury 2014 dataset [35]. While both solutions suffer
from directional bias due to their respective propagation directions, each solu-
tion is accurate in certain image regions where the other one is inaccurate. For
example, the horizontal pass produces accurate disparities near the left occlusion
boundaries of the chair, whereas the diagonal pass performs better on the right
occlusion edges. In those regions, the final SGM solution is slightly worse. The
error plot in Figure 1 quantifies this observation for the entire image. Whereas
SGM is more accurate than each scanline optimization individually, the joint ac-
curacy of all scanlines is much higher than SGM. Here, joint accuracy refers to a
theoretical upper bound of the achievable accuracy of an oracle, which has access
to ground truth and selects the best out of all the scanline solution proposals.

Based on this insight, we formulate the fusion step as the task of selecting the
best amongst all the scanline optimization proposals at each pixel in the image.
We propose to solve this task using supervised learning. Our method, named
SGM-Forest, uses a per-pixel random forest classifier. As shown in Figure 1, it
gets close to the theoretical upper bound and significantly outperforms SGM.

The per-pixel classifier in SGM-Forest is trained on a low-dimensional input
feature that encodes a sparse set of aggregated cost samples. Specifically, these
cost values are sampled from the cost volumes computed during the scanline
optimization passes. The sampling locations correspond to the disparity candi-
dates for all scanline directions at each pixel. In fact, the proposals need not
be limited to the usual scanline directions. Including the SGM solution and two
horizontal scanline optimization solutions from the right image as additional pro-
posals improves accuracy further. We train and evaluate the forest using ground
truth disparity maps provided by stereo benchmarks [37, 35, 41]. At test time,
the random forest predicts the disparity proposal to be selected at each pixel.
Inference is fast and parallelizable and thus has small overhead. The forest au-
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tomatically outputs per-pixel posterior class probabilities from which suitable
confidence maps are derived, for use in a final disparity refinement step.

Thus, the main contribution in this paper is a new, efficient learning-based fu-
sion method for SGM that directly predicts the best amongst all the 1D scanline
optimization disparity proposals at each pixel based on a small set of scanline
optimization costs. SGM-Forest uses this fusion method instead of SGM’s sum-
based aggregation and WTA steps and our results shows that it consistently
outperforms SGM in many different settings. We evaluate SGM-Forest on three
stereo benchmarks. Currently, it is ranked 1st on ETH3D [41] and is competitive
on Middlebury 2014 [35] and KITTI 2015 [10]. We run extensive ablation studies
and show that our method is extremely robust to dataset bias. It outperforms
SGM even when the forests are trained on datasets from different domains.

2 Related Work

In this section, we review SGM and learning-based methods for stereo. We then
compare and contrast our proposed SGM-Forest to closely related works.

SGM was built on top of earlier methods such as 1D scanline optimiza-
tion [29, 37, 50] and dynamic programming stereo [46] with a new aggregation
scheme to fix the lack of proper 2D regularization in those methods. However, a
proper derivation of the aggregation step remained elusive until Drory et al. [6]
showed its connection to non-loopy belief propagation on a special graph struc-
ture. Veksler [47] and Bleyer et al. [3] advanced dynamic programming stereo to
tree structures connecting all pixels, but those methods have not been widely
adopted. SGM has been extended to improve speed and accuracy [19, 9, 2, 16, 14,
13, 7, 1], reduce memory usage [18, 19, 23], and to compute optical flow [49, 45].

Scharstein and Pal [36] were one of the first to use learning in stereo. They
trained a conditional random field (CRF) on Middlebury 2005–06 datasets to
model the relationship between the CRF’s penalty terms and local intensity
gradients in the image. The KITTI and Middlebury 2014 [10, 35] benchmarks
encouraged much work on learning. In particular, CNNs have been trained to
compute robust matching costs [48, 5, 25]. Zbontar and Lecun were the first;
they proposed MC-CNN [48] and reported higher accuracy when using MC-
CNN in conjunction with SGM for regularization and additional post-processing
steps. Newer methods combined MC-CNN with better optimization but as a
result are much slower. The method of Taniai et al. [44] uses iterative graph
cut optimization and MC-CNN-acrt [48] and is the current state of the art on
Middlebury.

