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Abstract. In this paper, we present an incremental structure from mo-
tion (SfM) algorithm that significantly outperforms existing algorithms
when fiducial markers are present in the scene, and that matches the
performance of existing algorithms when no markers are present. Our al-
gorithm uses markers to limit potential incorrect image matches, change
the order in which images are added to the reconstruction, and enforce
new bundle adjustment constraints. To validate our algorithm, we in-
troduce a new dataset with 16 image collections of large indoor scenes
with challenging characteristics (e.g., blank hallways, glass facades, brick
walls) and with markers placed throughout. We show that our algorithm
produces complete, accurate reconstructions on all 16 image collections,
most of which cause other algorithms to fail. Further, by selectively mask-
ing fiducial markers, we show that the presence of even a small number
of markers can improve the results of our algorithm.

Keywords: Structure from Motion, SFM, Fiducial Markers, 3D Recon-
struction, Simultaneous Localization and Mapping, SLAM

1 Introduction

Fiducial markers are often claimed to be useful for 3D reconstruction [1–7]. Mark-
ers provide highly detectable and identifiable features that 3D reconstruction can
use to overcome challenging scene characteristics such as low-texture surfaces
(e.g., blank walls), reflective surfaces (e.g., windows), and repetitive patterns
(e.g., columns and door frames). Figure 1 shows an example of a dataset with
exactly these challenging characteristics. Figure 1 also shows that approaches
that treat markers as texture, only use them as additional tracks, or rely on
them exclusively perform no better or even worse than if markers were ignored.

In this paper, we present an incremental structure from motion (SfM) algo-
rithm that significantly outperforms these other approaches when markers are
present in the scene. We exploit that markers can be identified with very low
false positive rates (e.g. AprilTag2 with 36h11 markers has a false positive rate
of 0.000044% [2]) to create a reliable marker match graph that guides image
matching and resectioning. We encode constraints on marker size, shape, and
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Fig. 1.We introduce a new dataset of unordered image collections of challenging indoor
scenes with markers placed throughout (example images along top row). We process
the data using OpenSfM [8] with (a) markers ignored, (b) markers used as texture,
and (c) markers used as additional tracks; with (d) MarkerMapper [9], which uses
markers exclusively; and with (e) our approach, which uses markers to limit image
matches, dictate resectioning order, and constrain bundle adjustment. Clearly, our
method (e) outperforms the others. Moreover, the other approaches often perform
worse than ignoring the markers, highlighting the importance of our method.

planarity in bundle adjustment to further improve results. Importantly, our ap-
proach benefits from any detected markers without sacrificing performance when
markers are not detected, and can benefit from even a small number of markers.

To evaluate our method, we introduce a new dataset with 16 image collec-
tions of indoor scenes. The scenes present challenging circumstances for SfM
(e.g. blank hallways, reflective glass facades, and repetitive brick walls). Each
indoor scene has tens to hundreds (depending on scene size) of markers placed
approximately uniformly throughout. We test our system and several cutting
edge benchmarks on this data and show that our system performs favorably. We
also selectively mask markers and show that performance gracefully degrades
towards markerless SfM as the number of markers in the scene decreases.

In summary, the contributions of this paper are: (1) an SfM algorithm
that uses both fiducial markers (when available) and interest point features for
improved results; (2) a large, challenging dataset of indoor scenes with mark-
ers placed throughout; and (3) experiments showing the effectiveness of our
approach, even when only a small number of markers are visible.

2 Related Work

Incremental SfM: Early works by Schaffalitzky and Zisserman [10] and Snavely
et al. [11] establish the pipeline for feature extraction, matching, and incremental
SfM for unordered image collections. Focus then turns to large image collections
with work by Agarwal et al. [12] and Frahm et al. [13] who use appearance
based clustering to limit potential image matches; enabling reconstructions of
Rome from thousands of internet photos. Work by Wu [14] shows that preemp-
tive feature matching and well timed global bundle adjustments can maintain
high accuracy while reducing the runtime of SfM to roughly O(n). Recently, sev-
eral new SfM algorithms are available including COLMAP [15] by Schönberger
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Fig. 2. Example images from the Neunert et al. [16] dataset: desk (top left), dataset1
(top right), cube (bottom left), and pavilion (bottom right). Experiments in Section 5
show that our method and current SfM methods perform well on this data, motivating
our new dataset that offers new challenges and better distinguishes between approaches.

and Frahm and OpenSfM [8] by Mapillary. These impressive works provide the
baseline for the work in this paper.

