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Abstract. While in supervised learning, the validation error is an unbiased es-

timator of the generalization (test) error and complexity-based generalization

bounds are abundant, no such bounds exist for learning a mapping in an un-

supervised way. As a result, when training GANs and specifically when using

GANs for learning to map between domains in a completely unsupervised way,

one is forced to select the hyperparameters and the stopping epoch by subjec-

tively examining multiple options. We propose a novel bound for predicting the

success of unsupervised cross domain mapping methods, which is motivated by

the recently proposed Simplicity Principle. The bound can be applied both in

expectation, for comparing hyperparameters and for selecting a stopping crite-

rion, or per sample, in order to predict the success of a specific cross-domain

translation. The utility of the bound is demonstrated in an extensive set of ex-

periments employing multiple recent algorithms. Our code is available at https:

//github.com/sagiebenaim/gan bound.

Keywords: Unsupervised Learning · Generalization Bounds · Image to Image

Translation · GANs

1 Introduction

In unsupervised learning, the process of selecting hyperparameters and the lack of clear

stopping criteria are a constant source of frustration. This issue is commonplace for

GANs [11] and the derived technologies, in which the training process optimizes multi-

ple losses that balance each other. Practitioners are often uncertain regarding the results

obtained when evaluating GAN-based methods, and many avoid using these altogether.

One solution is to employ more stable methods such as [4]. However, these methods do

not always match the results obtained by GANs. In this work, we offer, for an important

family of GAN methodologies, an algorithm for selecting the hyperparameters, as well

as a stopping criterion.

Specifically, we focus on predicting the success of algorithms that map between

two image domains in an unsupervised manner. Multiple GAN-based methods have re-

cently demonstrated convincing results, despite the apparent inherent ambiguity, which

is described in Sec. 2. We derive what is, as far as we know, the first error bound for

unsupervised cross domain mapping.

⋆ equal contribution

https://github.com/sagiebenaim/gan_bound
https://github.com/sagiebenaim/gan_bound
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In addition to the novel capability of predicting the success, in expectation, of a

mapping that was trained using one of the unsupervised mapping methods, we can pre-

dict the success of mapping every single sample individually. This is remarkable for two

reasons: (i) even supervised generalization bounds do not deliver this capability; and (ii)

we deal with complex multivariate regression problems (mapping between images) and

not with classification problems, in which pseudo probabilities are often assigned.

In Sec. 2, we formulate the problem and present background on the Simplicity Prin-

ciple of [9]. Then, in Sec. 3, we derive the prediction bounds and introduce multiple

algorithms. Sec. 4 presents extensive empirical evidence for the success of our algo-

rithms, when applied to multiple recent methods. This includes a unique combination

of the hyperband method [16], which is perhaps the leading method in hyperparame-

ter optimization, in the supervised setting, with our bound. This combination enables

the application of hyperband in unsupervised learning, where, as far as we know, no

hyperparameter selection method exists.

1.1 Related Work

Generative Adversarial Networks GAN [11] methods train a generator network G
that synthesizes samples from a target distribution, given noise vectors, by jointly train-

ing a second, adversarial, network D. Conditional GANs employ a vector of parameters

that directs the generator, in addition to (or instead of) the noise vector. These GANs

can generate images from a specific class [19] or based on a textual description [22],

or invert mid-level network activations [6]. Our bound also applies in these situations.

However, this is not the focus of our experiments, which target image mapping, in which

the created image is based on an input image [15,33,30,18,25,13,2].

Unsupervised Mapping The validation of our bound focuses on recent cross-domain

mapping methods that employ no supervision, except for sample images from the two

domains. This ability was demonstrated recently [15,33,30,2] in image to image trans-

lation and slightly earlier for translating between natural languages [28].

The DiscoGAN [15] method, similar to other methods [33,30], learns mappings in

both directions, i.e., from domain A to domain B and vice versa. Our experiments also

employ the DistanceGAN method [2], which unlike the circularity based methods, is

applied only in one direction (from A to B). The constraint used by this method is

that the distances for a pair of inputs x1, x2 ∈ A before and after the mapping, by the

learned mapping G, are highly correlated, i.e., ||x1 − x2|| ∼ ||G(x1)−G(x2)||.
Weakly Supervised Mapping Our bound can also be applied to GAN-based methods

that match between the source domain and the target domain by also incorporating a

fixed pre-trained feature map f and requiring f -constancy, i.e, that the activations of f
are the same for the input samples and for mapped samples [25,27]. During training,

the various components of the loss (GAN, f-constancy, and a few others) do not provide

a clear signal when to stop training or which hyperparameters to use.

Generalization Bounds for Unsupervised Learning Only a few generalization bounds

for unsupervised learning were suggested in the literature. In [23], PAC-Bayesian gen-

eralization bounds are presented for density estimation. [21] gives an algorithm for

estimating a bounded density using a finite combination of densities from a given class.