End-to-end training of CNNs is nowadays popular on KITTI [21, 11, 30, 27]
but is almost never tested on Middlebury. In one rare case, moderate results
were reported [22]. In contrast, our method generalizes across three benchmarks
[35, 10, 41] on which it consistently outperforms baseline SGM. Furthermore, we
train three separate models on Middlebury 2005–06, KITTI, and ETH3D. All
three outperform SGM when tested on the Middlebury 2014 training set. SGM-
Net [42] is a CNN-based method for improving SGM. SGM-Net performs more
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accurate scanline optimization by using a CNN to predict the parameters of the
underlying scanline optimization objective. In contrast, we use regular scanline
optimization but propose a learning-based fusion step using random forests.

Stereo matching has been solved by combining multiple disparity maps using
MRF fusion moves [24, 4, 44]. Fusion moves are quite general, but computation-
ally expensive and need many iterations. This makes them slow. Alternatively,
multiple disparity maps can also be fused using learning, based on random
forests [43] and CNNs [32]. Other methods first predict confidence maps [20],
often via learning [26, 33, 31, 12], and then use the predicted confidence values
in a greedy fashion to combine multiple solutions. Drory et al. [6] proposed a
different uncertainty measure for SGM but do not show how to use it. Unlike
MRF fusion moves [24], our fusion method is not general. It combines a specific
number and specific type of proposals but does so in a single efficient step.

Michael et al. [28] and Poggi and Mattoccia [33] (SGM-RF) proposed replac-
ing SGM’s sum-based aggregation with a weighted sum, setting smaller weights
in areas with 1D streaking artifacts. The former work [28] proposes using global
weights per scanline direction. SGM-RF [33] is more effective as it predicts per-
pixel weights for each scanline direction using random forests based on disparity-
based features. However, SGM-RF was not evaluated on the official test sets of
the Middlebury 2014 and KITTI 2015 benchmarks. Mac Aodha et al. [26] also
used random forests to fuse optical flow proposals using flow-based features.

Our SGM-Forest differs from these methods in several ways. First, it avoids
predicting confidence separately for each proposal [26, 33] but instead directly
predicts the best proposal at each pixel. The forest is invoked only once at each
pixel and has information from all the scanline directions. This makes infer-
ence more effective. Furthermore, the features used by our forest are directly
obtained by sampling the aggregated cost volumes of each scanline optimization
problem at multiple selective disparities. This is much more effective than hand-
crafted disparity-based features [33, 43]. Finally, our confidence maps derived
from posterior class probabilities are normalized and hence better for refining
the disparities during post-processing. Haeusler et al. [12] aim to detect unreli-
able disparities and suggest adding SGM’s aggregated (summed) costs to their
handcrafted disparity-based features. In contrast, we focus on fusing multiple
proposals and propose to sample all the cost volumes for each independent scan-
line optimization at multiple disparities to better exploit contextual information.

3 Semi-Global Matching

We now review SGM as proposed by Hirschmüller [17] for approximate energy
minimization of a 2D Markov Random Field (MRF)

E(D) =
∑

p

Cp(dp) +
∑

p,q∈N

V (dp, dq) , (1)

where Cp(d) is a unary data term that encodes the penalty of assigning pixel
p ∈ R

2 to disparity d ∈ D ={dmin, . . . , dmax}. The pairwise smoothness term
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V (d, d′) penalizes disparity differences between neighboring pixels p and q. In
SGM, the term V is chosen to have the following specific form

V (d, d′) =







0 if d = d′

P1 if |d− d′| = 1
P2 if |d− d′| ≥ 2 ,

(2)

which favors first-order smoothness, i.e., has a preference for fronto-parallel sur-
faces. Minimizing the 2D MRF is NP-hard. Therefore, SGM instead solves multi-
ple scanline optimization problems, each of which involves solving the 1D version
of Eqn. 1 along 1D scanlines in 8 cardinal directions r = {(0, 1), (0,−1), (1, 0), ...}.
For each direction r, SGM computes an aggregated matching cost

Lr(p, d) = Cp(d) + min
d′∈D

(Lr(p− r, d′) + V (d, d′)) . (3)

The definition of Lr(p, d) is recursive and is typically started from a pixel on
the image border. An aggregated cost volume S(p, d) is finally computed by
summing up the eight individual aggregated cost volumes

S(p, d) =
∑

r

Lr(p, d) . (4)

The final disparity map is obtained using a WTA strategy by selecting per-
pixel minima in the aggregated cost volume

dp = argmin
d

S(p, d) . (5)

The steps in Eqns. 4 and 5 are accurate when the costs from different scanline
directions are mostly consistent wrt. each other. However, these steps are likely
to fail as the scanlines become more inconsistent. To overcome this problem, we
propose a novel fusion method to robustly compute the disparity dp from the
multiple scanline costs Lr(p, d).