3D Reconstruction using Fiducial Markers: Early works using markers
for 3D reconstruction focus on tracking the markers in simultaneous localization
and mapping (SLAM) systems. Work by Klopschitz and Schmalstieg [17] tracks
both feature points and marker matches in video frames to estimate the camera
pose and triangulate the marker positions in 3D. Lim and Lee [18] and Yamada
et al. [19] add an extended kalman filter (EKF) for estimating robot camera pose
and marker positions in 3D. Neunert et al. [16] integrates IMU measurements
into the EKF-SLAM system to improve pose estimates during marker track-
ing. Feng et al. [20] proposes an incremental SfM approach to marker based 3D
reconstruction. They use markers to create an initial reconstruction, add new
images using marker matches, and add constraints to bundle adjustment to en-
force the square shape and planarity of markers. The work of Muñoz-Salinas et
al. [9] introduces MarkerMapper. MarkerMapper overcomes the pose ambiguity
problem [21] with planar marker pose estimation to create an initial proposal of
3D camera and marker locations and refines the proposal using global bundle
adjustment. Only MarkerMapper [9] and Feng et al. [20] pursue 3D reconstruc-
tion from unordered image collections. However, neither method uses both image
features and marker detections for 3D reconstruction. Experiments in Section 5
show that both image features and marker detections can be used together to
achieve the best results, and, when few or no markers are available, our system
performs no worse than non-marker based SfM.

Datasets: Datasets for testing marker based 3D reconstruction are limited.
Only the dataset of Neunert et al. [16] is publicly available. Figure 2 provides
snapshots from the four video sequences of this dataset. With only four sequences
(two of which are of very small environments with only 1-3 markers), this dataset
is no longer challenging for the current state of the art (e.g. in Section 5, we
process this data with our method and other current SfM approaches, and all
perform well). Our new dataset (Section 3) consists of 16 new image collections
in environments with challenging characteristics for SfM (e.g. many low-texture
walls and reflective glass). We hope our dataset will offer new challenges for
future work on SfM both with and without marker assistance.
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Fig. 3. The top diagrams are floor plans of ECE. The paths for image collection are
superimposed in red, green, and magenta. These colors correspond to the image set
name and example images. For example, ECE Floor5 Stairs is shown in the ECE Floor4

and 5 floor plan as a magenta line and the name with example images is also magenta.

3 Indoor Image Collections with Fiducial Markers

We introduce 16 new unordered image sets for evaluating structure from motion
for scenes containing fiducial markers. Each set is from one of three buildings:
ECE, CEE, or MUF. Figures 3 and 4 provide floor plans for the sections of these
buildings that are used to collect this data. Paths are drawn on each floor plan
and the colors of the paths match the respective image sets in the figures (e.g.
the green path on Floor 4 and 5 of ECE matches the ECE Floor5 Hall image
set). For each set, fiducial markers are placed around the scene with enough
density to see at least one in every image (and images are captured to satisfy
this also). All images are captured with an iPhone7 camera and have a resolution
of 4032x3024 pixels.

There are seven image sets not shown in the figures. That is because they
are either combinations or subsets of the shown sets. Specifically, ECE Floor5

includes all the images of ECE Floor5 Hall and ECE Floor5 Stairs. ECE Floor3

Loop includes all the images of ECE Floor3 Loop CW and ECE Floor 3 CCW.
CEE Day includes all the images of CEE Day CW and CEE Day CCW (plus
some extra images). The nice thing about collecting data in this way is that we
can test progressively larger datasets that present different circumstances that
may make the image set easier or more difficult. For example, the results in
Section 5 show that ECE Floor3 Loop CW and ECE Floor3 Loop CCW are
typically more difficult than putting them together into ECE Floor 3 Loop. This
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Fig. 4. The top diagrams are floor plans for CEE and MUF. The paths for image
collection are superimposed in red. Image set names and example images are shown.

is most likely because of the additional overlap between images since all locations
are now seen more often from more viewing directions.

