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Abstract. Face hallucination is a generative task to super-resolve the
facial image with low resolution while human perception of face heav-
ily relies on identity information. However, previous face hallucination
approaches largely ignore facial identity recovery. This paper proposes
Super-Identity Convolutional Neural Network (SICNN) to recover iden-
tity information for generating faces closed to the real identity. Specif-
ically, we define a super-identity loss to measure the identity difference
between a hallucinated face and its corresponding high-resolution face
within the hypersphere identity metric space. However, directly using
this loss will lead to a Dynamic Domain Divergence problem, which is
caused by the large margin between the high-resolution domain and the
hallucination domain. To overcome this challenge, we present a domain-
integrated training approach by constructing a robust identity metric
for faces from these two domains. Extensive experimental evaluations
demonstrate that the proposed SICNN achieves superior visual quality
over the state-of-the-art methods on a challenging task to super-resolve
12×14 faces with an 8× upscaling factor. In addition, SICNN significant-
ly improves the recognizability of ultra-low-resolution faces.

Keywords: Face hallucination · Super Identity · Domain-Integrated
Training · Convolutional Neural Networks

1 Introduction

Face hallucination, which generates high-resolution (HR) facial images from low-
resolution (LR) inputs, has attracted great interests in the past few years. How-
ever, most of existing works do not take the recovery of identity information into
consideration such that they cannot generate faces closed to the real identity.
Fig. 1 shows some examples of hallucinated facial images generated by bicubic
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Fig. 1. Comparison of face hallucination visual quality and the performance of identity
recovery over different hallucination methods. The identity similarity is computed by
the cosine similarity of the identity feature.

and several state-of-the-art methods. Though they generate clearer facial images
than bicubic, the identity similarities are still low, which means that they can-
not recover accurate identity-related facial details. On the other hand, human
perception of face heavily relies on identity information [3]. Pixel-level cues can-
not fully account for the perception process of the brain. These facts suggest
that recovering identity information may improve both the recognizability and
performance of hallucination.

Motivated by the above observations, this paper proposes Super-Identity
Convolutional Neural Network (SICNN) for identity-enhanced face hallucina-
tion. Different from previous methods, we additionally minimize the identity
difference between the hallucinated face and its corresponding high-resolution
face. To do so, (i) we introduce a robust identity metric space in the training
process; (ii) we define a super-identity loss to measure the identity difference;
(iii) we propose a novel training approach to efficiently utilize the super-identity
loss. More details as follows:

For identity metric space, we use a hypersphere space [18] as the identity met-
ric space due to its state-of-the-art performance of facial identity representation.
Specifically, our SICNN is composed of a face hallucination network cascaded
with a recognition network to extract identity-related feature, and an Euclidean
normalization operation to project the feature into the hypersphere space.

For loss function, perceptual loss [12], computed by feature Euclidean dis-
tance, can construct convincing HR images. Differently, in our work, we need to
minimize the identity distance of face pairs in the metric space. Here, we modified
the perceptual loss to the super-identity loss calculated by normalized Euclidean
distance (equivalent to geodesic distance) between the hallucinated face and it-
s corresponding high-resolution face in the hypersphere identity metric space.
This also facilitates our analysis on the training process (see Sec. 3.5).
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For training approach, using conventional training approaches to directly
train the model with super-identity loss is difficult due to the large margin be-
tween the hallucination domain and the HR domain in the hypersphere identity
metric space. This is critical during the early training stage when face hallucina-
tion network cannot predict high quality hallucinated face images. Moreover, the
hallucination domain keeps changing during the hallucination network learning,
which makes the training with super-identity loss unstable. We summarize this
challenge as a dynamic domain divergence problem. To overcome this problem,
we propose a Domain Integrated Training algorithm that alternately updates
the face recognition network and the hallucination network by minimizing the
different loss in each iteration. In this alterative optimization, the hallucinated
face and HR face will gradually move closer to each other in the hypersphere
identity metric space while keep the discrimination of this metric space.

The main contributions of this paper are as summarized as follows:

– We propose Super-identity Convolutional Neural Network (SICNN) for en-
hancing the identity information in face hallucination.