4 Learning To Fuse Scanline Optimization Solutions

We start by analyzing some difficult examples for scanline optimization in order
to motivate our fusion method and then describe the method in detail.

4.1 Scanline Optimization Analysis

Figure 2 shows four scanlines from the left Adirondack image with the corre-
sponding x–d slices of the the unary cost C and the four horizontal and vertical
aggregated scanline costs Lr alongside their respective WTA solutions. Notice
the patterns in the Lr cost slices for the different passes. When the smoothness
prior is effective, the noisy unary costs get filtered, producing strong minima at
the correct disparities. However, when the unary costs are weak and the prior is
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Fig. 2. 1D Scanline Optimization Costs. Each of the four subfigures shows the
following – Top Left: Image and reference scanline section in green centered around
yellow patch. Top Right: x–d slice of unary cost volume C along the reference scanline
and ray of reference patch center in yellow. Bottom: Aggregated costs Lr for four
scanline directions on the left and the corresponding disparities on the right. The
WTA solution is shown in red whereas the ground truth disparity is in blue.

ineffective, multiple noisy minima are present or the minimum is at an incorrect
location. We now investigate these problematic cases in further detail.

Weak Texture. Figures 2(a)–(d) focus on weakly textured image patches.
Whenever the unary cost is weak, the smoothness prior in the 1D optimization
favors propagating several equally likely disparity estimates along the propaga-
tion direction. This effect is seen clearly on the vertical wooden plank in Figure
2(d) in the horizontal passes. Here, the left-right propagation continues the so-
lution from the left occlusion boundary to the right, while the right-left solution
continues from the corner of the chair to the left. In contrast, the two verti-
cal passes are in agreement at the correct disparity as the surface along that

propagation direction is indeed fronto-parallel.
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Slanted Surface. Figures 2(b),(c),(d) show examples of weakly textured slanted
surfaces, where the 1D scanline solutions are typically biased and jump at ran-
dom pixel locations, leading to inconsistent solutions in different scanlines. A
prominent example is the arm rest in Figure 2(b), where the left-right pass un-
derestimates the disparity, whereas the right-left and bottom-up passes overesti-
mate the disparity. In this case, there is no clear outlier in the solution but final
cost summation leads to a biased estimate. Notice also the asymmetry in the two
vertical passes where the bottom-up direction has a much more consistent solu-
tion while the top-down solution jumps at random locations. On weakly textured
slanted surfaces, adjacent scanlines solutions are mostly inconsistent leading to
noisy disparity maps and well-known streaking artifacts.

Occlusion. Figure 2(a) is centered around a region which is occluded in the
right image. In this case, the unary cost is invalid and the only pass producing
a correct prediction is the left-to-right direction. Here, the occluded surface is
fronto-parallel and the smoothness prior is likely to propagate the correct dis-
parity to the occluded region. Typically, only a small subset of scanlines results
are correct in occluded areas, whereas SGM’s standard cost summation is not
robust and therefore produces gross outliers (see Figure 1).

Repetitive Structure. The wooden planks on the chair’s backrest in Figure
2(c) are repetitive and produce multiple ambiguous local cost minima. In this
example, the solutions of the left-right and top-down directions are incorrectly
estimated, since the centered patch is almost identical to the symmetric patch
on the right-most wooden plank. Notice also that the right-left and bottom-up
directions are much less susceptible to this specific ambiguity problem.

These examples show that the joint distribution of aggregated costs over the
disparity range at each pixel appears to provide strong clues about which scanline
proposal or which subset of proposals are likely to be correct. This insight forms
the basis of our fusion model which is described next.