We use ECE, CEE, and MUF because they are large indoor scenes with
characteristics that are challenging for SfM (as shown in Section 5). Specifically,
ECE has long plain hallways, large glass walls separating conference rooms, large
exterior windows, and the hallways form a loop. CEE has a two-floor glass facade
and repetitive brick walls. MUF is currently under construction and has large
open spaces and limited texture. See supplementary material for more examples.

4 Improving SfM with Markers

Figure 5 diagrams our marker assisted incremental SfM algorithm. The blue
boxes represent the components of our algorithm that are different from typical
state of the art incremental SfM approaches: detecting markers, filtering image
pairs, resectioning images, and marker constraints for bundle adjustment.

4.1 Incremental SfM Overview

Incremental SfM takes a collection of images as input. For each image, focal
length (and other priors) is estimated from metadata (or using heuristics when
metadata is unavailable). Next, image features (e.g. SIFT features [22]) are ex-
tracted from each image. These image features are matched across image pairs.
Matching is attempted between the set of all images pairs or a subset of the
image pairs selected based on filtering criteria (e.g. GPS locations [13], Vocab
Tree [12]). A fundamental matrix is estimated from the feature matches to filter
bad matches and verify that each image pair is a good match.
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Fig. 5. This diagram depicts the typical incremental SfM approach: extracting priors
from metadata (e.g. focal length), detecting features, matching features, and recon-
struction. The blue boxes are the areas we added or changed in our method.

After matching, reconstruction begins. Feature matches in two images are
used to create an initial 3D reconstruction (pose of the two images with trian-
gulated 3D points). Then, one at a time, a new image is added to the recon-
struction (resectioning). This image is typically chosen based on the number of
feature matches this image shares with the already reconstructed images. These
shared feature matches are used to estimate the pose of this new camera and
triangulate new 3D points. Bundle adjustment then optimizes all camera poses
and 3D point positions to minimize reprojection error. Lastly, outlier points are
removed. Resectioning is repeated to add all images to the reconstruction. The
final output is a point cloud and set of camera poses, one for each image that is
successfully resectioned.

4.2 Detect Markers

We run a square marker detection algorithm on each input image. The images
are processed in parallel. Image name, marker id, corner locations, and corner
pixel colors are saved for each detection.

4.3 Marker Informed Image Pairs

Prior to matching and verification, we create a set of image pairs that potentially
match. We only attempt matching on the image pairs in this set. One approach
is to add all possible image pairs; however, this greatly increases matching time
and can lead to bad image matches that cause errors in the reconstruction. We
apply three rules to use marker detections to dictate which images are added.
Rule 1: we add an image pair if the same marker (at least one) is detected in
both images. Rule 2: if an image does not share a detected marker with any
other image, we add all possible pairs that contain that image. Rule 3: if the set
of all added pairs do not form one connected component, we connect separate
components by adding pairs for each image in the separate component to each
image not in the separate component.

As an example, consider the top left diagram in Figure 6. Each lettered box
represents an image, and each numbered edge represents the number of marker
matches those images share. Applying rule 1, we add the following possible
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Fig. 6. The top left diagram depicts images as lettered boxes with edges representing
the number of matched markers between image pairs. The top middle and top right
diagrams depict the number of common feature matches between images. The bottom
diagram depicts the resectioning order of images A to G based on two rules: (1) add
the image that shares the most marker matches with the reconstruction; (2) break ties
using most shared feature matches.

image pairs (A,B), (A,C), (B,C), (B,D), (C,E), and (F,H). No pair is added that
includes G, so based on rule 2, we add (G,A), (G,B), . . . , (G,H). Lastly, since
(F,H) is a separate component (rule 3), we add (F,A), (F,B), . . . , (F,E) and
(H,A), (H,B), . . . , (H,E). We show in the results that this strategy can greatly
speed up processing and eliminate many bad image matches. Note that other
filtering approaches (e.g. Vocab Tree [12]) can be used in conjunction with our
approach to add or filter image pairs.