– We propose Domain-Integrated Training method to overcome the problem
caused by dynamic domain divergence when training SICNN.

– Compared with existing state-of-the-art hallucination methods, the SICN-
N achieves superior visual quality and identity recognizability when super-
resolving a facial image of size 12×14 pixels with an 8× upscaling factor.

2 Related Works

Single image super-resolution (SR) aims at recovering a HR image from a LR
one. Face hallucination is a kind of class-specific image SR, which exploits the
statistical properties of facial images. We classify face hallucination methods into
two categories: classical approaches and deep learning approach.

Classical Approaches. Subspace-based and facial components-based meth-
ods are two main kinds of classical face hallucination approaches.

For subspace-based methods. Liu et al. [17] employed a Principal Component
Analysis (PCA) based global appearance model to hallucinate LR faces and a
local non-parametric model to enhance the details. Ma et al. [21] used multiple
local exemplar patches sampled from aligned HR facial images to hallucinate
LR faces. Li et al. [16] resolved to sparse representation on local face patches.
These subspace-based methods require precisely aligned reference HR and LR
facial images with the same pose and facial expression.

Facial components based methods super-resolve facial parts rather than en-
tire faces to address various poses and expressions. Tappen et al. [29] used SIFT
flow to align LR images, and then deformed the reference HR images. However,
the global structure is not preserved due to using local mapping. Yang et al. [33]
presented a structured face hallucination method which can maintain the facial
structure. However, it relies on accurate facial landmarks.

Deep Learning Approaches. Recently, deep convolutional neural network-
s (DCNNs) achieve remarkable progresses in a variety of computer vision tasks,
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such as image classification [13], object detection [23], and face recognition [31].
Zhou et al. [37] proposed a bichannel CNN to hallucinate blurry facial images in
the wild. For un-aligned faces, Zhu et al. [38] proposed to jointly learn face hallu-
cination and facial dense spatial correspondence field estimation. The approach
of [35] is a GAN-based method to generate realistic facial images. These works
ignore the identity information recovery that is important for recognizability and
hallucination quality. Johnson et al. [12] and Bruna et al. [2] relied on perceptual
loss function closer to perceptual similarity to recover visually more convincing
HR images for general image SR. In this paper we modified the perceptual loss
to facilitate identity hypersphere space and propose a novel training approach
to overcome the challenging while using the loss.

3 Super-Identity CNN

In this section, we will first describe the architecture of our face hallucination
network. Then we will introduce the proposed super-resolution loss and super-
identity loss for identity recovery. After that, we will analyze the challenge,
dynamic domain divergence problem, in super-identity training. At the last, we
introduce the proposed domain-integrated training algorithm to overcome this
challenge.

3.1 Face Hallucination Network Architecture

As shown in Fig. 2 (a), the face hallucination network can be decomposed into
feature extraction, deconvolution, mapping, and reconstruction.

We use dense block [10] to extract semantic features from LR inputs. More
specifically, in the dense block, we set the growth rate to 32 and the kernel size
to 3×3. Deconvolution layer consists of learnable upscaling filters to enlarge the
resolutions of input features. Mapping is implemented by a convolutional layer to
reduce the dimension of features to reduce computational cost. Reconstruction
also exploits a convolutional layer to predict HR images from semantic features.

Here, we denote a convolutional layer as Conv(s, c) and a deconvolutional
layer as DeConv(s, c), where the variables s and c represent the filter size and
the number of channels, respectively. In addition, PReLU [8] activation function
achieves promising performance in CNN-based super-resolution [6] and we use
it after each layer except the reconstruction stage.

3.2 Super-Resolution Loss

We use the pixel-wise Euclidean loss, called super-resolution loss, to constrain
the overall visual appearance. For LR face input ILR

i , we penalize the pixel-wise
Euclidean distance between the hallucinated face and its corresponding HR face:

LSR(ILR
i , IHR

i ) =
∥

∥CNNH(ILR
i )− IHR

i

∥

∥

2

2
, (1)
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(a) Network architecture of hallucination model (CNNH)

(b) Illustration of the proposed super-identity CNN

Fig. 2. Framework of our approach. (a) The network architecture of our hallucination
network (CNNH). DB denotes dense block [10]. (b) Illustration of our super-identity
CNN. It uses super-resolution loss (LSR), super-identity loss (LSI), and recognition
loss (LFR) with domain-integrated training. Norm denotes Euclidean normalization,
and CNNR denotes the recognition network.

where ILR
i and IHR

i are the i-th LR and HR facial image pair in the training data
respectively, and CNNH(ILR

i ) represents the output of hallucination network
with input ILR

i . For better understanding, we also denote CNNH(ILR
i ) as ISR

i

in the following text.