4.2 Definition of Fusion Model

The disparities of the different scanline solutions are often inconsistent, especially
in areas of weak data cost. Yet, in almost all cases there is at least one scanline
that is either correct or is very close to the correct solution. The main challenge
for robust and accurate scanline fusion is to identify the scanlines which agree on
the correct estimate. In our proposed approach, we cast the fusion of scanlines
as a classification problem that chooses the optimal estimate from the given set
of candidate scanlines. Typically, the pattern at which specific scanlines perform
well is consistent and repeatable. We aim to encode these patterns into rules that
can identify the correct solution from a given set of candidate solutions. However,
manually hand-crafting these rules is unfeasible and error-prone, which is why we
resort to automatically learning these rules from training data in a supervised
fashion. To facilitate the learning of these rules, we provide the model with
discriminative signals that allow for a robust and efficient disparity prediction.
Our proposed model takes sparse samples from a set of proposal cost volumes
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Kn(p, d) (e.g., the optimized scanline costs Lr(p, d)) and concatenates them into
a per-pixel feature vector fp. This feature vector is then fed into a learned model

that predicts a disparity estimate d̂p together with a posterior probability ρ̂p,
which we use as a confidence measure for further post-processing.

More specifically, our model is defined as (d̂p, ρ̂p) = F (fp) with dp ∈ R
+

0 ,

ρp ∈ [0, 1], and fp ∈ R
N+N2

, where N is the number of proposal costs Kn(p, d).
For all n = 1...N proposals Kn(p, d), the feature fp stores the location of its
per-pixel WTA solution d∗

p
(n) = argmind Kn(p, d) and the corresponding costs

Km(p, d∗
p
(n)) in all proposals m = 1...N . Overall, the feature is composed of N

WTA solutions and the N2 sparsely sampled costs. For each disparity proposal
d∗
p
(n), we thereby encode its relative significance wrt. the other proposals in

a compact representation. The intuition is that when multiple proposals agree,
their minima d∗

p
(n) are close and their respective costs Km(p, d∗

p
(n)) are low.

Note that the näıve approach of concatenating the per-pixel costs of all pro-
posals into a feature vector is not feasible for two reasons. First, we want a light-
weight feature representation and model with small runtime overhead wrt. reg-
ular SGM. However, the näıve approach would result in a very high-dimensional
feature representation of size N · |D| (e.g., 8 · 256 = 2048 for 256 disparity can-
didates and 8 scanlines), which would require a complex model and eliminate
the computational efficiency of SGM. In contrast, our proposed feature vector is
only 8+82 = 72-dimensional in case of 8 scanline proposals. Second, we strive to
learn a generalizable model, which uses a fixed-size feature representation dur-
ing training and inference even though the disparity range D may vary between
scenes. In summary, our proposed feature encodes discriminative signals for our
classification task without sacrificing efficiency, compactness, or accuracy.

4.3 Random Forests for Disparity and Confidence Prediction

Given ground truth disparities, there are many ways to learn the model F (fp)
using supervised learning. The first principal design decision is whether to pose
the problem as a classification or regression task. Arguably, classification prob-
lems are often considered as easier to solve. As shown in Figure 1, at least one
of the different scanline solutions is often accurate. We therefore chose to for-
mulate a N -class classification task that predicts the best solution from the set
of candidates d∗

p
(n). This approach gave much better results than modeling the

problem as a regression task. The second principal design decision is the spe-
cific type of classifier to use, e.g., k-NN, support vector machines, decision trees,
neural nets, etc. In our experiments, random forests provided the best trade-off
between accuracy and efficiency (see Section 5.2 and Table 1).

At test time, we first perform 1D scanline optimization to construct the pro-
posal cost volumesKn(p, d), from which we build the per-pixel feature vectors fp.
In the second stage, we simply feed the feature vectors fp of all pixels p through
our model to obtain a posterior probability ρp(n) for each proposal n. We select
the proposal with the maximum posterior probability n∗

p
= argmaxn ρp(n) as

our initial disparity estimate d∗
p
(n∗) for pixel p. To further refine this initial
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estimate, we find the subset of disparity proposals close to the initial estimate
and their corresponding posteriors:

D∗
p
= {(d∗

p
(k), ρp(k)) | k = 1...N ∧ |d∗

p
(k)− d∗

p
(n∗)| < ǫd} (6)

When multiple scanlines agree on a solution, the inlier set D∗
p
contains multiple

elements, even for small disparity thresholds ǫd. The final per-pixel disparity
estimate d̂p and confidence measure ρ̂p are computed as

d̂p =

∑

k ρp(k) d
∗
p
(k)

∑

k ρp(k)
and ρ̂p =

∑

k

ρp(k) (7)

Note that the final disparity estimate has sub-pixel precision. Moreover, all steps
are fully parallelizable on the pixel level and therefore suitable for real-time
FPGA implementations (see Section 5.2 and 5.5). Next, we will describe our
spatial edge-aware filtering scheme for disparity refinement.