This algorithm has estimation error bounded by O(1/
√
n). Our work studies the error
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of a mapping and not the KL-divergence with respect to a target distribution. Further,

our bound is data-dependent and not based on the complexity of the hypothesis class.

Hyperparameter Optimization Hyperparameters are constants and configurations that

are being used by a learning algorithm. Hyperparameter selection is the process of se-

lecting the hyperparameters that will produce better learning. This includes optimizing

the number of epochs, size and depth of the neural network being trained, learning rate,

etc. Many of the earlier hyperparameter methods that go beyond a random- or a grid-

search were Bayesian in nature [24,12,3,26,7]. The hyperband method [16], which is

currently leading various supervised learning benchmarks, is based on the multi-arm

bandit problem. It employs partial training and dynamically allocates more resources

to successful configurations. All such methods crucially rely on a validation error to

be available for a given configuration, which means that these can only be used in the

supervised settings. Our work enables, for the first time, the usage of such methods

also in the unsupervised setting, by using our bound in lieu of the validation error for

predicting the ground truth error.

2 Problem Setup

In Sec. 2.1 we define the alignment problem. Sec 2.2 illustrates the Simplicity Principle

which was introduced in [9] and was verified with an extensive set of experiments.

Sec. 2.3 and everything that follows are completely novel. The section proposes the

Occam’s razor property, which extends the definition of the Simplicity Principle, and

which is used in Sec. 3 to derive the main results and algorithms.

2.1 The Alignment Problem

The learning algorithm is provided with two unlabeled datasets: one includes i.i.d sam-

ples from a first distribution and the second, i.i.d samples from a second distribution.

SA := {xi}mi=1
i.i.d∼ Dm

A and SB := {yi}ni=1
i.i.d∼ Dn

B
(1)

DA and DB are distributions over XA and XB (resp.). In this paper we focus on the

deterministic case, i.e, there is a target function, yAB , which is one of the functions

that map the first domain to the second, such that yAB ◦ DA = DB (g ◦ D is defined

to be the distribution of g(x) where x ∼ D). The theory can be extended to the non-

deterministic case, where there are multiple possible target functions [8]. The goal of

the learner is to fit a function G ∈ H, for some hypothesis class H that is closest to

yAB , i.e, infG∈H RDA
[G, yAB ], where RD[f1, f2] = E

x∼D
[ℓ(f1(x), f2(x))], for a loss

function ℓ : RM × R
M → R and distribution D.

It is not clear that such fitting is possible, without additional information. Assume,

for example, that there is a natural order on the samples in XB . A mapping that maps

an input sample x ∈ XA to the sample that is next in order to yAB(x), could be just as

feasible. More generally, one can permute the samples in XA by some function Π that

replaces each sample with another sample that has a similar likelihood and learn G that

satisfies G = Π ◦ yAB . This difficulty is referred to in [9] as “the alignment problem”.
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In multiple recent contributions [28,15,33,30], circularity is employed. Circularity
requires the recovery of both yAB and yBA = y−1

AB simultaneously. Namely, functions
G and G′ are learned jointly by minimizing the following objective:

disc(G ◦DA, DB) + disc(G′ ◦DB , DA) +RDA
[G′ ◦G, IdA] +RDB

[G ◦G′, IdB ] (2)

where

disc(D1, D2) := sup
c1,c2∈C

∣

∣RD1
[c1, c2]−RD2

[c1, c2]
∣

∣

= sup
c1,c2∈C

∣

∣Ex∼D1
[ℓ(c1(x), c2(x))]− Ex∼D2

[ℓ(c1(x), c2(x))]
∣

∣

(3)

denotes the discrepancy between distributions D1 and D2, C is a selected class of

functions and IdA : XA → XA and IdB : XB → XB are the identity functions over XA

and XB (resp.). The discrepancy is similar to the WGAN divergence [1], where instead

of 1-Lipschitz discriminators, we use discriminators of the form ℓ(c1(x), c2(x)), where

c1, c2 ∈ C. This discrepancy is implemented by a GAN, as in [10].

As shown in [9], the circularity constraint does not eliminate the uncertainty in

its entirety. In DistanceGAN [2], the circularity was replaced by a multidimensional

scaling type of constraint, which enforces a high correlation between the distances in the

two domains. However, since these constraints hold only approximately, the ambiguity

is not completely eliminated.

2.2 The Simplicity Principle

In order to understand how the recent unsupervised image mapping methods work de-

spite the inherent ambiguity, [9] recently showed that the target (“semantic”) mapping

yAB is typically the distribution preserving mapping (h ◦ DA = DB) with the lowest

complexity. It was shown that such mappings are expected to be unique.