3.3 Hypersphere Identity Metric Space

Super-resolution loss can constrain pixel-level appearance. And we further use a
constrain on the identity level. To measure the identity level difference, the first
step is to find a robust identity metric space. Here we employ the hypersphere
space [18] due to its state-of-the-art performance on identity representation. As
shown in Fig. 2 (b), our hallucination network is cascaded with a face recognition
network (i.e. CNNR) and an Euclidean normalization operation that projects
faces to the constructed hypersphere identity metric space.

CNNR is a Resnet-like [9] CNN and more details about the network structure
are introduced in our supplementary material. It is trained by A-Softmax loss
function [18] which encourages the CNN to learn discriminate identity features
(i.e. maximizing inter-class distance and minimizing intra-class distance) by an
angular margin. In this paper, we denote this loss function as the recognition
loss LFR. For a face input Ii belonging to the yi-th identity. The face recognition
loss is represented as:

LFR(Ii) = − log(
e‖CNNR(Ii)‖ϕ(mΘyi

)

e‖CNNR(Ii)‖ϕ(mΘyi
) +

∑

j 6=yi
e‖CNNR(Ii)‖ϕ(Θj)

), (2)



6 K. Zhang et al.

where the Θyi
denotes the learned angle for identity yi, ϕ(Θyi

) is a monotonically
decreasing function generalized from cos(Θyi

), and m is the hyper parameter of
angular margin constrain. More details can be found in Sphereface [18].

3.4 Super-Identity Loss

To impose the identity information in the training process, one choice is to use
a loss computed by features Euclidean distance between face pairs, such as per-
ceptual loss [12]. However, in this paper, since our goal is to minimize identity
distance in hypersphere metric space, the original perceptual loss, computed by
L2 distance is not the best choice in our task. Therefore, we propose a modified
perceptual loss, called Super-Identity (SI) loss, to compute the normalized Eu-
clidean distance (equivalent to geodesic distance). This modification makes the
loss directly related to identity in hypersphere space and facilitate our investi-
gation in Sec. 3.5.

For a LR face input ILR
i , we penalize the normalized Euclidean distance

between the hallucinated face and its corresponding HR face in the constructed
hypersphere identity metric space:

LSI(ILR
i , IHR

i ) =
∥

∥

∥

̂CNNR(ISR
i )− ̂CNNR(IHR

i )
∥

∥

∥

2

2
(3)

where CNNR(I
SR
i ) and CNNR(I

HR
i ) are the identity features extracted from

face recognition model (CNNR) for facial images ISR
i and IHR

i , respectively.
̂CNNR(ISR

i ) =
CNNR(ISR

i )

‖CNNR(ISR
i

)‖
2

is the identity representation projected to the

unit hypersphere.
In addition to LSI , we want to have some discussions about perceptual loss

beyond our work. In general, the perceptual loss is computed by L2 distance.
However, in most CNNs, inner-product operation is used in fully-connected and
convolutional layers. These outputs are related to the feature’s norm, weight’s
norm and the angular between them. Therefore, for different tasks and different
metric space (e.g. [19, 5, 24]), some modifications about computational metric
space of perceptual loss are necessary (LSI is one of the cases).