4.4 Confidence-based Spatial Filtering

The random forest produces a per-pixel estimate for disparity and confidence. In
a final filtering step, we now enhance the spatial smoothness of the disparity and
confidence maps. Towards this goal, we define the adaptive local neighborhood

Np = {q | ‖q− p‖ < ǫp ∧ ρ̂q > ǫρ ∧ |I(p)− I(q)| < ǫI} (8)

centered around each pixel p, where I(q) is the image intensity at pixel q. The

filtered disparity and confidence estimates are finally given as d̄p = median d̂q
and ρ̄p = median ρ̂q with q ∈ Np. The filter essentially computes a median
on the selective set of neighborhood pixels Np which have high confidence and
similar color as the center pixel p.

5 Experiments

We report a thorough evaluation of SGM-Forest on three stereo benchmarks
– Middlebury 2014, KITTI 2015, and ETH3D 2017 [35, 10, 41]. Our evaluation
protocol contrasts to most top-ranked stereo methods which often evaluate only
on one benchmark [44, 21, 27, 11, 30, 42]. In all our experiments, SGM-Forest out-
performs SGM by a significant margin and ranks competitively against the state-
of-the-art learning-based and global stereo methods, which are computationally
more expensive. It also robustly generalizes across different dataset domains.

5.1 Implementation Details

Scanline Optimization and SGM. To facilitate an unbiased comparison,
we use the same SGM implementation throughout all experiments. We compare
three different matching costs (NCC, MC-CNN-fast [48], MC-CNN-acrt [48]) as
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Table 1. Validation performance for non-occluded pixels on the Middlebury 2014
training set (15 half resolution pairs). Rows 1–5 show results for SGM baselines. Rows
6–14 report ablation studies for SGM-Forest. Bottom three rows show results for the
best SGM-Forest setting, trained on different datasets. Letters M, K, and E refer to
Middlebury 2005–06, KITTI, and ETH3D, respectively. The matching cost is always
MC-CNN-acrt. Runtimes exclude matching cost and timed on same CPU.
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SGM all – 50.85 23.04 8.89 5.16 3.0
SGM – mind Lr(p, d) all – 52.18 25.45 11.81 7.79 3.1
SGM – mind medianr Lr(p, d) all – 63.25 31.81 9.90 8.24 3.2
SGM-SVM all M 48.68 21.88 8.57 5.09 323.7
SGM-MLP all M 47.77 21.83 8.53 5.08 21.0

SGM-Forest

horiz+vert M 47.36 21.30 8.49 4.93 5.7
top-down M 47.45 21.20 8.38 4.94 5.8
bottom-up M 47.65 21.54 8.54 4.98 5.8

all M 46.67 20.85 8.40 4.89 6.1
all • M 46.49 20.81 8.23 4.72 6.3
all • • E 46.80 20.32 8.17 4.79 8.2
all • • K 46.48 20.45 8.09 4.81 8.2
all • • M 46.08 19.99 7.78 4.41 8.2

the unary term C, which is quantized to 8 bits for reduced memory usage using
linear rescaling to the range [0, 255]. Image intensities are given in the range
[0, 255]. For NCC, we use a patch size of 7 × 7. We follow standard procedure
and improve the right image rectification using sparse feature matching before
computing the matching cost. The smoothness term V (d, d′) uses the constant
parameters P1 = 100 and P2 = P1(1+αe−|∆I|/β), where α = 8, β = 10, and ∆I

is the intensity difference between neighboring pixels.