As a motivating example to the key role of minimal mappings, consider the domain

A of uniformly distributed points (x1, x2)
⊤ ∈ R

2, where x1 = x2 ∈ [−1, 1]. Let B
be the domain of uniformly distributed points in {(x1, x2)

⊤|x1 ∈ [0, 1], x2 = 0} ∪
{(x1, x2)

⊤|x2 ∈ [0, 1], x1 = 0}. We note that there are infinitely many mappings from

domain A to B that, given inputs in A, result in the uniform distribution of B and satisfy

the circularity constraint (Eq. 2).
However, it is easy to see that when restricting the hypothesis class to neural net-

works with one layer of size 2, and ReLU activations σ, there are only two options left.
In this case, h(x) = σa(Wx), for W ∈ R

2×2,b ∈ R
2. The only admissible solutions

are of the form W =

(

a 1− a
b −1− b

)

or W ′ =

(

a −1− a
b 1− b

)

, which are identical,

for every a, b ∈ R, to one of the following functions:

y1
AB((x, x)

⊤) =

{

(x, 0)⊤ if x ≥ 0

(0,−x)⊤ if x ≤ 0
and y2

AB((x, x)
⊤) =

{

(0, x)⊤ if x ≥ 0

(−x, 0)⊤ if x ≤ 0
(4)

Therefore, by restricting the hypothesis space to be minimal, we eliminate all al-

ternative solutions, except two. These two are exactly the two mappings that would

commonly be considered “more semantic” than any other mapping, see Fig. 1. Another

motivating example can be found in [9].
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(-1,0) (0,0) (1,0)

(0,-1)

(0,1)

(-1,0) (0,0) (1,0)

(0,-1)

(0,1)

(a) (b)

Fig. 1: An illustrative example, where the two domains are the blue and green areas.

There are infinitely many mappings that preserve the uniform distribution on the two

domains. However, only two stand out as “semantic”. These two, which are depicted

in red, are exactly the two mappings that can be captured by a minimal neural network

with ReLU activations. (a) the mapping y1AB . (b) the mapping y2AB (see Eq. 4).

2.3 Occam’s Razor

We note that the Simplicity Principle, presented in [9], is highly related to the prin-

ciple known as Occam’s razor. In this section we provide a definition of the Occam’s

razor property which extends the formulation of the Simplicity Principle used in [9].

Our formulation is not limited to Kolmogorov-like complexity of multi-layered neural

networks as in [9] and is more general.

Given two domains A = (XA, DA) and B = (XB , DB), a mapping yAB : XA →
XB satisfies the Occam’s razor property between domains A and B, if it has mini-

mal complexity among the functions h : XA → XB that satisfy h ◦ DA ≈ DB .

Minimal complexity is defined by the nesting of hypothesis classes, which forms a

partial order, and not as a continuous score. For example, if Hj is the set of neural

networks of a specific architecture and Hi is the set of neural networks of the ar-

chitecture obtained after deleting one of the hidden neurons, then, Hi ⊂ Hj . Intu-

itively, minimal complexity would mean that there is no sub-class that can implement

a mapping h : XA → XB such that h ◦ DA ≈ DB . For this purpose, we define,

P(H; ǫ) := {G ∈ H | disc(G ◦DA, DB) ≤ ǫ}.

Definition 1 (Occam’s razor property). Let A = (XA, DA) and B = (XB , DB) be

two domains and U = {Hi}i∈I be a family of hypothesis classes. A mapping yAB :
XA → XB satisfies an (ǫ1, ǫ2)-Occam’s razor property if for every H ∈ U such that

P(H; ǫ1) 6= ∅, we have: inf
G∈P(H;ǫ1)

RDA
[G, yAB ] ≤ ǫ2.

Informally, according to Def. 1, a function satisfies the Occam’s razor property, if it can

be approximated by even the lowest-complexity hypothesis classes that successfully

map between the domains A and B. If yAB has the (ǫ1, ǫ2)-Occam’s razor property,

then it is ǫ2-close to a function in every minimal hypothesis class H ∈ U such that

P(H; ǫ1) 6= ∅. As the hypothesis class H grows, so does P(H; ǫ1), i.e., Hi ⊂ Hj im-

plies that P(Hi; ǫ1) ⊂ P(Hj ; ǫ1). Therefore, the growing P(H; ǫ1) would always con-
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tain at least one function that is ǫ2-close to yAB . Nevertheless, as the hypothesis class

grows, P(H; ǫ1) can potentially contain many functions f that satisfy f ◦ DA ≈ DB

and differ from each other, causing an increased amount of ambiguity. In addition, we

note that uniqueness is not assumed, and the property may hold for multiple mappings.