3.5 Challenges of Training with Super-Identity Loss

Super-identity loss imposes an identity level constrain. We examine different
training methods as follows:
Baseline training approach I. A straightforward way to train our framework
is jointly using the LSR, LSI and LFR to train both CNNH and CNNR from
scratch. The optimization objective can be represented as:

min
θCNNH

θCNNR

1

n

n
∑

i=1

LSR(ILR
i , IHR

i ) + αLSI(ILR
i , IHR

i ) + βLFR(ISR
i , IHR

i ), (4)

where α and β denotes the loss weight of the LSI and LFR respectively, θCNNH

and θCNNR
denotes the learnable parameters.
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Fig. 3. Face hallucination examples produced by CNNH trained by different training
approaches. These four columns of results are produced by baseline training approach
I, II, III and the proposed domain-integrated training approach respectively. It is clear
that our approach achieves the best result while other results are noisy. This figure is
best viewed in color. Please zoom in for better comparison.

Observation I. This training approach generates artifacts (see Fig. 3, first
column) and the loss is too difficult to converge. The reasons may come from:
(1) In the early training stage, the hallucinated faces are quite different from
HR faces, so the CNNR is too difficult to be optimized from scratch. (2) The
objective of LFR (i.e. minimizing the intra-class variance) is different from the
objective of LSI and LSR loss (minimizing the pair-wise distance), which is
disadvantageous to CNNR and CNNH learning. So, we cannot use the LSI in
CNNR learning and also cannot use the LFR in CNNH learning.
Baseline training approach II. To solve above problems, one possible training
approach used in perceptual loss [12] can be used. In particular, we train a
CNNR using HR faces and then jointly use the LSR and the LSI to train the
CNNH . The joint objective of LSI and LSR can be represented as:

min
θCNNH

1

n

n
∑

i=1

LSR(ILR
i , IHR

i ) + αLSI(ILR
i , IHR

i ), (5)

Observation II. We have two observations while using this training approach:
(1) The LSI is difficult to converge. (2) The visual results are noisy (see Fig. 3,
second column). To investigate these challenges, we first visualized the learned
identity features (after Euclidean normalization, as shown in Fig. 4) and found
that there exists a large margin between the hallucination domain and the HR
domain. We formulate this challenge as domain divergence problem. It specifies
the failure of the CNNR, trained by HR faces, to project faces from hallucination
domains to a measurable hypersphere identity metric space. In other words,
this face recognition model cannot extract effective identity representation for
hallucinated faces. This makes the LSI very difficult to converge and easily get
stuck in local minima (i.e. occur many noises in hallucination results).
Baseline training approach III. To overcome the domain divergence chal-
lenge, a straightforward alternately training strategy can be used. In particular,
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Fig. 4. The distribution of identity features (after Euclidean normalization) from hal-
lucination domain (triangle) and HR domain (dot). These identities are randomly se-
lected from the training set. Different colors denote different identities. We use t-SNE
[30] to reduce the dimensions for better understanding. We can observe that there is a
large gap between above two domains in the identity metric space.

we first trained a CNNH only using the LSR. Then we trained a CNNR using
hallucinated faces and HR faces. Finally, we finetune the CNNR jointly using
the LSR and the LSI following baseline training approach II.

Observation III. Although this alternately training strategy seems able to
overcome the domain divergence problem, it still produces artifacts (as shown
in Fig. 3, third column). The reason is that the hallucination domain keeps
changing when the CNNH is being updated. If the hallucination domain has
changed, the face recognition model cannot extract effective and measurable
identity representation of hallucinated faces anymore.

In short, above observations can be concluded into a dynamic domain di-
vergence problem as following: a large margin exists between the hallucination
domain and HR domain and the hallucination domain keeps changing if the
hallucination model keeps learning.

3.6 Domain-Integrated Training Algorithm

To overcome the dynamic domain divergence problem, we propose a new training
procedure. From above the above observations, we see that alternately training
strategy (Baseline Training Approach III) can alleviate the dynamic domain
divergence problem. We further propose to do this alternately training in each
iteration.
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Algorithm 1 Mini-batch SGD based domain-integrated training approach

Input: Face recognition model CNNR trained by HR facial images, face hallucina-
tion model CNNH trained by LSR, minibatch size N , LR and HR facial image pairs
{

ILR

i , IHR

i

}

.
Output: SICNN.

1: while not converge do

2: Choose one minibatch of N LR and HR image pairs
{

ILR

i , IHR

i

}

, i = 1, ..., N .

