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Abstract. In this paper we address the problem of detecting crosswalks
from LiDAR and camera imagery. Towards this goal, given multiple Li-
DAR sweeps and the corresponding imagery, we project both inputs onto
the ground surface to produce a top down view of the scene. We then
leverage convolutional neural networks to extract semantic cues about
the location of the crosswalks. These are then used in combination with
road centerlines from freely available maps (e.g., OpenStreetMaps) to
solve a structured optimization problem which draws the final crosswalk
boundaries. Our experiments over crosswalks in a large city area show
that 96.6% automation can be achieved.
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1 Introduction

Autonomous vehicles have many potential benefits. Every year, more than 1.2
million people die in traffic accidents. Furthermore, accidents are caused by hu-
man factors (e.g., driver distraction) in 96% of the cases. Urban congestion is
also changing the landscapes of our cities, where more than 20% of the land is
typically dedicated to parking. In recent years, tremendous progress has been
made in the field of autonomous vehicles. This is the result of major break-
throughs in artificial intelligence, hardware (e.g., sensors, specialized compute)
as well as heroic engineering efforts.

Most autonomous driving teams in both industry and academia utilize de-
tailed annotated maps of the environment to drive safely. These maps capture
the static information about the scene. As a consequence, very strong prior
knowledge can be used to aid perception, prediction and motion planning when
the autonomous vehicle is accurately localized. Building such maps is, however,
an extremely difficult task. High definition (HD) maps typically contain both
geometric and semantic information about the scene. SLAM-based approaches
are typically employed to create dense point cloud representations of the world,
while human labellers are used to draw the semantic components of the scene
such as lanes, roads, intersections, crosswalks, traffic lights, traffic signs, etc.

Most map automation efforts focus on automatically estimating the lanes [22,
12,7,27,20,32]. Approaches based on cameras [22,12], LIDAR [27,20] as well as
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Fig. 1. Overview of our model. LiDAR points and camera images are projected onto
the ground to produce input images from bird’s eye view. These are then fed into a
convolutional neural network (CNN) to produce three feature maps. Next, we perform
inference using the three feature maps along with a coarse map which provides the
road centrelines and intersection polygons. This is fed into the structured prediction
module that finds the best two boundaries z; and z2 along with the best angle 5 by
maximizing a structured energy function.

aerial images [32,19] have been proposed. On the other hand, very little to no
attention has been paid to other semantic elements.

In this paper, we tackle the problem of accurately drawing crosswalks. Knowl-
edge about where they are is vital for navigation, as it allows the autonomous
vehicle to plan ahead and be cautious of potential pedestrians crossing the street.
Existing approaches focus on predicting the existence of a crosswalk, but do not
provide an accurate localization. Instead, crosswalks are typically crowd-sourced
and manually drawn.

Drawing crosswalks is not an easy task. As shown in our experiments, cross-
walks come in a variety of shapes and styles even within the same city. Further-
more, paint quality of the crosswalk markings can often be washed out, making
the task hard even for humans. Framing the task as semantic segmentation or
object detection does not provide the level of reliability that is necessary for
autonomous driving. Instead a more structured representation is required.

In this paper, we propose to take advantage of road centerlines and intersec-
tion polygons that are typically available in publicly available maps such as the
OpenStreetMap (OSM) project. This allows us to parameterize the problem in a
structured way, where our crosswalks have the right topology and shape. Towards
this goal, we derive a deep structured model that is able to produce accurate
estimates and exploit multiple sensors such as LIDAR and cameras. In particu-
lar, we use a convolutional net to predict semantic segmentation, semantic edge
information, as well as crosswalk directions. These outputs are then used to form
a structured prediction problem, whose inference results are our final crosswalk
drawings. By leveraging distance transforms and integral accumulators, efficient
exact inference is possible.
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We demonstrate the effectiveness of our approach in a variety of scenarios,
where LiIDAR and/or cameras are exploited to build bird’s eye view representa-
tions of the road on which our model operates. Our approach shows that 96.6%
automation is possible when building maps offline and 91.5% when building the
map online (as we drive). For comparison, human disagreement is around 0.6%.