3 Estimating the Ground Truth Error

In this section, we introduce a bound on the generalization risk between a given func-

tion G1 ∈ H and an unknown target function yAB , i.e., RDA
[G1, yAB ]. This bound

is based on a bias-variance decomposition and sums two terms: the bias error and the

approximation error. The bias error is the maximal risk possible with a member G2 of

the class P(H; ǫ1), i.e., sup
G2∈P(H;ǫ1)

RDA
[G1, G2]. The approximation error is the mini-

mal possible risk between a member G of the class P(H; ǫ1) with respect to yAB , i.e.,

inf
G∈P(H;ǫ1)

RDA
[G, yAB ].

3.1 Derivation of the Bound and the Algorithms

The bound is a consequence of using a loss ℓ that satisfies the triangle inequality. Losses

of this type include the L1 loss, which is often used in cross domain mapping. The

L2 loss and the perceptual loss [14] satisfy the triangle inequality up to a factor of

three, which would incur the addition of a factor into the bound. The following Lem. 1

provides an upper bound on the generalization risk.

Lemma 1. Let A = (XA, DA) and B = (XB , DB) be two domains, U = {Hi}i∈I be
a family of hypothesis classes and ǫ1 > 0. In addition, assume that ℓ is a loss function
that satisfies the triangle inequality. Then, for all H ∈ U such that P(H; ǫ1) 6= ∅ and
two functions yAB and G1, we have:

RDA
[G1, yAB ] ≤ sup

G2∈P(H;ǫ1)

RDA
[G1, G2] + inf

G∈P(H;ǫ1)
RDA

[G, yAB ] (5)

Proof. Let G∗ = arg inf
G∈P(H;ǫ1)

RDA
[G, yAB ]. By the triangle inequality, we have:

RDA
[G1, yAB ] ≤RDA

[G1, G
∗] +RDA

[G∗, yAB ]

≤ sup
G2∈P(H;ǫ1)

RDA
[G1, G2] + inf

G∈P(H;ǫ1)
RDA

[G, yAB ] (6)

⊓⊔
If yAB satisfies Occam’s razor, then the approximation error is lower than ǫ2 and by
Eq. 5 in Lem. 1 the following bound is obtained:

RDA
[G1, yAB ] ≤ sup

G2∈P(H;ǫ1)

RDA
[G1, G2] + ǫ2 (7)

Eq. 7 provides us with an accessible bound for the generalization risk. The right hand
side can be directly approximated by training a neural network G2 that has a discrep-
ancy lower than ǫ1 and has the maximal risk with regards to G1, i.e.,

sup
G2∈H

RDA
[G1, G2] s.t: disc(G2 ◦DA, DB) ≤ ǫ1 (8)
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Algorithm 1 Deciding when to stop training G1

Require: SA and SB : unlabeled training sets; H: a hypothesis class; ǫ1: a threshold; λ: a trade-

off parameter; T2: a fixed number of epochs for G2; T1: a maximal number of epochs.

1: Initialize G0
1 ∈ H and G0

2 ∈ H randomly.

2: for i = 1, ..., T1 do

3: Train Gi−1
1 for one epoch to minimize disc(Gi−1

1 ◦DA, DB), obtaining Gi
1.

4: Train Gi
2 for T2 epochs to minimize disc(Gi

2 ◦DA, DB)− λRDA
[Gi

1, G
i
2].

⊲ T2 provides a fixed comparison point.

5: end for

6: return Gt
1 such that: t = argmin

i∈[T ]

RDA
[Gi

1, G
i
2].

Algorithm 2 Model Selection

Require: SA and SB : unlabeled training sets; U = {Hi}i∈I : a family of hypothesis classes; ǫ:
a threshold; λ: a trade-off parameter.

1: Initialize J = ∅.

2: for i ∈ I do

3: Train Gi
1 ∈ Hi to minimize disc(Gi

1 ◦DA, DB).

4: if disc(Gi
1 ◦DA, DB) ≤ ǫ then

5: Add i to J .

6: Train Gi
2 ∈ Hi to minimize disc(Gi

2 ◦DA, DB)− λRDA
[Gi

1, G
i
2].

7: end if

8: end for

9: return Gi
1 such that: i = argmin

j∈J

RDA
[Gj

1, G
j
2].

In general, it is computationally impossible to compute the exact solution h2 to Eq. 8
since in most cases we cannot explicitly compute the set P(H; ǫ1). Therefore, inspired
by Lagrange relaxation, we employ the following relaxed version of Eq. 8:

min
G2∈H

disc(G2 ◦DA, DB)− λRDA
[G1, G2] (9)

where λ > 0 is a trade-off parameter. Therefore, instead of computing Eq. 8, we

maximize the dual form in Eq. 9 with respect to G2. In addition, we optimize λ to be

the maximal values such that disc(G2 ◦DA, DB) ≤ ǫ1 is still satisfied. The expectation

over x ∼ DA (resp x ∼ DB) in the risk and discrepancy are replaced, as is often done,

with the sum over the training samples in domain A (resp B). Based on this, we present

a stopping criterion in Alg. 1, and a method for hyperparameter selection in Alg. 2.

