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Abstract. Data of different modalities generally convey complimentary
but heterogeneous information, and a more discriminative representation
is often preferred by combining multiple data modalities like the RGB
and infrared features. However in reality, obtaining both data channels is
challenging due to many limitations. For example, the RGB surveillance
cameras are often restricted from private spaces, which is in conflict
with the need of abnormal activity detection for personal security. As
a result, using partial data channels to build a full representation of
multi-modalities is clearly desired. In this paper, we propose a novel
Partial-modal Generative Adversarial Networks (PM-GANs) that learns
a full-modal representation using data from only partial modalities. The
full representation is achieved by a generated representation in place
of the missing data channel. Extensive experiments are conducted to
verify the performance of our proposed method on action recognition,
compared with four state-of-the-art methods. Meanwhile, a new Infrared-
Visible Dataset for action recognition is introduced, and will be the first
publicly available action dataset that contains paired infrared and visible
spectrum.1

Keywords: Cross-modal Representation · Generative Adversarial Net-
works · Infrared Action Recognition · Infrared Dataset

1 Introduction

Human action recognition [11, 31, 48, 51, 55, 59] aims to recognize the ongoing
action from a video clip. As one of the most important tasks in computer vi-
sion, action recognition plays a significant role in many useful applications like

1 The dataset will be available at http://www.escience.cn/people/gaochenqiang/Publications.html.
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video surveillance [24, 49], human-computer interaction [32, 43] and content re-
trieval [2, 60], with great potentials in artificial intelligence. As a result, massive
attention has been dedicated to this area which made large progress over the
past decades. Most state-of-the-art methods have contributed to the tasks in
visible imaging videos, and show saturated performances among the widely-used
benchmark datasets including KTH [52] and UCF101 [14]. Generally speaking,
the task of action recognition is quite well-addressed and has already been ap-
plied to real-world problems.

However, there are still many occasions where visible imaging is limited. First,
the RGB cameras rely heavily on the light conditions, and perform poorly when
light is insufficient or over-abundant. Action recognition from night-view RGB
data remains a rather difficult task. Moreover, as an act to protect the funda-
mental human dignity–Privacy, RGB cameras are strictly restricted from most
private areas including the personal residential area, public washroom where ab-
normal human activities are likely to threat personal security. Infrared cameras,
that capture the heat radiation of objects, are excellent alternatives in these
occasions [13]. The application of thermal imaging in military affairs and po-
lice surveillance has continued for years, and has more potentials beyond the
government use. With many advantages over the RGB camera, it is predicted
that infrared cameras will become more common in public spaces like hospitals,
nursing centers for elderly and home security systems [35].

While infrared cameras can fill the limited spots of RGB cameras, many visi-
ble features are nevertheless lost in the infrared spectrum due to their similarity
in temperature [58, 62]. Visible features like color, texture are effective clues in
activity representations. Since the two are complementary to each other, it is
desired to utilize both visible and infrared features to benefit the task of action
recognition. Furthermore, it will be more desired to utilize both feature domains
when ONLY infrared data is available. In the previous cases when the demand
of abnormal action recognition and the demand of privacy conflicted, it will be
great if we can obtain both infrared and visible features, while use only the in-
frared data. The question is, how can one obtain visible features when the visible
data is missing? The situation is not unique to the task of action recognition.
In fact, data with different modalities of complementary benefits widely exists
in multimedia such as systems with multiple sensors, product details with com-
bined information of text description and images [39]. Here we are inspired by
the intra-modal feature representations to make up for the missing data using
adversarial learning with the available part of the data channel.