SGM-Forest. In all our experiments, we train random forests with 128 trees, a
maximum depth of 25, and the Gini impurity measure to decide on the optimal
data split. We set ǫd = 2, ǫρ = 0.1, ǫp = 5, and ǫI = 10. These optimal parame-
ters were decided using parameter grid search and 3-fold cross validation on the
Middlebury 2014 training scenes. For generalization across different disparity
ranges between training and test datasets, we normalize to relative disparities
prior to the extraction of the feature fp using the average of the input dispar-
ity proposals d∗

p
(n). The relative disparity estimates are then denormalized to

achieve absolute disparities. To showcase the generalization robustness of our
approach, we train and evaluate our SGM-Forest on different dataset combina-
tions. In all settings, the training and test scenes are non-overlapping and we
provide a detailed list of training/test splits in the supplementary material. For
learning our SGM-Forest model, we sample a maximum of 500K random pixels
with ground-truth disparity uniformly in each training image.

5.2 Ablation Study

We now evaluate several aspects of our algorithm using an extensive ablation
study summarized in Tables 1 and 2 (full tables in the supplementary material).
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Table 2. This table shows the validation performance for non-occluded pixels us-
ing 3-fold cross-validation for different matching costs and datasets at different error
thresholds. Our method (SGM-F.) outperforms baseline SGM in all settings.

Middlebury 2014 KITTI 2015 ETH3D 2017

Datacost Method 0.5px 1px 2px 4px 0.5px 1px 2px 4px 0.5px 1px 2px 4px

NCC
SGM 54.15 28.59 15.23 10.14 59.70 32.28 13.09 6.17 30.94 14.78 8.62 5.67
SGM-F. 50.06 25.29 12.55 8.08 51.61 24.74 9.22 4.17 21.14 10.28 5.59 3.67

MC-CNN-fast
SGM 51.22 23.49 10.58 6.85 57.53 29.82 11.28 4.80 24.70 8.56 4.14 2.57
SGM-F. 48.73 22.24 9.55 5.91 50.25 22.98 7.88 3.28 16.31 6.08 3.04 1.94

MC-CNN-acrt
SGM 50.85 23.04 8.89 5.16 56.27 26.90 7.41 3.00 37.46 14.44 7.17 4.72
SGM-F. 46.08 19.99 7.78 4.41 46.16 18.82 5.76 2.56 26.26 11.05 6.56 4.71

SGM Baseline. We compare our SGM baseline against two simple meth-
ods that robustify Eqns. 4 and 5 (see Table 1): SGM – mind Lr(p, d) selects
the scanline solution with minimum cost as the disparity estimate, while SGM
– mind medianr Lr(p, d) uses the robust median instead of summation for ag-
gregating the costs from multiple scanlines. Both methods perform worse than
baseline SGM, underlining the need for a more sophisticated fusion approach.

Input Proposals. The input to our algorithm is a set of proposal cost volumes
Kn(p, d). As demonstrated in Figure 1, a single scanline performs worse than
SGM while the best of multiple scanlines is significantly better. In fact, our
method is general and the input proposals to our system need not be limited to
the canonical 1D scanline optimizations. We always consider the regular SGM
cost volume S(p, d) as a proposal. Using only this proposal leads to a trivial
1-class classification problem and is equivalent to running baseline SGM (see
Table 1). Adding the four horizontal and vertical scanlines from the left image as
proposals improves the accuracy significantly, which is further boosted by adding
the remaining 4 diagonal scanlines. Using only scanlines that propagate in the
five top-down or five bottom-up directions degrades performance slightly but is
still much better than regular SGM and enables real-time implementation of our
algorithm on an FPGA [19]. We also experimented with running two horizontal
scanline optimizations on the right image and warping the results to the left
view to be used as two additional proposals. This is because the occluded pixels
in the left image are invisible in the right image and the left occlusion edges are
usually more accurately recovered in the right disparity map. These additional
proposals provide a small but consistent improvement.

Classification Model. In Section 4.3, we argued that, for our task, random
forests provide the best trade-off in terms of accuracy and efficiency. We ex-
perimented with many different classification models, including k-NN search,
SVMs, (gradient boosted) decision trees, AdaBoost, neural nets, etc. In Table 1,
we show results for two other well-performing models: SGM-SVM uses a linear
SVM classifier and SGM-MLP is a multi-layer perceptron using 3 hidden layers
with ReLU activation and twice the neurons after each layer followed by a final
softmax layer for classification. SGM-MLP outperforms the SGM baseline but
has slightly lower accuracy and efficiency on the CPU than SGM-Forest.
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Table 3. Middlebury Benchmark. Left: Official results for the top 10 performing
methods using MC-CNN-acrt for our SGM-Forest. Our method achieves the best run-
time among the top performing methods. Right: Inofficial results on the training scenes
trained on Middlebury 2005–06 using MC-CNN-fast. SGM-Forest with MC-CNN-fast
outperforms baseline SGM with MC-CNN-acrt but is an order of magnitude faster.