Eq. 9 is manifested in Step 4 of the former and Step 6 of the latter is the selection

criterion that appears as the last line of both algorithms.

3.2 Bound on the Loss of Each Sample

We next extend the bound to estimate the error ℓ(G1(x), yAB(x)) of mapping by G1

a specific sample x ∼ DA. Lem. 2 follows very closely to Lem. 1. It gives rise to a

simple method for bounding the loss of G1 on a specific sample x. Note that the second
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Algorithm 3 Bounding the loss of G1 on sample x

Require: SA and SB : unlabeled training sets; H: a hypothesis class; G1 ∈ H: a mapping; λ: a

trade-off parameter; x: a specific sample.

1: Train G2 ∈ H to minimize disc(G2 ◦DA, DB)− λℓ(G1(x), G2(x)).
2: return ℓ(G1(x), G2(x)).

term in the bound does not depend on G1 and is expected to be small, since it denotes

the capability of overfitting on a single sample x.

Lemma 2. Let A = (XA, DA) and B = (XB , DB) be two domains and H a hypothe-

sis class. In addition, let ℓ be a loss function satisfying the triangle inequality. Then, for

any target function yAB and G1 ∈ H, we have:

ℓ(G1(x), yAB(x)) ≤ sup
G2∈P(H;ǫ)

ℓ(G1(x), G2(x)) + inf
G∈P(H;ǫ)

ℓ(G(x), yAB(x)) (10)

Similarly to the analysis done in Sec. 3, Eq. 10 provides us with an accessible bound

for the generalization risk. The RHS can be directly approximated by training a neural

network G2 of a discrepancy lower than ǫ and has maximal loss with regards to G1, i.e.,

sup
G2∈H

ℓ(G1(x), G2(x)) s.t: disc(G2 ◦DA, DB) ≤ ǫ (11)

With similar considerations as in Sec. 3, we replace Eq. 11 with the following objective:

min
G2∈H

disc(G2 ◦DA, DB)− λℓ(G1(x), G2(x)) (12)

As before, the expectation over x ∼ DA and x ∼ DB in the discrepancy are replaced

with the sum over the training samples in domain A and B (resp.).

In practice, we modify Eq. 12 such that x is weighted to half the weight of all

samples, during the training of G2. This emphasizes the role of x and allows us to train

G2 for less epochs. This is important, as a different G2 must be trained for measuring

the error of each sample x.

3.3 Deriving an Unsupervised Variant of Hyperband using the Bound

In order to optimize multiple hyperparameters simultaneously, we create an unsuper-

vised variant of the hyperband method [16]. Hyperband requires the evaluation of the

loss for every configuration of hyperparameters. In our case, our loss is the risk func-

tion, RDA
[G1, yAB ]. Since we cannot compute the actual risk, we replace it with our

bound sup
G2∈P(H;ǫ1)

RDA
[G1, G2].

In particular, the function ‘run then return val loss’ in the hyperband algorithm

(Alg. 1 of [16]), which is a plug-in function for loss evaluation, is provided with our

bound from Eq. 7 after training G2, as in Eq. 9. Our variant of this function is listed in

Alg. 4. It employs two additional procedures that are used to store the learned models

G1 and G2 at a certain point in the training process and to retrieve these to continue the
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Algorithm 4 Unsupervised run then return val loss for hyperband

Require: SA, SB , and λ as before. T : Number of epochs. θ: Set of hyperparameters

1: [G1, G2, Tlast] = return stored functions(θ)

2: Train G1 for T − Tlast epochs to minimize disc(G1 ◦DA, DB).
3: Train G2 for T − Tlast epochs to minimize disc(G2 ◦DA, DB)− λRDA

[G1, G2].
4: store functions(θ, [G1, G2, T ])

5: return RDA
[G1, G2].

training for a set amount of epochs. The retrieval function is simply a map between a

vector of hypermarkets and a tuple of the learned networks and the number of epochs

T when stored. For a new vector of hyperparameters, it returns T = 0 and two ran-

domly initialized networks, with architectures that are determined by the given set of

hyperparameters. When a network is retrieved, it is then trained for a number of epochs

that is the difference between the required number of epochs T , which is given by the

hyperband method, and the number of epochs it was already trained, denoted by Tlast.