Recently, much attention has been given to cross-modal feature representa-
tions [6, 10, 16, 23, 57] dealing with unpaired data, which maps multiple feature
spaces onto a common one, or generates a different representation via adver-
sarial training. The basic model of generative adversarial networks (GANs) [8,
15, 41] consists of a generative model G and a discriminative model D. Many
interesting image-to-image translations such as genre translation, face and pose
transformation indicate the broader potentials of GANs to explore the hidden
correlations in cross-modal representations [35, 38]. Inspired by this, we there-
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fore seek an algorithm that can translate from the infrared representation to the
visible domain, which allows us to further exploit the benefits of both feature
spaces with only part of the data modalities. More generally speaking, we aim
at an architecture that learns a full representation for data of different modal-
ities, using partial modalities. Different from the existing works of cross-modal
which seeks a common representation from different data spaces, our goal is to
exploit the transferable ability among different modalities, which is further uti-
lized to construct a full-modal representation when only partial data modalities
are available.
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Fig. 1. The framework of the proposed Partial-modal Generative Adversarial Networks
(PM-GANs). Infrared video clips are sent to the transferable generative net to produce
fake feature representation of the visible spectrum. And the discriminator attempts to
distinguish between the generated features and the real ones. The predictor construct
a full representation using the generated features and infrared features to conduct
classification

With a completely different target, in this paper we propose a novel Partial-
modal Generative Adversarial Networks (PM-GANs), which aims to learn the
transferable representation among data of heterogeneous modalities using cross-
modal adversarial mechanism and build discriminative full-modal representation
architecture using data of one/partial modalities. The main contributions are
summarized as follows.

– Partial-modal representation is proposed to deal with missing data modal-
ities. Specifically, the partial-modal representation aims to obtain the trans-
ferable representation among data with different modalities. And when only
partial-modal representations are accessible, the model can still generate a
comprehensive description, as if constructed with data of all modalities.
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– Partial-modal GANs architecture is proposed that can exploit the com-
plementary benefits of all data channels with heterogeneous features using
only one/partial channels. The generative model learns to fit the transfer-
able distribution that characterizes the feature representation in the specif-
ic data channels that are likely to be missing in practice. Meanwhile, the
discriminative model learns to judge whether the translated distribution is
representative enough for the full modalities. Extensive experiment results
reveal the effectiveness of the PM-GANs architecture, which outperforms
four state-of-the-art methods in the task of action recognition.

– Partial-modal evaluation dataset is newly introduced, which provides
paired data of two different modalities–visible and infrared spectrum of hu-
man actions. Researchers can evaluate the transferable ability of the algo-
rithms between the two modalities, as well as the discriminative ability of
the generated representation by comparing with a series of baselines we pro-
vided in this paper. Meanwhile, the dataset can be used as a benchmark for
bi-channel action recognition, since it is also carefully designed to serve for
this purpose. The dataset contains more than 2,000 videos, 12 different ac-
tions, and to the best of our knowledge, is the first publicly available action
recognition dataset that contains both infrared and visible spectrum.

The rest of the paper is organized as follows. In Section 2, we review the
background and related works. In Section 3, we elaborate the details of our pro-
posed method. Section 4 presents the newly-introduced dataset, its evaluations,
and the experimental results on it. Finally, Section 5 draws the conclusion.