Middlebury 2014 (MC-CNN-acrt)

Method non-occl. all Time

LocalExp 5.43% #1 11.7% #1 881s
3DMST 5.92% #2 12.5% #3 174s
MC-CNN+TDSR 6.35% #2 12.1% #3 657s
PMSC 6.71% #4 13.6% #4 599s
LW-CNN 7.04% #5 17.8% #15 314s
MeshStereoExt 7.08% #6 15.7% #9 161s
FEN-D2DRR 7.23% #7 16.0% #11 121s
APAP-Stereo 7.26% #8 13.7% #5 131s
SGM-Forest 7.37% #9 15.5% #8 88s
NTDE 7.44% #10 15.3% #7 152s

Middlebury 2014 (MC-CNN-fast)

Method non-occl. all Time

LocalExp 6.52 % #1 12.1% #1 846s
3DMST 7.08 % #2 12.9% #2 167s
APAP-Stereo 7.53% #3 14.3% #6 117s
FEN-D2DRR 7.89% #4 14.1% #4 73s
...
MC-CNN-acrt 10.1% #12 19.7% #20 106s
...
SGM-Forest 11.1% #19 17.8% #14 9s
...
MC-CNN-fast 11.7% #21 21.5% #27 1s

Filtering. The final step in our algorithm is the confidence-based spatial filter-
ing of the disparity and confidence maps. While the biggest accuracy improve-
ment stems from the initial fusion step (see Table 1), the final filtering further
improves the results by eliminating spatially inconsistent outliers.

Efficiency. The reported runtimes in Table 1 show only a small computational
overhead of SGM-Forest and our proposed filtering over baseline SGM, enabling
a potential real-time implementation on the GPU or FPGA (see Section 5.5).
Note that the runtimes exclude the matching cost computation, i.e., the overhead
of SGM-Forest becomes negligible if, for example, MC-CNN-acrt is used.

Generalization and Robustness. All results in Table 1 were obtained by
training on Middlebury 2005–06 and evaluating on Middlebury 2014, which al-
ready demonstrates good generalization properties. Note that Middlebury 2014
images are much more challenging than those in Middlebury 2005–06. More-
over, we also evaluate cross-domain generalization by training on KITTI (out-
doors) and ETH3D (outdoors and indoors) and evaluating on Middlebury 2014
(indoors). In both cases, our approach achieves almost the same performance
as compared to training on Middlebury. Table 2 shows that SGM-Forest im-
proves over baseline SGM in every single metric irrespective of matching cost
and dataset. In contrast to most learning-based methods, we demonstrate that
our learned fusion approach is general and extremely robust across different do-
mains and settings: SGM-Forest performs well outdoors when trained on indoor
scenes, handles different image resolutions, disparity ranges and diverse match-
ing costs, and consistently outperforms baseline SGM by a large margin.

5.3 Benchmark Results

Unlike most existing methods, we evaluate SGM-Forest on three benchmarks
and achieve competitive performance wrt. the state of the art. For all benchmark
submissions, we use the best setting found in our ablation study, i.e., we include
8 (and 2) proposals from the left (and right) view and run disparity refinement.
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Table 4. KITTI and ETH3D Benchmarks. Left: KITTI results over all pixels for
all ranked SGM variants. Our SGM-Forest uses MC-CNN-fast as matching cost and
achieves high accuracy at comparatively low runtime. Right: ETH3D results over non-
occluded and all pixels for all ranked methods. Our SGM-Forest uses MC-CNN-fast as
matching cost and achieves the best accuracy at comparatively low runtime.