3: Generate one minibatch of N hallucinated facial images ISR

i from ILR

i , i =
1, ..., N , where ISR

i = CNNH(ILR

i ).
4: Update the recognition model CNNR by descending its stochastic gradient:

▽θCNNR

1

N

∑

N

i=1
LFR(

{

ISR

i , IHR

i

}

)
5: Update the hallucination model CNNH by descending its stochastic gradient:

▽θCNNH

1

N

∑

N

i=1
LSR(ILR

i , IHR

i ) + αLSI(ILR

i , IHR

i )
6: end while

More specifically, we first train a CNNR using HR facial images and a CNNH

using the LSR. Then, we propose to use domain-integrated training approach
(Algorithm 1) to finetune CNNR and CNNH alternately in each iteration.

In particular, in each iteration, we first update the CNNR using the recog-
nition loss, which allows the CNNR to perform accurate identity representation
in this mini-batch of faces from different domains. Then, we jointly use the LSR

and the LSI to update the CNNH . This training approach can encourage the
CNNR to construct a robust mapping from faces to the measurable hypersphere
identity metric space in each iteration for LSI optimization whatever the CNNH

is changing. The alternative optimization process is conducted until converged.
Some hallucination examples are shown in Fig. 3, fourth column, where we can
observe a much better visual result with this training approach.

3.7 Comparison to Adversarial Training

Domain-Integrated (DI) training and adversarial training [7] can be related to
their alternative learning strategy. But they are quite different in several aspects
as follows:

(1) Generally speaking, DI training is essentially a cooperative process in
which CNNH collaborates with CNNR to minimize the identity difference. The
learning objective is the same in each sub-iteration. However, in adversarial
training, generator and discriminator compete against each other to improve
the performance. The learning objective is alternatively challenging during two
models learning.

(2) The loss functions and optimization style are different. In DI training, we
minimize LFR in CNNR constructing a marginal identity metric space and then
minimize LSI for CNNH reducing pair-wise identity difference. Differently, in
adversarial training, the classification loss is minimized for discriminator learning
and maximized for generator learning.
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4 Experiments

In this section, we will first describe the training and testing details. Then we
perform an ablation study to evaluate the effectiveness of the proposed Super-
Identity loss and Domain-Integrated training. Further, we evaluate our proposed
method with other state-of-the-art methods. At the last, we evaluate the benefit
of our method for low-resolution face recognition. More evaluations are included

in our supplementary material.

4.1 Training Details

Training data. For a fair comparison with other state-of-the-art methods, we
do face alignment in facial images. In particular, we use similarity transformation
based on five landmarks detected by MTCNN [36]. We have removed the images

and identities overlap between training and testing.
For face recognition training, we use web-collected facial images including

CASIA-WebFace [34], CACD2000 [4], CelebA [20], VGG Faces [22] as Set A. It
roughly goes to 1.5M images of 17,680 unique persons.

For face hallucination training, we select 1.1M HR facial images (larger than
96×112 pixels) from the same 1.5M images as Set B.
Training details. For recognition model training, we use Set A with the batch
size of 512 and m (angular margin constrain in Eq. 2) of 4. The learning rate
is started from 0.1 and divided by 10 at the 20K, 30K iterations. The training
process is finished at 35K iterations.

For hallucination model training, we use Set B with the batch size of 128. The
learning rate is started from 0.02 and divided by 10 at the 30K, 60K iterations.
A complete training is finished at 80K iterations.

For domain-integrated training, we use Set B with the batch size of 128 for
CNNH and 256 for CNNR. The learning rate is started from 0.01 and divided
by 10 at the 6K iterations. A complete training is finished at 9K iterations.

4.2 Testing Details

Testing data. We randomly select 1,000 identities with 10,000 HR facial images
(larger than 96×112 pixels) from UMD-Face [1] dataset as Set C. The dataset
is used for face hallucination and identity recovery evaluation.
Evaluation protocols. In this section, we perform three kinds of evaluations:
(1) Visual quality. (2) Identity recovery. (3) Identity recognizability. For visual
quality evaluation, we report several visual examples results on Set C.