4.4 Marker Informed Resectioning

Resectioning is the process of adding a new image to the existing reconstruction.
The order in which images are added is important because poorly registered
images can propagate errors that result in failure. One approach is to choose the
image to resection that shares the most feature matches with the images in the
reconstruction. This approach works well when image features are distinct and
plentiful; however, for the challenging scenes we are targeting, failure can occur.
Instead, we apply two rules to use marker detections to dictate resectioning order.
Rule 1: the next image to resection shares the most marker matches with the
current reconstruction. Rule 2: if multiple images share the same number of
marker matches with the current reconstruction, choose the image that shares
the most feature matches.

For example, consider the diagrams in Figure 6. In the top left diagram,
each edge represents the number of marker matches those images share. In the
top middle and top right diagram, each numbered edge represents the number
of image feature matches those images share. The bottom diagram depicts the
resectioning procedure. First, images A and B are used for the initial reconstruc-
tion (step 1). The next image that is resectioned is C because it shares 4 (3 with
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A and 1 with B) marker matches with the current reconstruction (step 2). After
that, image E is added because E and D both share 3 marker matches with the
reconstruction, but E shares 100 feature matches and D only shares 60 (step 3).
Image D is then added (step 4). No remaining images share marker matches with
the current reconstruction, so image H is added based on shared image feature
matches (step 5). F is added next (step 6) because it now shares marker matches
with the reconstruction (because H was added). Lastly, G is added (step 7).

4.5 Marker Constraints for Bundle Adjustment

In bundle adjustment, we solve for camera poses P and 3D points X that opti-
mize the following:

min
P ,X

[wRER (P ,X) + wSES (V ) + wOEO (V )] . (1)

V is the set of vectors formed between neighboring 3D corners on each marker
(i.e. there are four vectors for each marker detection). wR, wS , and wO are
weights. Reprojection error [23] is

ER (P ,X) =

C
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where C is the number of cameras, N is the number of 3D points (both marker
and feature points), L is a loss function, xij is the 2D location in image i of 3D
point Xj , and P i is the projection function of camera i. Similar to [20], we also
include error terms for marker scale (ES , Equation 3) and marker orthogonality
(EO, Equation 4).
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where V
i
NM is the 3D vector from the 3D point of corner N to the 3D point of

corner M on marker i, T is the number of markers, and S is the marker size.

Marker Orthogonality: adjacent sides of the marker should be perpendic-
ular. We define this error as EO (V ) =
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where V
i
NM is the 3D vector from the 3D point of corner N to the 3D point of

corner M on marker i, and T is the number of markers.
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4.6 Implementation Details

We implement our approach on top of OpenSfM v0.1.0 [8]. We use default pa-
rameters, which work well for unordered image collections. We use AprilTag2 [2]
to detect markers. For all experiments, we use a soft L1 loss for L; cost weights
of wR = 62500, wS = 100, and wO = 100; and marker size S = 0.21 m. In princi-
pal, our approach works with any square marker detector and can be integrated
with any incremental or global [24, 25] (except resectioning) SfM method.

5 Results

We process our new dataset using: (1) OpenSfM [8], an open source state of
the art SfM algorithm that is actively used and maintained by Mapillary [26];
(2) OpenSfM, but with all feature points on markers masked; (3) MarkerMap-
per [9], a state of the art algorithm for marker based SfM; (4) OpenSfM with
the four marker corners used as tracks in reconstruction; and (5) our method.
Table 1 provides quantitative results on the number of images localized, number
of points, and reprojection errors. Failure reconstructions are denoted by a “-”.
Figures 7 and 8 provide qualitative results of the 3D reconstructions. The green
pyramids are the camera locations. The floor plans in Figures 3 and 4 provide
guidelines for how each reconstruction should look (e.g. ECE Floor3 Loop should
be a rectangle). Because of the challenging nature of these datasets, the algo-
rithms often fail or have large, noticeable mistakes; therefore, we focus more on
the qualitative results because they illustrate the improvements clearly.