KITTI 2015

Method Error Time

CNNF+SGM 3.60% (#9) 71.0s
SGM-Net 3.66% (#11) 67.0s
MC-CNN-acrt 3.89% (#12) 67.0s
SGM-Forest 4.38% (#14) 6.0s
MC-CNN-WS 4.97% (#18) 1.4s
SGM ROB [17] 6.38% (#27) 0.1s
SGM+C+NL 6.84% (#31) 270.0s
SGM+LDOF 6.84% (#32) 86.0s
SGM+SF 6.84% (#33) 2700.0s
CSCT+SGM+MF 8.24% (#35) 6.4ms

ETH3D 2017

Method non-occl. all Time

SGM-Forest 5.40% 4.96% 5.21s
SGM ROB [17] 10.08% 10.77% 0.15s
MeshStereo 11.94% 11.52% 159.24s
SPS-Stereo 15.83% 15.04% 1.59s
ELAS 17.99% 16.72% 0.13s

Middlebury. Table 3 reports our results on Middlebury 2014. For the bench-
mark submission, we use MC-CNN-acrt matching costs and jointly train on
Middlebury 2005–06 and the training scenes of Middlebury 2014. Our method
ranks competitively among the top ten methods in terms of accuracy but is
significantly faster. In addition to our official submission, we also report unof-
ficial results for MC-CNN-fast evaluated on the training scenes1. The models
for this submission were trained only on the Middlebury 2005–06 scenes. Us-
ing MC-CNN-fast, SGM-Forest outperforms SGM by two percentage points on
non-occluded pixels. Evaluated on all pixels, SGM-Forest with MC-CNN-fast
outperforms baseline SGM with MC-CNN-acrt by two percentage points but
SGM-Forest is an order of magnitude faster.

KITTI. Table 4 lists all SGM-based methods evaluated on KITTI. We use MC-
CNN-fast for this submission and are ranked right behind the original MC-CNN-
acrt method [48], CNNF+SGM [51], and SGM-Net [42]. However, our method
is an order of magnitude faster even though our scanline optimization and the
proposed additional steps are implemented on the CPU while MC-CNN-WS
runs on the GPU. Note that CNNF+SGM and SGM-Net report results only on
KITTI whereas our method generalizes across domains and datasets.

ETH3D. On this fairly new benchmark with diverse indoor and outdoor im-
ages, SGM-Forest is currently ranked 1st with competitive running times (see
Table 4). Our submission uses MC-CNN-fast which was surprisingly more accu-
rate than MC-CNN-acrt on ETH3D (also see Table 2). Here, our SGM-Forest
submission has almost half the error as the original SGM method [17].

5.4 Qualitative Results

Figure 3 shows qualitative results for Middlebury. Compared to baseline SGM,
our SGM-Forest produces less streaking artifacts and performs significantly bet-
ter in occluded areas. High confidence regions in general correspond to low er-

1 Only one submission per method is allowed on Middlebury 2014.
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Fig. 3. Qualitative Middlebury results for SGM and SGM-Forest. Absolute error maps
clipped to [0px, 8px]. Precision (Y) and Recall (X) in [0, 1]. Confidence maps log-scaled.

rors. This is further confirmed by the monontonically decreasing precision-recall
curves, which were produced by thresholding on the predicted confidences. For
further qualitative results, e.g., comparisons between raw predictions and filtered
results, we refer the reader to the supplementary material.

5.5 Limitations and Future Work

Our current SGM and random forest implementation is CPU-based and is not
real-time capable since we buffer all scanline cost volumes before fusion. The
learned forests in this paper use 128 trees, so our method could be sped up eas-
ily by using fewer trees. In our experiments, even a single decision tree improved
upon baseline SGM. An implementation of our method on the GPU would be
straightforward, where SGM-MLP would probably outcompete SGM-Forest in
efficiency at the cost of a small degradation in accuracy. Real-time implemen-
tation on embedded systems [19] requires a one-pass, buffer-less algorithm pro-
hibiting the use of all 8 scanline directions. In Table 1, we demonstrated that
our idea also works well for top-down/bottom-up directions only.

6 Conclusion

We proposed a learning-based approach to fuse scanline optimization proposals
in SGM, replacing the brittle and heuristic scanline aggregation steps in stan-
dard SGM. Our method is efficient and accurate and ranks 1st on the ETH3D
benchmark while being competitive on Middlebury and KITTI. We have demon-
strated consistent improvements over SGM on three stereo benchmarks. The
learning appears to be extremely robust and generalizes well across datasets.
Our method can be readily integrated into existing SGM variants and allows for
real-time implementation in practical, high-quality stereo systems.
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