2 Related Work

Crosswalk Detection: In [39, 1,10, 2, 28], methods were developed to detect
crosswalks at the street level. Moreover, [24] proposes a model for crosswalk
detection in aerial images. However, these methods employ manually created
feature extraction techniques, and can only handle zebra-style crosswalks. More
recent methods have used deep convolutional neural networks (CNNs) to detect
crosswalks. For example, the authors of [25] use deep CNNs to detect the cross-
walks in aerial imagery. However, they do no draw the crosswalks. Instead, they
only produce the locations of the crosswalks. Similarly, the authors of [8] use
deep CNNs to detect crosswalks in satellite imagery, but only predicts whether
or not a crosswalk exists in the image. Crosswalk detection is performed for
driver assistance systems in [14]. In this paper, they draw the crosswalk in front
of a vehicle. However, the method is limited in the sense that there is a maximum
distance in which a crosswalk can be detected. Furthermore, the method only
works on camera imagery taken at the vehicle level.

Automatic Mapping: There are many methods used to automatically gen-
erate different elements of a map. For example, the automatic extraction and
segmentation of roads has been tackled in [31,32,30,41] using techniques such
as Markov random fields and deep CNNs. In [37,18], they use LiDAR data
in combination with aerial images and/or building address points to perform
building shape reconstruction. Reconstruction of both the 2D footprints and the
3D shape of the buildings is tackled in these papers. Recently, the TorontoCity
dataset [40] was released, and provides a multitude of map related benchmarks
such as building footprints reconstruction, road centerline and curb extraction,
road segmentation and urban zoning classification. In [35], a bird’s eye view
semantic map is produced from multi-view street-level imagery. Here, they per-
form semantic segmentation on street-level imagery and project this onto the
ground plane in overhead view. In [16], they develop a generative algorithm to
automatically label regions, roads and blocks with street addresses by extracting
relevant features in satellite imagery using deep learning. Many mapping meth-
ods have utilized LiDAR data to perform automatic mapping. Examples of this
can be seen in [29,11,3,13,4]. In these papers, they utilize LIDAR data to cre-
ate 3D models of cities, automatically extract pavement markings, and perform
semantic segmentation on urban maps to classify features.

Semantic Segmentation: In semantic segmentation, the goal is to label ev-
ery pixel in an image with a class. Methods involving recurrent neural networks
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(RNNs) have been proposed [38,43], however, the RNNs themselves can be com-
putationally expensive to run. In [36], the authors introduced fully convolutional
networks (FCNs) which uses skip connections to combine semantic information
from feature volumes of various spatial dimensions within the CNN. It utilizes
bilinear upsampling to perform semantic segmentation. After this, many vari-
ants of FCNs were released. For example, in [34], a deep deconvolutional network
followed by a conditional random field (CRF) were used to fine-tune the output
segmentation. Similarly, [15] builds upon this idea and uses a deeper network
with residual layers and shortcut connections to learn an identity mapping. [26, 9,
21,6, 5] further expands on these concepts, and use an encoder-decoder network
with skip connections. This encoder-decoder architecture is inherently repre-
sented as a pyramid which produces a multi-scale feature representation. Since
the representation is inherent to the shape of a CNN, inference is less memory
and computationally expensive. In [42], they introduce dilated convolutions to
aggregate multi-scale contextual information. They show with their method they
can expand the receptive field with no loss in resolution and coverage.