We also process the Neunert et al. [16] dataset. Since it is video data, we
subsample the frames by a factor of 5 to simulate an unordered image collection.
All OpenSfM methods and our method successfully reconstruct all image sets.
MarkerMapper has trouble with this dataset because there are few (often only
one) markers in each image. Reconstruction and timing results are shown in Ta-
bles 1 and 2 respectively. Qualitative results are in the supplementary material.

We do an ablation study with marker informed matching (Section 4.3) and
marker informed resectioning (Section 4.4). For each dataset and method we
calculate the percent of images localized. The average percentages of localized
images are 98% (our full method), 68% (no marker informed resectioning), 50%
(no marker informed matching), and 42% (OpenSfM with markers masked — the
next best method). These percentages show that both marker informed matching
and resectioning are useful individually, but most effective when used together.
We also test our method without marker scale (ES , Eqn. 3) and orthogonality
(EO, Eqn. 4) constraints and find that they provide little to no gain, sometimes
making the results worse. See supplementary material for more details about the
ablation study.

All experiments use an Intel Xeon E5-2620 V4 2.1GHz 16 cores (32 virtual
cores) processor with 128 GB of RAM. No graphics card is used.

Using markers as texture often makes reconstructions worse. Mask-
ing the markers shows how OpenSfM performs if the scenes have no markers.
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Fig. 7. Reconstructions for OpenSfM, OpenSfM with markers masked, MarkerMap-
per, OpenSfM with marker tracks, and our method on the ECE image collections.
Using the markers as texture often produces worse results (e.g. ECE Floor2 Hall, ECE
Floor3 Loop CW, ECE Floor3 Loop, and ECE Floor5 Stairs). Our method produces
complete reconstructions that are as good or better than the other methods for all
image collections. The best results are denoted by a green check mark.
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Fig. 8. Reconstructions for OpenSfM, OpenSfM with markers masked, MarkerMapper,
OpenSfM with marker tracks, and our method on the CEE and MUF image collections.
Again, using the markers as texture often produces worse results (e.g. CEE Day CCW,
CEE Day, and CEE Night). Our method produces complete reconstructions that are
as good or better than the other methods for all image collections. The best results are
denoted by a green check mark.
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# Images # Registered # Points Avg. Rep. Error [px]