For identity recovery, we evaluate the performance of recovering identity in-
formation while super-resolving faces. In particular, we use the CNNR trained
by Set A as identity features extractor. And the identity features are taken from
the output of the first fully connected layer. Then we compute the identity simi-
larity (i.e. cosine similarity) between the hallucinated face and its corresponding
HR faces on Set C. The average similarities over the testing set are reported.
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For identity recognizability, we evaluate the recognizability of hallucinated
faces. In particular, we first downsample Set A to 12×14 pixels as Set A - LR.
Then we use different methods to super-resolve Set A - LR to 96×112 pixels as
different Set A - SR. At last, we use the Set A - SR to train different CNNR

and evaluate them on LFW [11] and YTF [32].

4.3 Ablation Experiment

Loss weight. The hyper parameter α (see Algorithm 1) dominates the identity
recovery. To verify the effectiveness of the proposed Super-Identity loss, we vary
α from 0 (i.e. only use super-resolution loss) to 32 to learn different models.
From Tab. 1 and Fig. 5, we observe that larger α make the facial images sharper
with more details and brings the better performance of identity recovery and
recognizability. But too large α also makes the texture look slightly unnatural.
And, since the performances of identity recovery and identity recognizability are
stable when α is larger than 8, we fix α to 8 in other experiments.

LR HR α = 0 α = 2 α = 4 α = 8 α = 16 α = 32

Fig. 5. Face hallucination examples generated by models trained with different loss
weight α. It is clear that choosing larger α can make the facial images sharper with
more details. Please zoom in for better comparison.

α 0 2 4 8 16 32

Identity Similarity 0.4418 0.5134 0.5639 0.5978 0.6041 0.6101

LFW Accuracy 97.61% 97.88% 98.05% 98.25% 98.23% 98.16%

YTF Accurarcy 93.20% 93.48% 93.56% 93.82% 93.84% 93.76%

Table 1. Quantitative comparison of different α on identity recovery and identity
recognizability evaluation. Larger α brings better performance and it is stable when α

is larger than 8.

Training approach. We evaluate different training approaches introduced
in Sec. 3.5 and Sec. 3.6. Some visual results are shown in Fig. 3. We can see that
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Training Approach I II III Domain-Integrated Training

Identity Similarity 0.3875 0.4829 0.5132 0.5978

LFW Accuracy 97.16% 97.46% 97.58% 98.25%

YTF Accurarcy 92.98% 93.32% 93.34% 93.84%%

Table 2. Quantitative comparison of different training approaches on identity recovery
and identity recognizability evaluation. The results demonstrate the superiority of our
proposed domain-integrated training.

Domain-Integrated training achieves the best visual results. Besides, from Tab.
2, Domain-Integrated training also achieves the best performance of identity
recovery and identity recognizability.

4.4 Evaluation on Face Hallucination

We compare SICNN with other state-of-the-art methods and bicubic interpola-
tion on Set C for face hallucination. In particular, we follow EnhanceNet [25]
training another UR-DGN, called UR-DGN*, with additional perceptual loss
computed in end of the second and the last ResBlock in CNNR. All methods

are re-trained in same training set - Set B.

Some visual examples are shown in Fig. 6. More visual results are included in
our supplementary material. We also report the results of average Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM) in Tab. 3. But as the
claim of other works [12, 25, 15], PSNR and SSIM results are useless for sematic
super-resolution evaluation while visual quality and recognizability are more
valuable.

From the visual results, it is clear that our method achieves the best results
over other methods. We analyze the results as follows:

(1) For Ma et al.’s method, exemplar patches based, the results are over-
smooth and suffer from obvious blocking for such low low-resolution input with
large up-sampling scale.

(2) For LapSRN [14], since it is based on L2 pixel-wise loss, it makes the
hallucinated faces over-smooth.

(3) For UR-DGN [35], it jointly uses pixel-wise Euclidean loss and adversarial
loss to generate a realistic facial image closest to the average of all potential
images. Thus, though the generated facial images look realistic, they are quite
different from the original HR images.