3 Deep Structured Models for Mapping Crosswalks

High definition (HD) maps typically contain both geometric and semantic in-
formation about the scene. SLAM-based approaches are typically utilized to
create dense point cloud representations of the world, while human labellers are
typically employed to draw the semantic components of the scene, e.g., lanes,
crosswalks, rules at intersections. In this paper, we focus on automatically draw-
ing crosswalks. Towards this goal, we derived a deep structured model that is
able to produce accurate estimates and exploit multiple sensors such as LiDAR
and cameras. In particular, we exploit a CNN to predict semantic segmentation,
semantic edge information as well as crosswalk directions. These outputs are
then used to form a structured prediction problem, whose inference results are
our final crosswalk drawings. By leveraging distance transforms and integral ac-
cumulators, efficient exact inference is possible. In the remainder of the section,
we first define our convolutional potentials, follow by our structured prediction
framework.

3.1 Computing Deep Semantic Features

We leverage both images and LiDAR to automatically draw crosswalks. Towards
this goal, for each sensor modality we create an overhead view of each intersec-
tion. We refer the reader to Fig. 1 for an example of the overhead representation
of both LiDAR as well as images. Note that determining where an intersection
happens is trivial given the topological graphs of existing freely available coarse
maps, such as OpenStreetMaps.

Both LiDAR and Camera overhead images are then concatenated to create
our input representation of the scene. This forms a 4-channel input, with 3 di-
mensions for RGB and one for LiDAR intensity. This 4-channel image is then fed
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to a multi-task CNN that is trained to produce semantic segmentation, semantic
contour detection as well as angles defining the crosswalk direction. In particular,
the first output feature map is a pixel-wise foreground/background segmenta-
tion of the crosswalks. The second output map is an inverse distance transform
from the boundaries of the crosswalks thresholded at a value of 30 pixels (i.e.,
1.2m). By predicting an inverse distance transform, the network learns about
the relative distance to the boundaries which makes learning more effective as it
contains more supervision than simply predicting the location of the edge. The
third output feature map encodes the angles of each crosswalk boundary dilated
to a diameter of 30 pixels. We encode this with two outputs per pixel, which
correspond to the x and y components of the directional unit vector of the angle.
Thus, simply taking the arc tangent of this would produce the predicted angle.

Network Architecture: We use an encoder-decoder architecture with skip
connections and residual layers based on the feature pyramids networks in [15,
26, 9] to output the three feature maps. We refer the reader to Fig. 2 for a detail
visualization of our network architecture. Note that before each convolutional
layer we use batch normalization [17] followed by a ReLU non-linearity [33]. In
the encoder network, each residual block consists of three convolutional layers.
Because the images can be quite large, we need to ensure the network has a large
receptive field, thus, we leverage dilated convolutions [42] in the residual blocks.
In the decoder network, we perform nearest neighbor upsampling to upsample
back to the original image size. We then split the output into three branches, one
for each feature map. To predict the inverse distance transform, we apply a ReLU
non-linearity at the end to restrict the output to a positive value. To predict the
segmentation, we apply a softmax over the output to get a probability map. To
predict the alignment we apply a ReLU non-linearity to restrict the output to a
positive value.

Learning: We treat the distance transform and angle predictions as regression
and the segmentation as pixel-wise classification tasks. To train our network, we
minimize the sum of losses over the three prediction tasks:

UZ) = lseg(T) + lar(T) + Melo(2) (1)

where )\, is a weighting for the alignment loss. In practice we use Ay = 100 which
we found through cross-validation. We define the segmentation loss ls.4 to be
binary cross entropy:

laeolD) = 3 3 (plog(u)+ (1 Gp)log(1 — 3;) (2)

where N is the number of pixels in the bird’s eye view image, ¢, represents the
ground truth pixel p’s value and y,, represents the predicted probability of the p
being a crosswalk.
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Fig. 2. Overview of our prediction network. Here we use MaxPool2d(kernel width,
kernel height, stride, padding) and Conv2d(kernel width, kernel height, out channels,
stride, padding, dilation).