[8] [8]* [9] MT Ours [8] [8]* [9] MT Ours [8] [8]* [9] MT Ours

ECE F2 Hall 74 - 70 - - 71 - 15.9K - - 16.4K - 3.1 - - 2.8

ECE F3 Loop CCW 192 - - 190 - 191 - - 808 - 61K - - 200.8 - 2.8

ECE F3 Loop CW 170 - - 166 - 170 - - 736 - 58K - - 358.1 - 2.7

ECE F3 Loop 362 - - 356 - 360 - - 920 - 105K - - 324.0 - 2.8

ECE F5 Hall 239 230 230 213 223 231 50K 45K 736 47K 63K 2.8 2.7 141.0 2.7 2.7

ECE F5 Stairs 89 52 51 - 45 89 20K 20K - 14K 43K 1.9 1.7 - 1.9 1.8

ECE F5 328 313 315 - - 327 79K 73K - - 109K 2.3 2.3 - - 2.3

ECE F4 Wall 39 21 18 39 18 39 13K 9K 204 9K 28K 1.1 1.1 25.8 1.2 1.2

CEE Day CW 63 55 52 - 52 62 24K 20K - 28K 30K 1.6 1.6 - 1.6 1.6

CEE Day CCW 120 65 116 - 116 119 30K 52K - 56K 64K 1.6 1.5 - 1.6 1.5

CEE Day 252 - 251 238 103 246 - 89K 768 398 104K - 1.7 204.8 0.2 1.8

CEE Night CW 96 96 96 96 - 96 48K 44K 548 - 51K 1.7 1.6 164.0 - 1.7

CEE Night CCW 79 - - 79 - 77 - - 580 - 40K - - 116.6 - 1.5

CEE Night 170 - 166 170 - 170 - 61K 760 - 77K - 1.6 181.4 - 1.6

MUF F2 896 883 514 - 885 882 224K 133K - 151K 251K 2.5 2.5 - 2.1 2.9

MUF F3 361 343 - - 324 358 84K - - 55K 89K 2.8 - - 2.4 2.8

cube [16] 327 327 327 - 327 327 99K 101K - 100K 99K 0.8 0.8 - 0.8 0.8

dataset1 [16] 91 91 91 3 91 91 31K 30K 8 31K 33K 0.9 0.9 0.6 0.9 0.8

pavilion [16] 585 585 585 - 585 583 178K 168K - 186K 178K 0.8 0.7 - 0.7 0.7

table [16] 80 80 49 38 80 80 7K 5K 12 7K 6K 0.9 1.0 0.3 0.9 1.0

Table 1. Reconstruction results for OpenSfM [8], OpenSfM with markers masked (de-
noted by [8]*), MarkerMapper [9], OpenSfM with marker tracks (denoted by MT), and
our method. Failure reconstructions (Figures 7 and 8) are blank because the numbers
can be misleading (e.g. all cameras localized to one spot). Our method achieves similar
or better results for number of registered images and points for all reconstructions.

Comparing column 1 (OpenSfM) and column 2 (OpenSfM with masked markers)
in Figures 7 and 8, shows that masking the markers often produces better re-
sults. For example, ECE Floor2 Hall should have an “L” shape, which OpenSfM
with masked markers achieves, but OpenSfM does not. Other examples where
masking markers is clearly better are ECE Floor3 Loop CW, ECE Floor5 Stairs,
CEE Day CCW, CEE Day, and CEE Night.

Marker texture does not always produce bad results (e.g. MUF Floor3 ), but
marker texture can cause bad feature matches because the appearance is similar
between the markers (i.e. black and white squares). This reinforces the need for
our approach which takes advantage of visible markers to improve results.

Using marker detections as tracks has little effect. Comparing column 4
(OpenSfM with marker tracks) to columns 1 and 2 (OpenSfM with and without
markers masked) of Figures 3 and 4 shows that the marker tracks rarely improve
the reconstructions and sometimes make them worse (e.g. ECE Floor5 and CEE

Night). We suspect this is because the localization of the marker corners can be
less accurate (e.g. off by 3-5 pixels [3]) than image features.

Our approach succeeds where others fail. From Figures 7 and 8, we see
that our method produces a successful reconstruction for every image set. We
also see that our method produces better results than the other methods on
the challenging sets. Most notable are ECE Floor3 Loop CW, ECE Floor3 Loop,
and CEE Day CCW because all other methods fail or have significant mistakes.
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# Images Marker Detection [s] Matching [s] Reconstruction [s]