4 Experiments

We test the three algorithms on two unsupervised alignment methods: DiscoGAN [15]

and DistanceGAN [2]. In DiscoGAN, we train G1 (and G2), using two GANs and two

circularity constraints; in DistanceGAN, one GAN and one distance correlation loss

are used. The published parameters for each dataset are used, except when applying our

model selection method, where we vary the number of layers and when using hyper-

band, where we vary the learning rate and the batch size as well. In the experiments we

employ the L1 loss between G1 and G2 and between G1 and y. In the supplementary

we also use the perceptual loss. When running the experiments, the discrepancy is im-

plemented by a GAN, i.e., the error of the discriminator d measures the discrepancy.

The exact architectures are given in the supplementary.

Five datasets were used in the experiments: (i) aerial photographs to maps, trained

on data scraped from Google Maps [13], (ii) the mapping between photographs from the

cityscapes dataset and their per-pixel semantic labels [5], (iii) architectural photographs

to their labels from the CMP Facades dataset [20], (iv) handbag images [32] to their

binary edge images as obtained from the HED edge detector [29], and (v) a similar

dataset for the shoe images from [31].

Throughout the experiments, fixed values are used as the low-discrepancy threshold

(ǫ1 = 0.2). The tradeoff parameter between the dissimilarity term and the fitting term

during the training of G2 is set, per dataset, to be the maximal value such that the fitting

of G2 provides a solution that has a discrepancy lower than the threshold, disc(G2 ◦
DA, DB) ≤ ǫ1. This is done once, for the default parameters of G1, as given in the

original DiscoGAN and DistanceGAN [15,2].

The results of all experiments are summarized in Tab. 1, which presents the cor-

relation and p-value between the ground truth error, as a function of the independent

variable, and the bound. The independent variable is either the training epoch, the ar-

chitecture, or the sample, depending on the algorithm tested. For example, in Alg. 2

we wish to decide on the best architecture, the independent variable is the number of
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Table 1: Pearson correlations and the corresponding p-values (in parentheses) of the

ground truth error with: (i) the bound, (ii) the GAN losses, and (iii) the circularity

losses or (iv) the distance correlation loss. ∗The cycle loss A → B → A is shown for

DiscoGAN and the distance correlation loss is shown for DistanceGAN.

Alg. Method Dataset Bound GANA GANB CycleA/LD
∗ CycleB

Alg. 1 Disco- Shoes2Edges 1.00 (<1E-16) -0.15 (3E-03) -0.28 (1E-08) 0.76(<1E-16) 0.79(<1E-16)

GAN [15] Bags2Edges 1.00 (<1E-16) -0.26 (6E-11) -0.57 (<1E-16) 0.85 (<1E-16) 0.84 (<1E-16)

Cityscapes 0.94 (<1E-16) -0.66 (<1E-16) -0.69 (<1E-16) -0.26 (1E-07) 0.80 (<1E-16)

Facades 0.85 (<1E-16) -0.46 (<1E-16) 0.66 (<1E-16) 0.92 (<1E-16) 0.66 (<1E-16)

Maps 1.00 (<1E-16) -0.81 (<1E-16) 0.58 (<1E-16) 0.20 (9E-05) -0.14 (5E-03)

Distance- Shoes2Edges 0.98 (<1E-16) - -0.25 (2E-16) -0.14 (1E-05) -

GAN [2] Bags2Edges 0.93 (<1E-16) - -0.08 (2E-02) 0.34 (<1E-16) -

Cityscapes 0.59 (<1E-16) - 0.22 (1E-11) -0.41 (<1E-16) -

Facades 0.48 (<1E-16) - 0.03 (5E-01) -0.01 (9E-01) -

Maps 1.00 (<1E-16) - -0.73 (<1E-16) 0.39 (4E-16) -

Alg. 2 Disco- Shoes2Edges 0.95 (1E-03) 0.73 (7E-02) 0.51 (2E-01) 0.05 (9E-01) 0.05 (9E-01)

GAN [15] Bags2Edges 0.99 (2E-06) 0.64 (2E-01) 0.54 (3E-01) -0.26 (7E-01) -0.20 (7E-01)

Cityscapes 0.99 (1E-03) 0.69 (9E-02) 0.85 (2E-02) -0.53 (2E-01) -0.42 (4E-01)

Facades 0.94 (1E-03) -0.33 (4E-01) 0.88 (4E-02) 0.66 (8E-02) -0.45 (3E-01)

Maps 1.00 (1E-03) 0.62 (1E-01) 0.54 (2E-01) 0.60 (2E-01) 0.07 (9E-01)

Distance- Shoes2Edges 0.96 (1E-04) - 0.33 (5E-01) -0.87 (6E-03) -

GAN [2] Bags2Edges 0.98 (1E-05) - -0.11 (8E-01) 0.23 (6E-01) -

Cityscapes 0.92 (1E-03) - 0.66 (8E-02) -0.49 (2E-01) -

Facades 0.84 (2E-02) - 0.75 (5E-02) 0.37 (4E-01) -

Maps 0.95 (1E-03) - -0.43 (3E-01) -0.15 (7E-01) -

Alg. 3 Disco- Shoes2Edges 0.92 (<1E-16) -0.12 (5E-01) 0.02 (9E-01) 0.29 (6E-02) 0.15 (4E-01)