We define the boundary loss I4 to be the mean squared loss:
1 .
lar(Z) = NZHdp* p||2 3)
p

where d,, is pixel p’s value in the inverse distance transform feature map ¢g:.
Finally, we define the alignment loss I, as the mean squared loss:

L) = 5 X llatan (222 ) — o, (@

P p,x

where v, and vy, , are the y and x components of the unit vector corresponding
to the predicted angle, and o, ¢+ is the ground truth angle. Since a single cross-
walk boundary can be represented with multiple angles, we restrict our output
to be between (0, 7).

3.2 Structured Prediction

During inference, we seek to draw the polygon that define each crosswalk. Our
approach takes as input the road centerlines, the intersection polygon, as well
as the three feature maps predicted by our multi-task convolutional network.
Inspired by how humans draw crosswalks, we frame the problem as a 2D search
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Precision at (cm) Recall at (cm) 10U
N |C|L| 20 40 60 80 20 40 60 80

NN Mult|v'|v'| 21.4% | 24.8% | 25.2% | 25.4% | 19.4% | 22.3% | 22.7% | 43.1% | 35.9%
Seg Mult|v'|v'|80.1% | 93.1% | 94.5% | 95.0% | 77.1% | 91.9% | 95.2% | 97.1% | 88.7%
Ours 1 |v|-|78.8% [91.2% | 93.8% | 94.9% | 78.6% | 90.5% | 92.9% | 93.8% | 86.9%
Ours 1 |- |V|77.2%[90.6% | 93.1% | 94.1% | 76.8% | 89.7% | 91.9% | 92.8% | 85.7%
Ours 1 |V|vV]79.8% | 91.5% | 93.6% | 94.6% | 79.9% | 91.3% | 93.2% | 93.9% | 87.1%
Ours  [Mult|v'|-|83.4% | 94.9% | 96.6% | 97.3% | 83.3% | 94.6% | 96.2% | 96.8% | 90.2%
Ours  |Mult| - |v'|84.5% | 95.8% | 97.6% | 98.4% | 85.0% | 96.1% | 97.8% | 98.3% | 91.8%
Ours |Mult|v'|v'|85.6%|96.6%|98.1%|98.8%|86.1%96.8%|98.2%|98.7%|92.4%
Human| - |- 88.3% 199.4% | 99.7% | 99.8% | 87.3% | 98.3% | 98.8% | 98.8% | 95.3%

Table 1. This table shows the performance of our model using various inputs. We use
the columns N, C and L to denote the Number of passes, camera input and LiDAR
input. Here, (Mult) denotes multiple car passes over for offline mapping and (1) denotes
a single car pass for online mapping. The first baseline (NN) is a nearest neighbor
algorithm on top of VGG features. The second baseline (Seg) is the segmentation
output from the model trained on multiple passes of the ground camera and LiDAR.
Furthermore, we annotate 100 intersections ourselves and compare these results with
the ground truth human annotation.

along each centerline to find the two points that describe the boundaries of
the crosswalk. This structured representation of the crosswalk drawing problem
allows us to produce output estimates that are as good as human annotations.

We use the angle prediction to define a set of candidate hypothesis includ-
ing the road centerline angle, the mode of the prediction as well as +2° and
+5° angles around that prediction. We then formulate the problem as an en-
ergy maximization problem, where potentials encode the agreement with the
segmentation and boundary semantic features. Here, the inverse distance trans-
form values are maximum right on the boundary, thus, our formulation will favor
predicted boundaries that are right on it. The segmentation potential is used to
ensure the two boundaries maximize the number of crosswalk pixels inside and
maximize the number of background pixels outside. Our energy maximization
formulation is below:

max Ar(Psege,8(T2) — Psege,5(x1)) + (1= A1) (Pare,5(72) + dare (1)) (5)

z1,%2,B

where ¢4 and ¢g; are the output feature maps of the segmentation and se-
mantic edge tasks. r; and o are the two points on the centreline that define the
crosswalk. [ is the boundary angle. \; is the weighting used to balance between
the segmentation and semantic edge feature maps. £ is the road centreline. Ex-
haustive search can be computed very efficiently by using non-axis align integral
accumulators. In particular we can convert the ¢4 to a 1D integral image along
the road centreline which allows us to easily calculate the number of enclosed
crosswalk pixels inside the boundaries defined by x; and .
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4 Experimental Evaluation