2 Related Work

Transfer Learning and Cross-modal Representation: In the classical pat-
tern recognition and machine learning tasks, sufficient training data that has
variations in modality is clearly a desired but unrealistic goal [46, 47], thus re-
stricting the representative ability of the model. Among the studies to address
this problem, transfer learning attempts to transfer the feature space from a
source domain to a target domain, and to lessen the adaption conflicts via do-
main adaption [12, 36, 37, 50]. The transferred knowledge type is not restricted
to feature representation or instance, and it also contains modality-correlation.
With different aims, cross-dataset and cross-modal feature representation fall in-
to feature-representation transfer by adapting the representations from different
domains to a single common latent space, where features of multiple modalities
are jointly learned and combined. Among these algorithms, Canonical Correla-
tion Analysis (CCA) [19, 61] is a widely used one, which seeks to maximize the
correlation between the projected vectors of two modalities. Another classical
algorithm is Data Fusion Hashing (DFH) [3] that embeds the input data from
two arbitrary spaces into a Hamming space in a supervised way. Differently,
Cross-View Hashing (CVH) [27] maximizes the weighted cumulative correlation
and can be viewed as the general representation of CCA.
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In recent years, with the renaissance of neural networks, many deep learning
based transfer learning and cross-modal representation methods have been pro-
posed as well. Cross Modal Distillation (CMD) [16] learns representations for
modalities with limited labeled data which are not able to be directly trained
on deep networks. Bishifting Autoencoder Network [23] attempts to alleviate
the discrepancy between the source and target datasets to the same space. To
further take the feature alignment and auxiliary domain data into considera-
tion, Aligned-to-generalized encoder (AGE) [35] is proposed to map the aligned
feature representations to the same generalized feature space with low intra-
class variation and high interclass variation. Since GANs have been proposed
by Goodfellow [15] et al. in 2014, a series of GANs-based methods have arisen
for a wide variety of problems. Recently, a Cross-modal Generative Adversarial
Networks for Common Representation Learning (CM-GANs) [38] is proposed.
CM-GANs seeks to unify the inconsistent distribution and representation of dif-
ferent modalities by filling the heterogeneity of knowledge types like image and
text. In contrast, we have completely different goal, which aims to use only par-
tial data modalities to obtain a full-modal representation. Our focus is beyond
the jointly-learned representation of multiple feature spaces, and takes one step
further to achieve a discriminative partial-modality representation, which corre-
sponds to our original aim of handling the problem of insufficient training data
and data types.

Infrared Action Recognition and Dataset: Most previous contributions
[33, 42] to the progress of action recognition have been made to the visible spec-
trum. Early approaches utilized the hand-crafted representation followed by clas-
sifiers, such as 3D Histogram of Gradient (HOG3D) [26], Histogram of Optical
Flow (HOF) [29], Space Time Interest Points (STIP) [28] and Trajectories [53].
Wang et al. [54] proposed the Improved Dense Trajectories (iDT) representation,
making breakthroughs among hand-crafted features. In hand-crafted representa-
tion scheme, encoding methods such as Bag of Words (BoW) [30], Fisher vector
[44], VLAD [7] are applied to aggregate the descriptors into video-level represen-
tation. Benefiting from the success of Convolutional Neural Networks (CNNs)
in image classification, several deep network architectures have been proposed
for action recognition. Simonyan et al. [48] proposed a two-stream CNNs ar-
chitecture which simultaneously captured appearance and motion information
by spatial and temporal nets. Tran et al. [49] investigated 3D ConvNets [21,
24] in large-scale supervised training datasets and effective deep architectures,
achieving significant improvements. Wang et al. [56] proposed a temporal seg-
ment network to investigate long-term temporal information. Carreira et al. [5]
designed a two-stream inflated 3D ConvNet, inflating filters and pooling kernels
into 3D to learn seamless spatiotemporal feature extractors.

Recently, increasing efforts have been devoted to infrared action recognition
[13]. Corresponding to the classical methods employed in visible spectrum, s-
patiotemporal representation for human action recognition is also used under
thermal imaging scenarios [17]. The combination of both visible and thermal
imaging to improve human silhouette detection is also introduced by Han et al.
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[18]. However, the scenario has not been studied where infrared data is available
while the RGB channel is missing. The scenario has great potential in real-world
of protecting privacy while benefiting the task of action recognition, and is mean-
ingful to both the study of pattern recognition and the welfare of the community
at large. Therefore, we are motivated to dedicate to improving the situation by
constructing a robust and discriminative partial-modal representations, and to
specify action recognition as the case in this paper.

3 Proposed Approach

The overall pipeline of the proposed PM-GANs for action recognition is shown
in Fig. 1. Our goal is to generate a full-modal representation using only the
partial modalities. The framework learns the transferable representation among
different data channels based on conditional adversarial networks. Based on the
transferred representation, the framework builds a discriminative full-modal rep-
resentation network using only part of the data channels.