[8] [8]* MT Ours [8] [8]* MT Ours [8] [8]* [9] MT Ours

ECE F2 74 0 14 14 14 215 186 223 73 331 222 - 363 277

ECE F3 Loop CCW 192 0 32 32 32 1356 1160 1398 293 3433 2766 85 2282 3097

ECE F3 Loop CW 170 0 30 30 30 1071 888 1152 273 2797 2084 83 2430 2367

ECE F3 Loop 362 0 59 59 59 4568 3820 4675 876 9944 5082 195 9239 9704

ECE F5 Hall 239 0 40 40 40 1955 1650 1974 296 2810 2363 80 2774 3061

ECE F5 Stairs 89 0 16 16 16 307 258 317 55 425 278 - 347 658

ECE F5 328 0 57 57 57 3787 3195 3945 372 6341 5083 - 7268 5513

ECE F4 Wall 39 0 9 9 9 61 46 47 8 133 46 22 63 263

CEE Day CW 63 0 11 11 11 160 126 171 49 336 216 - 489 382

CEE Day CCW 120 0 21 21 21 535 437 570 139 1011 1377 - 2305 1809

CEE Day 252 0 41 41 41 2373 1919 2567 440 7137 5252 148 4102 4987

CEE Night CW 96 0 16 16 16 358 278 380 99 1083 793 25 1136 1010

CEE Night CCW 79 0 14 14 14 247 193 70 69 425 418 32 917 654

CEE Night 170 0 30 30 30 1093 873 1154 216 3232 2251 93 3287 2984

MUF F2 896 0 158 158 158 31180 25613 35844 5596 72055 40958 - 66095 60542

MUF F3 361 0 64 64 64 5094 4302 5205 758 8977 6903 - 5017 9090

cube [16] 327 0 6 6 6 3473 2724 2776 423 4066 5232 - 4244 4134

dataset1 [16] 91 0 1 1 1 351 305 304 207 847 593 1 619 595

pavilion [16] 585 0 7 7 7 9103 9239 9219 2100 22908 15931 - 21903 22594

table [16] 80 0 1 1 1 64 60 63 65 113 188 2 205 191

Table 2. Reconstruction timings for OpenSfM [8], OpenSfM with markers masked
(denoted by [8]*), MarkerMapper [9], OpenSfM with marker tracks (denoted by MT),
and our method. Using the markers to limit possible image pairs decreases the matching
time significantly. Also, because more images are resectioned, the reconstruction time
increases. Overall, our method produces better reconstructions in a shorter time.

For ECE Floor5 stairs, ECE Floor5, and CEE Day CW, other methods produce
reasonable results, but our approach is more complete.

Our approach succeeds where others succeed. There are several image
sets where all (or most) of the methods produce successful reconstructions (e.g.
ECE Floor5 Hall and CEE Night CW ). In these cases, our method also produces
nice reconstructions. This is important because our algorithm improves on the
challenging image sets without sacrificing accuracy on the easier image sets.

Using markers improves reconstruction time. Table 2 provides the run
times for marker detection, matching, and reconstruction for all image sets. Tim-
ings for other parts of SfM are not included since they do not change between
methods. Also, only the total run time of MarkerMapper is reported because
it does not follow the same pipeline as the others. One main thing to note is
that using markers to limit pairs for image matching can decrease run times
significantly (e.g. for MUF Floor2, our method took 5596 seconds and the other
OpenSfM approaches took 5-6 times longer). Time is added to detect markers in
each image, but it is typically negligible compared to the time saved in match-
ing. Another interesting point is that reconstruction time often increases. This
is because more images are able to be registered with our method.

Few marker detections still improves reconstructions. Figure 9 demon-
strates how marker density effects the reconstructions. In particular, the left six
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Fig. 9. The left six images show how the reconstruction of ECE Floor3 Loop CCW

improves as marker density increases. Here AMD means average marker detections per
image. The right image shows the percent of images localized as the AMD increases.
Each color represents a different dataset. The trend line is shown in black. As the AMD
increases, the percent of localized images increased to 100%.

images show how the reconstruction of ECE Floor3 Loop CCW improves as the
marker density increases. Here AMD stands for average marker detections per
image (e.g. AMD = 0.0 means there are no markers detected, and AMD = 6.0
means that there were an average of 6 markers detected per image).

The plot in Figure 9 shows how the percent of localized images increases as
the AMD increases for seven datasets. These datasets were chosen because our
method achieves clear improvements over the other methods. The trend line is
plotted in black. We see from this plot that markers help even when AMD is less
than 1 (sometimes even 100% of the images are localized). As AMD increases, the
number of localized images increases towards 100%. Placing enough markers for
an AMD of 6 will likely produce accurate, complete reconstructions with 90+%
of images localized. However, markers are most useful in areas with challenging
conditions for SfM, so placing more markers in these challenging areas and fewer
(or zero) markers in easier areas can help our method achieve accurate, complete
reconstructions with drastically fewer total marker detections.

6 Conclusion

We present an incremental SfM method that significantly outperforms existing
methods when fiducial markers are detected in the scene. We introduce a new
dataset with 16 image collections of indoor scenes with square markers placed
throughout. We use the unique marker IDs to improve image matching and resec-
tioning order and show that these improvements greatly improve reconstruction
results when compared to other methods. Lastly, we show that even a small
number of visible markers often improves reconstruction results.
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