Dataset: We collected a large dataset in a North American city and use all
crosswalks in this city with an area of 100km?2. In total, 9502 km were driven
to create this dataset. Our dataset consists of 1571 training images, 411 valida-
tion images and 607 test images. In total, there are 2559 intersections with 8526
crosswalks. This results in 5203 training, 1412 validation and 1911 test cross-
walks. Each image represents an intersection with at least one crosswalk, and
has a resolution of 4cm per pixel.

Metrics: We use precision and recall as our base metrics. For precision, the true
positive equals the set of predicted crosswalks with a minimal distance smaller
than 7 and TP+ FP = |P|. For recall, the true positive equals the set of ground
truth crosswalks with minimal distance smaller than 7 and TP + FN = |G|.
We evaluate precision and recall at a 7 of 20cm, 40cm, 60cm and 80cm. We
also calculate the Intersection over Union (IoU) of the drawn crosswalks and the
ground truth.

Experimental Setup: We trained our models using a batch size of 1 and
ADAM [23] with a learning rate of le-4 and a weight decay of 5e-4. We decrease
the learning rate by a factor of 10 every 100000 training iterations. We then
perform data augmentation when training by randomly flipping and rotating
the images. The models are trained for 110 epochs over the entire training set.

Importance of Sensor Modality: We trained different models to use camera
only, LiDAR only or a combination of both sensors. As shown in Table 1 using
both sensors results in better performance. Note that the sensor type is encoded
under C (camera) and L (LiDAR) in the table. Furthermore, a histogram of the
IoUs using both LiDAR and camera images as input can be seen in Fig. 5 (left).
We find that 94.1% of the images have an IoU greater than 85.0%.

Online vs Offline maps: Table 1 depicts results obtained when using a single
pass (online mapping) vs using several passes of driving to create the input
feature map (offline mapping). As expected, using multiple passes for offline
mapping results in better performance with 96.6% (row 7, prec @ 40cm), but
91.5% (row 4, prec @ 40cm) automation can be reached in the online setting.
We visualize some of the results from the model trained on both camera and
LiDAR in an offline map setting in Figure 3, while Figure 4 shows results of the
online map setting. Our approach does a very good job at drawing crosswalks
with very complex topology in both settings.

Importance of Structured Representation: The first entry in Table 1 shows
the results of using a nearest neighbor algorithm on top of VGG features ex-
tracted from both the camera and LiDAR. However, this only achieves 24.8%
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Fig. 3. Offline map model results using the the model trained on both camera and
LiDAR imagery). Comparisons between col 1) ground camera, 2) ground lidar, 3)
predicted inverse distance transform, 4) predicted segmentation, 5) predicted crosswalk
polygons after inference and 6) gt crosswalk polygons.

automation (precision @ 40 cm). The second entry in Table 1 shows the results
of using only the output of the CNN model’s semantic segmentation branch for
the final prediction. As shown, the network is doing a great job but only 93.1%
automation (precision @ 40cm) can be achieved in the offline setting.

Speed: The CNN forward pass runs at 50 ms per image. The unoptimized
structured prediction step runs at 0.75s on a single core CPU. Optimizing the
code would significantly improve the speed.

Qualitative Results: We refer the reader to Figure 3 and Figure 4 for an
illustration of results for both offline and online settings. Despite the complex
topology, our approach is still able to accurately draw the crosswalks.
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Fig. 4. Online map model results using the model trained on both camera and LiDAR
imagery. Comparisons between col 1) ground camera (online map), 2) ground LiDAR
(online map), 3) predicted inverse distance transform, 4) predicted segmentation, 5)
predicted crosswalk polygons after inference and 6) gt crosswalk polygons overlayed on
the ground camera (offline map).