3.1 Transferable Basis for Partial Modality

The transferable ability with the PM-GANs architecture is the basis for the
construction of full-modal representation with partial modality. We assume that
there exists a mapping from an observed distribution fV is and an input distri-
bution fInf , producing an output representation which shares the feature of the
observed fV is. Therefore, we attempt to learn a generator G to generate the
feature distribution of the missing data channel fV is from the partially available
distribution denoted as fInf . Based on the scheme of conditional adversarial net-
works, the generator immediately transforms the partially available distribution
fInf and noise z to output the missing distribution via the following equation:

min
G

max
D

L(G,D) =EfV is∼Pdata(fV is)[logD(fV is)]+

EfInf∼Pdata(fInf ),z∼Pdata(z)[log(1−D(G(fInf , z)))],
(1)

where G(fInf , z) denotes the output distribution. The input distribution fInf
and observed distribution fV is denote the data of infrared and RGB channels
respectively in our action recognition task. The generator G is designed to min-
imize this objective to fake the generated distribution as well as possible, while
the the real output feature discriminator D tries to maximize its accuracy of
telling the real from the fake one.

In this work, the discriminator is also designed for pattern recognition. Thus,
another prediction loss is explored:

Lp(G,Dp) = EfInf∼Pdata(fInf ),z∼Pdata(z)[Lcls(l,Dp(fInf , G(fInf , z)))], (2)

where l denotes the correct label of partially available data samples, in the form
of one-hot vector, and Lcls is log loss over the predicted class confidences vector
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and the ground truth label. For convenience, we denote the discriminator part
and the predictor part of discriminative net as Dd and Dp respectively. Finally,
the objective function can be formulated as:

LPM−GANs(G,Dd, Dp) = −EfV is∼Pdata(fV is)[logDd(fV is)]

− EfInf∼Pdata(fInf ),z∼Pdata(z)[log(1−Dd(G(fInf , z)))]

+ EfInf∼Pdata(fInf ),z∼Pdata(z)[Lcls(l,Dp(fInf , G(fInf , z)))].
(3)

3.2 Transferable Net
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Fig. 2. The proposed transferable generative net is built upon the C3D network [49].

Video clips are sent to 3D ConvNet to obtain feature maps of each clip f
(i)
Inf and all

feature maps are fused as fInf to represent the whole action video. Then, residual
blocks are added to this net to produce fake feature maps fg similar to the visible
spectrum

The transferable net simulates the target distribution from the convolution-
al feature map of the partially-available data distribution, which, as shown in
Fig. 2, is made as an input of the generator to obtain feature maps of miss-

ing distribution. The input clips are denoted as {f
(1)
Inf , f

(2)
Inf , . . . , f

(T )
Inf}, where

f
(i)
Inf ∈ R

H×W×D and H,W,D denote the height, width and number of channels
of feature maps. To incorporate all feature maps into a high-level representation,
the sum fusion model in [9] is applied to compute the sum of T feature maps at
the same spatial location i, j and feature channel d:

fsum
Inf (i, j, d) = f

(1)
Inf (i, j, d) + f

(2)
Inf (i, j, d) + · · ·+ f

(T )
Inf (i, j, d), (4)
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where 1 ≤ i ≤ H, 1 ≤ j ≤ W , 1 ≤ d ≤ D. The final feature map of the input
distribution is computed as the average value of sum feature map fsum

Inf in each
location, denoted as fInf . Then the generator takes the final input feature map
and generates the fake target feature map, G(fInf , z). The generator consists of
two residual blocks [20] to produce feature map with the same size as infrared
feature map. Thus, the generative loss LG is expressed as:

LG = − log(Dd(G(fInf , z)). (5)

3.3 Discriminative Net Using Partial Modality

To enable the generative net to produce full-modal representation which incorpo-
rates the complementary benefits among data of different modalities, a two-part
discriminative net is designed, as shown in Fig. 1. The discriminative net con-
tains a discriminator part and a predictor part. The discriminator part follows
the scheme of conventional discriminator in GAN which is applied to distinguish
between real and fake visible feature map in order to boost the quality of gener-
ated fake feature. Specifically, the discriminator part consists of a fully-connected
layer followed by a sigmoid function, which produces an adversarial loss. Thus,
the adversarial loss La is defined as:

La = − logDd(fV is)− log(1−Dd(G(fInf,z))), (6)

where La encourages the discriminator network to distinguish the generated
target feature representation from real one.