GAN [15] Bags2Edges 0.96 (<1E-16) 0.25 (1E-01) 0.08 (6E-01) 0.08 (6E-01) 0.05 (7E-01)

Cityscapes 0.78 (4E-04) 0.24 (4E-01) -0.16 (6E-01) -0.04 (9E-01) 0.03 (9E-01)

Facades 0.80 (6E-10) 0.13 (4E-01) 0.16 (3E-01) 0.20 (2E-01) 0.09 (5E-01)

Maps 0.66 (1E-03) 0.08 (7E-01) 0.12 (6E-01) 0.17 (5E-01) -0.25 (3E-01)

Distance- Shoes2Edges 0.98 (<1E-16) - -0.05 (7E-01) 0.84 (<1E-16) -

GAN [2] Bags2Edges 0.92 (<1E-16) - -0.28 (2E-01) 0.45 (3E-02) -

Cityscapes 0.51 (4E-04) - 0.10 (5E-01) 0.28 (2E-2) -

Facades 0.72 (<1E-16) - -0.01 (1E00) 0.08 (6E-01) -

Maps 0.94 (1E-06) - 0.20 (2E-01) 0.30 (6E-02) -

layers. A high correlation (low p-value) between the bound and the ground truth error,

both as a function of the number of layers, indicates the validity of the bound and the

utility of the algorithm. Similar correlations are shown with the GAN losses and the

reconstruction losses (DiscoGAN) or the distance correlation loss (DistanceGAN), in

order to demonstrate that these are much less correlated with the ground truth error. In

the plots of Fig. 2, we omit the other scores in order to reduce clutter.

Fig 2 (all four columns), can be used to quantify the gain from using the two algo-

rithms. The “regret” when using the algorithm is simply the ground truth error at the

minimal value of the bound minus the minimal ground truth error.

Stopping Criterion (Alg. 1) For testing the stopping criterion suggested in Alg. 1, we

compared, at each time point, two scores that are averaged over all training samples:

||G1(x)−G2(x)||1, which is our bound, and the ground truth error ||G1(x)−yAB(x)||1,

where yAB(x) is the ground truth image that matches x in domain B.
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(Alg 1, discoGAN) (Alg 1, distanceGAN) (Alg 2, discoGAN) (Alg 2, distanceGAN)

Fig. 2: Results of Alg. 1, 2. Ground truth errors are in red and bound in black. x-axis

is the iteration or number of layers. y-axis is expected risk. For Alg. 1 it takes a few

epochs for G1 to have a small enough discrepancy, until which the bound is ineffective.

Note that similar to the experiments with ground truth in the literature [15,33,2],

the ground truth error is measured in the label space and not in the image domain. The

mapping in the other direction yBA is not one to one.

The results are depicted in the main results table (Tab. 1) as well as in Fig. 2 for both

DiscoGAN (first column) and DistanceGAN (second column). As can be seen, there is

an excellent match between the mean ground truth error of the learned mapping G1 and

the predicted error. No such level of correlation is present when considering the GAN

losses or the reconstruction losses (for DiscoGAN), or the distance correlation loss of

DistanceGAN. Specifically, the very low p-values in the first column of Tab. 1 show that

there is a clear correlation between the ground truth error and our bound for all datasets.

For the other columns, the values in question are chosen to be the losses used for G1.

The lower scores in these columns show that none of these values are as correlated with

the ground truth error, and so cannot be used to estimate this error.

In the experiment of Alg. 1 for DiscoGAN, which has a large number of sample

points, the cycle from B to A and back to B is significantly correlated with the ground
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(Maps) (Cityscapes) (Facades) (Shoes2Edges) (Bags2Edges)

Fig. 3: Results of Alg. 3. Results shown for DiscoGAN. Results for DistanceGAN are

shown in supplementary due to lack of space. The ground truth errors (x-axis) vs. bound

(y-axis) are shown per point. The coefficient of determination is shown (top right).

(a) (b)

Fig. 4: Results of Alg. 3 on Disco-

GAN bags2edges. (a) The ground

truth errors vs. the bound per point

are shown. This is the same as Fig. 3

top right plot with added information

identifying specific points. (b) The

source (x), ground truth (yAB(x))
and mapping (G1(x)) of the marked

points.

truth error with very low p-values in four out of five datasets. However, its correlation

is significantly lower than that of our bound.

In Fig. 2, the Facades graph shows a different behavior than the other graphs. This

is because the Facades dataset is inherently ambiguous and presents multiple possible

mappings from A to B. Each mapping satisfies the Occam’s razor property separately.