Human Disagreement: We compare the noise in human annotation of the
ground truth by annotating 100 intersections with several annotators. Here we
calculate the precision, recall and IoU. As shown in the last row in Table 1, there
is about a 4.7% error in IOU, and a 11.7% and 12.7% error in the precision and
recall at 20cm between different individuals.

Crosswalk Angle Analysis: Having the correct crosswalk angle is crucial
to achieving a high performance on our results. Thus, we perform analysis on
the combination of the predicted alignment and centreline angle and compare
it to the ground truth. That is, we find the difference between the angle used
in inference with the ground truth angle. We plot a histogram and cumulative
graph of the differences in Figure 6. The model we analyze is the model trained
on both the camera and LiDAR imagery from the offline maps. We find that 89%
of the crosswalk angles used are within £5° from the ground truth. After the
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Fig.5. A histogram of the IOUs (left) and cumulative IOU graph (right) using the
LiDAR and camera as input.

structured prediction step (which searches over additional angles) this becomes
98%.

Intersection Complexity: We analyze the effect of the number of neighboring
roads on our results. A neighboring road is defined as one of the connecting roads
to the intersection that provides a road centerline for our structured prediction
algorithm. If a street has a divider in the middle, then we split the street into
2 roads. Hence, it is possible for a 4 way intersection to have 8 roads, that is,
2 roads for each approach to the intersection. As shown in Figure 7, as the
number of roads increases, the performance decreases. This is expected, as those
intersections are more complex.

Ablation Studies: We perform ablation studies to analyze the contributions
of different components in our model in the context of offline mapping with
cameras and LiDAR. The results are shown on Table 2. We first explore the
effect of removing certain components of the model. We remove the angle search
of £ 2° and £+ 5 ° in row (2) and remove the usage of the centerline angle in
row (3). Both result in a slight decrease in performance. In row (4) we do not
use the predicted angle when drawing the crosswalks; we see a significant drop
of more than 10% for all the performance metrics. This suggests that having the
alignment prediction is very important for good inference results.

Oracle Performance: We analyze the upper bound performance of our system
by introducing oracle information. Comparing rows (5), (6) and (7) in Table 2
we see that having ground truth segmentation significantly increases the perfor-
mance of the model. On the other hand, having ground truth distance transform
only slightly increases the performance. Interestingly, using ground truth angle
performance slightly worse than our result in row (1). This is likely due to the
fact that our predicted angles are very accurate. Our angle analysis shows that
without ground truth angles we can already achieve 98% angle accuracy. On row
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Fig. 6. A histogram of the angle differences (left) and cumulative angle difference graph
(right) using the offline model trained on both camera and LiDAR.
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Fig. 7. We visualize the effect of the number of neighbouring roads on the results
of the model trained on offline maps using both camera and LiDAR. Histograms of
the IoUs vs. number of neighbouring roads (left), Precision at 40 cm vs. number of
neighbouring roads (middle) and Recall at 40 cm vs. number of neighbouring roads
(right) are plotted here. We use the offline model trained on both camera and LiDAR
for this analysis.

(8), we use the ground truth distance transform, segmentation and angle and
see that this performs around the same as using just ground truth segmentation.
This suggests that improvements to the semantic segmentation in future models
will yield the greatest impact.

Failure Modes: Since we use the weight A; to weigh between maximizing
segmentation or distance transform energies in our energy formulation, we may
at times choose the wrong weighting for a particular input. As seen in Figure
8 (top), since almost half of the crosswalk boundary in the right crosswalk is
missing, our model predicts the wrong segmentation. In this case, our model
shows that predicting a boundary that focuses on the segmentation energy gives
a larger value and thus produces the wrong inference. The second failure mode
can be seen in the bottom image. Here, the paint quality in the ground imagery
(although not shown, this is also true for the LiDAR imagery) is of poor quality.
Thus, our model mistakes the crosswalk for a stop line at an intersection, and
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Precision at (cm) Recall at (cm) 10U
20 40 60 80 20 40 60 80
Ours 85.6% [96.6% | 98.1% | 98.8% | 86.1% | 96.8% | 98.2% | 98.7% | 92.4%