The predictor aims to boost the accuracy of assigning the right label to each
feature distribution. It consists of a fully-connected layer followed by a softmax
layer which takes the fusion of the feature map of both the partially-available
data channel and generated missing channel and finally outputs the category-
level confidences. To fuse these two feature maps, a convolutional fusion model
in [9] is applied to automatically learn the fusion weights:

fconv = fcat ∗ f+ b, (7)

where f are filters with dimensions 1×1×2D×D, and fcat denotes the stack of
two feature maps at the same spatial locations (i, j) across the feature channels
d:

f
(i,j,2d)
cat = f

(i,j,d)
Inf ,

f
(i,j,2d−1)
cat = f (i,j,d)

g ,
(8)

where fg denotes the generated fake feature map G(fInf , z).

Thus, the predictive loss Lp can be formulated as:

Lp = − log l ·Dp(fInf , G(fInf , z)). (9)
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The final discriminative loss LD can be defined as the weighted sum of adversarial
loss and predictive loss:

LD = w1 · La + w2 · Lp. (10)

In the training process, the transferable net and the full-modal discrimina-
tive net are alternatively trained until the generated feature of missing channel
becomes close to real and the discriminative net achieves precise recognition. In
the testing process, we only need to send one/part of the data modality into
the PM-GANs framework, and the generative net will automatically generate a
transferred feature representation for the missing modality, and the predictor of
discriminative net constructs a full-modal representation and predicts the label.

4 Experiments

In this section, we first introduce our new dataset for partial-modality infrared
action recognition. In detail, the specifications and a complete evaluation of the
dataset will be elaborated. For the experiment part, we introduce the configu-
rations of the experiments and show the results and analyses corresponding to
our method. Specifically our experiments are in three folds. First, we assess the
effectiveness of the transferable net by comparing the generated feature repre-
sentations with the real ones. Second, we evaluate the discriminative net ability
using partial data modality. Finally, we compare our approach with four state-
of-the-art methods to verify the effectiveness of the PM-GANs.

4.1 Cross-modal Infrared-Visible Dataset for Action Recognition

We introduce a new action recognition dataset, which is constructed by paired
videos of both RGB and infrared data channels. Each action class contains a
singular action type, and each video sample contains one action class. In total
there are 12 classes of both individual actions and person-person interactive
actions. For individual actions: one hand wave (wave1), multiple hands wave
(wave2), handclap, walk, jog, jump, skip, and interactive actions: handshake,
hug, push, punch and fight. For each action class, there are 100 paired videos,
with a frame rate of 25 fps. The frame resolutions are 293 × 256 for infrared
channel and 480× 720 for RGB channel. Each action is performed by around 50
different volunteers. A sample of the frames is illustrated in Fig. 3. The duration
of videos varies from several seconds to more than 10 seconds.

In order to simulate the real-world variations, four scenario variables are
considered: the background complexity, season, occlusion, and viewpoint.

Background Complexity: In our newly-introduced dataset, the background
varies from relatively simple scenes (plain background) to complex ones (with
moving objects). For simple background, there are only one or two people per-
forming actions, as shown in Fig.3 (c). While for complex background, interrupt-
ing pedestrian activities concur with the objective action in different degrees, as
shown in Fig. 3 (d).
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Season: The infrared channel is heavily effected by the seasons, because it
reflects the heat radiation of objects. In winter, when ambient temperature is in
a low value, the imaging of human body is salient and clear. However, in summer,
the contrast between human and background is ambiguous. Thus, we divide the
seasons into three categories: winter, spring/autumn, summer, as shown in Fig.
3 (e)-(h). The video number proportions of these three seasons are 30%, 50%,
and 20%, respectively. All actions were performed in these three seasons.