(4) For UR-DGN*, it uses an additional loss - perceptual loss computed in
our CNNR as the pair-wise semantic loss for identity recovery. Though this
pixels-wise loss + adversarial loss + perceptual loss is the state-of-the-art super-
resolution training approach (i.e. EnhancementNet[25]). It still achieves inferior
results than ours.
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LR HR Bicubic Ma et al. LapSRN URDGN URDGN* SICNN

Fig. 6. Comparison with the state-of-the-art methods on hallucination test dataset. It
is clear that our method achieves the best hallucination visual quality. Please zoom in

for better comparison. More visual results are included in our supplementary material.

Method Bicubic Ma et al. LapSRN UR-DGN UR-DGN* SICNN

PSNR (db) 23.1323 23.8606 26.1451 24.1857 25.2859 26.8945

SSIM 0.6093 0.6571 0.7417 0.6764 0.7224 0.7689

Table 3. Quantitative hallucination comparison of different training approaches.

4.5 Evaluation on Identity Recovery

We perform an evaluation on identity recovery with other state-of-the-art meth-
ods. All models for evaluation are the same as last experiment (i.e. Sec. 4.4).

From the Tab. 4, we observe that our method achieves the best performance.
Besides, we also observe that UR-DGN, trained by pixels-wise loss and adver-
sarial loss, even shows inferior performance than LapSRN though with sharper
visual results (See Sec. 4.4). It means that UR-DGN will lose some identity
information while super-resolving a face because the adversarial loss is not a
pair-wise loss. And if add perceptual loss (i.e. UR-DGN*), pair-wise semantic
loss, the results can be improved, but still inferior to our method.

4.6 Evaluation on Identity Recognizability

Follow last two experiments (i.e. Sec. 4.4, 4.5)., we further perform an evaluation
on identity recognizability with other state-of-the-art methods.

From the Tab. 4, we observe that our method achieves the best performance.
We also obtain similar observations as last experiment. Besides, we also observe
that though several methods (LapSRN. Ma et al., and UR-DGN) obtain better
visual results than Bicubic interpolation, the identity recognizability of super-
resolved face is similar or even inferior. It means that these methods cannot
generate discriminative faces with better identity recognizability.
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Method Bicubic Ma et al. LapSRN UR-DGN UR-DGN* SICNN

Identity Similarity 0.2913 0.3823 0.4361 0.3682 0.5267 0.5978

LFW Acc. 97.51% 97.58% 97.46% 97.20% 98.01% 98.25%

YTF Acc. 93.08% 93.26% 93.10% 92.78% 93.54% 93.82%

Table 4. Quantitative comparison on identity recovery and identity recognizability
evaluation. The results demonstrate the superiority of our proposed method.

Method Ours CNNR Human [28] [27] [26] [22] [31] [18]

Input Size 12×14 96×112 Original 152×152 47×55 224×224 224×224 96×112 96×112

LFW Acc. 98.25% 99.48% 97.53% 97.35% 98.70% 99.63% 98.95% 99.28% 99.42%

YTF Acc. 93.82% 95.38% - 91.4% 93.2% 95.1% 97.3% 94.9% 95.0%

Table 5. Face verification performance of different methods on LFW [11] and YTF
[32] benchmark. It shows that our method can help the recognition model to archive
high accuracy with ultra-low-resolution inputs.

4.7 Evaluation on Low-Resolution Face Recognition

To evaluate the benefit of our method for low-resolution face recognition, we
compare our method (SICNN+CNNR) with other state-of-the-art recognition
methods on LFW [11] and YTF [32] benchmark.

From the results in Table 5, we find that these methods’ input sizes are
relatively large (area size from 15.3× to 298× compared with our method).
Moreover, using our face hallucination method, the recognition model can still
achieve reasonable results in such ultra-low resolution. We also tried using un-
aligned faces in training and testing and our proposed method still can achieve
similar improvement of performance.

5 Conclusion

In this paper, we present Super-Identity CNN (SICNN) to enhance the identity
information during super resolving face images of size 12×14 pixels with an 8×
upscaling factor. Specifically, SICNN aims to minimize the identity difference
between the hallucinated face and its corresponding HR face. In addition, we
propose a domain-integrated training approach to overcome the dynamic domain
divergence problem when training SICNN. Extensive experiments demonstrate
that SICNN not only achieves superior hallucination results but also significantly
improves the performance of low-resolution face recognition.
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