No Ang Search|82.2% [94.4% | 97.1% | 98.1% | 82.7% | 94.7% | 97.2% | 98.2% | 91.3%
No Cent Ang |84.5% (96.3%|98.1% | 98.8% | 84.9% | 96.4% | 98.0% | 98.6% | 92.1%
No Pred Ang |74.0% |85.3% | 88.9% | 91.4% | 73.8% | 84.8% | 88.3% | 90.5% | 83.7%

GT DT 88.5% (96.6% | 97.8% | 98.3% | 89.5% | 97.3% | 98.4% | 98.8% | 92.9%
GT Seg 94.1%(97.8%|98.7%|99.2%| 94.7% | 98.1% | 98.8% | 99.1% | 94.9%
GT Ang 85.5%|96.5% | 98.1% | 98.7% | 85.7% | 96.4% | 97.9% | 98.4% | 92.2%

GT DT+S+A |93.9% 97.5% | 98.5% | 99.0% |94.9%98.1%|98.9%(99.2%(94.9%
Table 2. We report the ablation studies and performance using oracle information
in this table. For the ablation studies we analyze the effect of the angle search, road
centreline angles and predicted angles in rows (2-4). For the oracle information we
inject GT distance transform, segmentation and angles and analyze the results in rows
(5-8).

Fig. 8. The main failure modes are caused by the trade off between segmentation
and distance transform weights (top) and poor image/paint quality (bottom). Here
we show comparisons between col 1) ground camera, 2) ground LiDAR, 3) predicted
inverse distance transform, 4) predicted segmentation, 5) predicted crosswalk polygons
after inference and 6) gt crosswalk polygons.

Fig. 9. The main failure mode for the online models is caused by poor data collection
when mapping the roads. This poor data collection causes holes and/or poor image
quality as seen in this figure. Here we show comparisons between col 1) ground camera
(online map), 2) ground LiDAR (online map), 3) predicted inverse distance transform,
4) predicted segmentation, 5) predicted crosswalk polygons after inference and 6) gt
crosswalk polygons overlayed on the ground camera (offline map).

does not predict its presence for the segmentation output. For the online mapping
scenario, the major failure mode are holes in the map, as shown in Fig. 9.
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Fig. 10. Examples with no crosswalks. 1) ground camera, 2) ground LiDAR, 3) pre-
dicted inverse distance transform, 4) predicted segmentation, 5) predicted crosswalk

polygons, 6) gt polygons.

Predicted Inverse
Distance Transform

Deep Convolutional
n Neural Network
Input Camera + Lidar Structured Predicted

Predicted

Segmentation

Fig. 11. Generalization of our method to road/intersection boundary prediction.

False Positives: Our dataset was composed of images that contain crosswalks.
Without retraining, our approach produces 5.7% false positives. When retrained
with images that do not contain crosswalks (45% added images) the false positive
rate is 0.04%. The performance of the retrained model is around the same as
our result from Table 1 row (8). Examples of the retrained model results can be
seen in Fig 10.

5 Conclusion

In this paper we have proposed a deep structured model that can leverage LiDAR
and camera imagery to draw structured crosswalks. Our experiments in a large
city has shown that 96.6% automation can be achieved for offline mapping while
91.5% for online mapping. In the future we plan to extend our approach to
estimate crosswalks from satellite images. We also plan to extend our approach
to predict other semantic elements present in modern HD maps. For example,
we can draw stop lines if we predict one boundary instead of two. We can also
use this general approach to tackle road/intersection boundaries as seen in Fig
11. Here the CNN outputs both an inverse distance transform and predicted
segmentation. We can use the vehicles driving path and at every interval we
perform a search perpendicular to the vehicle path for the left and right points
of the boundary. This can be further extended to draw the lane boundaries.
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