Occlusion: Specific videos with occlusions from 0% to over 50% are arranged
in each action class to promote the diversity and complexity of dataset, as shown
in Fig. 3 (a)-(b).

(e) Winter-Center View (f) Autumn-Left View

(g) Summer-Center View (h) Summer-Left View

(a) Slight occlusion (b) Heavy occlusion

(d) Heavy background cluster(c) Slight background cluster

Fig. 3. Example paired frames for the action “wave2” in the newly introduced multi-
modal dataset for action recognition. The left ones are in infrared channel and the right
ones are in RGB channel
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Viewpoint: The variation of different viewpoints is also an important factor
considered. The video clips under the front-view, left-side-view, right-side-view
are all included in the dataset, as shown in Fig. 3 (e)-(h).

We split 75% of the paired video clip couples as the training set, and the rest
as the testing set. To investigate the suitable representations for each spectrum
and the most complimentary representation couples, we select several effective
representations to test their discriminative ability on RGB channel, infrared
channel, and the combined channels.

We feed the original video clips , the MHI image clips [1] and the optical flow
clips [29], denoted as “Org”, “MHI”, and “Optical Flow”, into the 3D-CNN [49]
to obtain spatiotemporal features. The 3D-CNN takes a 16-frame clip as inputs
and performs 3D convolution and 3D pooling, which calculates the appearance
and motion information simultaneously. Specifically, we extract the output of the
last fully connected layer and conduct a max pooling to all clip features of one
video. In the case of two-modality fusion, we directly concatenate the features
of infrared channel and RGB channel. After that, a linear SVM classifier is
trained to obtain the final recognition results. The 3D-CNN is fine-tuned by the
corresponding maps of our training set.

Table 1. The evaluation results of different features on different channels and their
fusion on the proposed dataset

Method Descriptor Accuracy(%)

Infrared Channel Org 55%
Optical Flow 69.67%
MHI 61%

RGB Channel Org 49%
Optical Flow 78.66%
MHI 65.33%

Fusion Org 55.33%
Optical Flow 80.67%
MHI 68.67%

As shown in Table 1, the performances of different representations for both
infrared and RGB channels and their combined results are listed. It is clearly
observed that for both infrared and RGB channels, the 3D-CNN features after
optical flows achieve the best performance. In two modalities fusion, the 3D-CNN
features after optical flows in RGB channel can effectively boost the performance
of using the infrared channel only. Thus, in the following experiments of trans-
ferable nets and discriminative nets [50], the optical flows are selected as input
for representation learning via PM-GANs.

4.2 Implementation Details

For the input data, we compute optical flows using the toolbox of Liu [34]. The
3D ConvNet in transferable generative net is fine-tuned on the infrared optical
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flows of training set. And the adversarial visible feature maps are extracted
from a 3D ConvNet fine-tuned on the visible optical flows of training set. The
sampled numbers of clips T is set as 5, and each clip has a duration of 16
frames. The loss weights w1 and w2 are set as 0.1 and 0.9 respectively. We set
the initial learning rate at 2× 10−5. The whole network is trained with ADAM
optimization algorithm [25] with β1 = 0.5 and β2 = 0.999, batch size of 30
on a single NVIDIA GeForce GTX TITAN X GPU with 12GB memory. The
framework is implemented using TensorFlow library and accelerated by CUDA
8.0.

4.3 Transferable Net Evaluations

The PM-GANs model is evaluated on the proposed action recognition dataset.
We present the results of five different modalities as shown in Table 2. For
single modality, we utilize the 3D ConvNet part and the predictor part without
fusion model for training and testing. And for the case of real infrared and RGB
channel fusion, we directly input the real feature map of RGB channel to the
fusion model instead of using generated ones. From Table 2, we can observe
the generated RGB representations perform better than the original infrared
ones, which shows that the PM-GANs have indeed discovered useful information
through modality transfer. Moreover, the fusion of infrared and generated RGB
representations achieves an Accuracy of 78%. Although it performs worse than
the original RGB channels and the fusion of infrared and RGB channels, it only
utilizes the information of infrared channel in the testing process.