Selecting Architecture using Alg. 2 Next we vary the number of layers of G and con-

sider its effect on the risk by measuring the bound and the ground truth error (which

cannot be computed in an unsupervised way); A large correlation between our bound

and the ground truth error is observed, see Tab. 1 and Fig. 2, columns 3 and 4. We can

therefore optimize the number of layers based on our bound. With a much smaller num-

ber of sample points, the p-values are generally higher than in the previous experiment.

Predicting per-Sample Loss with Alg. 3 Finally, we consider the per sample loss.

The results are reported numerically in Tab. 1 and plotted in Figs. 3 and 4. As can be

seen, there is a high degree of correlation between the measured bound and the ground

truth error. Therefore, our method is able to reliably predict the per-sample success of a

multivariate mapping learned in a fully unsupervised manner.

Remarkably, this correlation also seems to hold when considering the time axis,

i.e., we can combine Alg. 1 and Alg. 3 and select the stopping epoch that is best for a

specific sample. The results are shown in the supplementary.

Selecting Architecture with the Modified Hyperband Algorithm Our bound is used

in Sec. 3.3 to create an unsupervised variant of the hyperband method. In comparison

to Alg. 2, this allows for the optimization of multiple hyperparameters at once, while

enjoying the efficient search strategy of the hyperband method.
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(a) (b)

Fig. 5: Applying unsupervised hyperband for selecting the best configuration for UNIT

for the Maps dataset. (a) blue and orange lines are bound and ground truth error as in

Fig. 6. (b) Images produced for 3 different configurations as indicated on the plot in (a).

Fig. 6 demonstrates the applicability of our unsupervised hyperband-based method

for different datasets, employing both DiscoGAN and DistanceGAN. The graphs show

the error and the bound obtained for the selected configuration after up to 35 hyperband

iterations. As can be seen, in all cases, the method is able to recover a configuration

that is significantly better than what is recovered, when only optimizing for the number

of layers. To further demonstrate the generality of our method, we applied it on the

UNIT [17] architecture. As the runtime of UNIT is much higher than DiscoGAN and

DistanceGAN, this did not allow for extensive experimentation. We therefore focused

on the most useful application of applying hyperband on a relatively complex dataset,

specifically Maps. Fig. 5 and Tab. 6(b) show the convergence on the hyperband method.

5 Conclusions
We extend the envelope of what is known to be possible in unsupervised learning by

showing that we can reliably predict the error of a cross-domain mapping that was

trained without matching samples. This is true both in expectation, with application to

hyperparameter selection, and per sample, thus supporting dynamic confidence-based

run time behavior, and (future work) unsupervised boosting during training.

The method is based on measuring the maximal distance within the set of low dis-

crepancy mappings. This measure becomes the bound by applying what we define as the

Occam’s razor property, which is a general form of the Simplicity Principle. Therefore,

the clear empirical success observed in our experiments supports the recent hypothesis

that simplicity plays a key role in unsupervised learning.

For an extended version of this work, which is more rigorous than what can be

provided here, and which also handles the non-deterministic case, please see [8].
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(a)

Dataset Number Batch Learning

Layers Size Rate

DiscoGAN [15]

Shoes2Edges 3 24 0.0008

Bags2Edges 2 59 0.0010

Cityscapes 3 27 0.0009

Facades 3 20 0.0008

Maps 3 20 0.0005

DistanceGAN [2]

Shoes2Edges 3 15 0.0007

Bags2Edges 3 33 0.0007

Cityscapes 4 21 0.0006

Facades 3 8 0.0006

Maps 3 20 0.0005

Dataset #Layers #Res L.Rate

UNIT [17]

Maps 3 1 0.0003

(b)

default unsupervised

parameters hyperband

x G1(x) G1(x)

(c)

Fig. 6: Applying unsupervised hyperband for selecting the best configuration. For DiscoGAN

and DistanceGAN we optimize of the number of encoder and decoder layers, batch size and

learning rate while for UNIT, we optmized for the number of encoder and decoder Layers, num-

ber of resnet layers and learning rate. (a) For each dataset, the first plot is of DiscoGAN and the

second is of DistanceGAN. Hyperband optimizes according to the bound values indicated in blue.

The corresponding ground truth errors are shown in orange. Dotted lines represent the best con-

figuration errors, when varying only the number of layers without hyperband (blue for bound and

orange for ground truth error). Each graph shows the error of the best configuration selected by

hyperband as a function the number of hyperband iterations. (b) The corresponding hyperparam-

eters of the best configuration as selected by hyperband. (c) Images produced for DiscoGAN’s

shoes2edges: 1st column is the input, the 2nd is the result of DiscoGAN’s default configuration,

3rd is the result of the configuration selected by our unsupervised Hyperband.
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