Table 2. Evaluation results on the discriminative ability of transferable modality

Data Modalities Accuracy (%)

Infrared channel 71.67%
RGB channel 79.33%
Generated RGB 76.67%
Infrared + RGB channels 82.33%
Infrared channel + Generated RGB 78%

In order to analyze the intra-class performance, the confusion matrices are
drawn in Fig. 4. As observed, the proposed method generally shows good perfor-
mance in action classification: in most classes, the testing samples are assigned
the correct label. However, we notice that the “punch”, ”skip” action samples
are likely to be classified as “push” and “jump” respectively. One likely reason
is that two sets of actions are similar in both movement and process, sometimes
even hard to distinguish for human eyes.

To get insight into how effective the transferable ability of PM-GANs are,
we rearrange the training and testing splits. Specifically, we utilize the scenes of
Spring/Autumn and Summer for training, and Winter for testing. We use this
split to examine the generalization ability of the proposed model. As can be



PM-GANs 13

Fig. 4. The results illustrated in confusion matrices using the proposed method

seen in Table 3, the generated fake RGB representations outperform the original
infrared ones, which shows the robust transferability of PM-GANs.

Table 3. Evaluation of the models generalization ability using a separate dataset

Modalities of a separate dataset Accuracy (%)

Infrared channel 74.17%
RGB channel 79.44%
generated RGB 77.78%
Infrared+RGB channels 82.78%
Infrared channel+ Generated RGB 80.28%

4.4 Comparisons with Other Methods

To evaluate the effectiveness of PM-GANs, we compare our method with four
state-of-the-art methods, including the most effective handcrafted features iDT
[54], and the state-of-the-art deep architecture [49]. In addition, we also compare
our methods with two state-of-the-art framework for infrared action recognition
[13, 22]. For iDT features, Fisher Vector [40] is applied to encode and then a
linear SVM classifier [45] is trained for action classification. As for the C3D
architecture, the network is fine-tuned by the proposed training dataset. Then
max pooling followed by a SVM classifier is applied as the evaluation in Table 1.
For [13], we follow the original experimental settings provided by the author. For
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[22], we implement and select the configuration with the optimal results based on
the original submission. We apply the discriminative code layer and the second
fusion strategy for feature extraction, and train a K-nearest neighbor classifier
(KNN) [4] using the provided Gaussian kernel function for classification. Note
that all of the results are achieved using unified optical flows as the input.

Table 4. Comparisons with four state-of-the-art approaches

Method Accuracy (%)

iDT [54] 72.33%
C3D [49] 69.67%
Two-Stream CNN [13] 68%
Two-Stream 3D-CNN [22] 74.67%
PM-GANs 78%

Table 4 presents the accuracy of the competing approaches. As observed,
the handcrafted iDT method achieves comparable results with some high-level
architecture. Methods using 3D-CNN outperform the method with 2D-CNN ar-
chitecture. One reason to explain is that the 3D-CNN architecture is better in
modeling temporal variations. The two-stream 3D-CNNs outperform the con-
ventional iDT framework and robust C3D models, showing effective strength
of the proposed discriminative code layer. Our proposed PM-GANs achieve the
highest accuracy, which shows the effectiveness of the transferred feature rep-
resentation and the robustness of our constructed model using only part of the
data modalities.

5 Conclusions

In this paper, we proposed a novel Partial-modal Generative Adversarial Net-
works to construct a discriminative full-modal representation with only part of
the data modalities being available. Our method learns the transferable repre-
sentation among heterogeneous data modalities using adversarial learning, and
build a discriminative net that represents all modalities. Our method is evaluated
in the task of action recognition and outperforms four state-of-the-art methods
on the newly-introduced dataset. The dataset, which contains paired videos in
both infrared and visible spectrum, will be made as the first publicly available
visible-infrared dataset for action recognition.
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