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Abstract. The growing scale of face recognition datasets empowers us
to train strong convolutional networks for face recognition. While a va-
riety of architectures and loss functions have been devised, we still have
a limited understanding of the source and consequence of label noise
inherent in existing datasets. We make the following contributions: 1)
We contribute cleaned subsets of popular face databases, i.e., MegaFace
and MS-Celeb-1M datasets, and build a new large-scale noise-controlled
IMDb-Face dataset. 2) With the original datasets and cleaned subsets,
we profile and analyze label noise properties of MegaFace and MS-Celeb-
1M. We show that a few orders more samples are needed to achieve the
same accuracy yielded by a clean subset. 3) We study the association
between different types of noise, i.e., label flips and outliers, with the
accuracy of face recognition models. 4) We investigate ways to improve
data cleanliness, including a comprehensive user study on the influence of
data labeling strategies to annotation accuracy. The IMDb-Face dataset
has been released on https://github.com/fwang91/IMDb-Face.

1 Introduction

Datasets are pivotal to the development of face recognition. From the early
FERET dataset [16] to the more recent LFW [7], MegaFace [8,13], and MS-
Celeb-1M [5], face recognition datasets play a main role in driving the develop-
ment of new techniques. The datasets not only become more diverse, the scale
of data is also growing tremendously. For instance, MS-Celeb-1M [5] contains
around 10M images for 100K celebrities, far exceeding FERET [16] that only
has 14,126 images from 1,199 individuals. Large-scale datasets together with the
emergence of deep learning have led to the immense success of face recognition
in recent years.

Large-scale datasets are inevitably affected by label noise. The problem is
pervasive since well-annotated datasets in large-scale are prohibitively expensive
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Fig. 1. Label noises in MegaFace [13] and MS-Celeb-1M [5]. Each row depicts images
that are labeled with the same identity. Some incorrect labels are easy while many of
them are hard.

MS-Celeb-1M

and time-consuming to collect. That motivates researchers to resort to cheap but
imperfect alternatives. A common method is to query celebrities’ images by their
names on search engines, and subsequently clean the labels with automatic or
semi-automatic approaches [15,11,4]. Other methods introduce clustering with
constraints on social photo sharing sites. The aforementioned methods offer a
viable way to scale the training samples conveniently but also bring label noises
that adversely affect the training and performance of a model. We show some
samples with label noises in Figure 1. As can be seen, MegaFace [13] and MS-
Celeb-1M [5] consist considerable incorrect identity labels. Some noisy labels are
easy to remove while many of them are hard to be cleaned. In MegaFace, there
are a number of redundant images too (shown in the last row).

The first goal of this paper is to develop an understanding of the source of
label noise and its consequences towards face recognition by deep convolutional
neural networks (CNN) [19,18,23,6,1,26]. We seek answers to questions like:
How many noisy samples are needed to achieve an effect tantamount to clean
data? What is the relationship between noise and final performance? What is
the best strategy to annotate face identities? A better understanding of the
aforementioned questions would help us to design a better data collection and
cleaning strategy, avoid pitfalls in training, and formulate stronger algorithms to
cope with real-world problems. To facilitate our research, we manually clean sub-
sets of two most popular face recognition databases, namely, MegaFace [13] and
MS-Celeb-1M [5]. We observe that a model trained with only 32% of MegaFace
or 20% of MS-Celeb-1M cleaned subsets, can already achieve comparable per-
formance with models that are trained on the respective full dataset. The exper-
iments suggest that a few orders more samples are needed for face recognition
model training if noisy samples are used.

The second goal of our study is to build a clean face recognition dataset
for the community. The dataset could help training better models and facilitate
further understanding of the relationship between noise and face recognition per-
formance. To this end, we build a clean dataset called IMDb-Face. The dataset
consists of 1.7M images of 59K celebrities collected from movie screenshots and
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Table 1. Various face recognition datasets.

Dataset #ldentities|#Images Source Cleaned? Availablity
LFW [7] 5K 13K |Search Engine| Automatic Detection | Public
CelebFaces [19, 20] 10K 202K |Search Engine| Manually Cleaned Public
VGG-Face [15] 2.6K 2.5M |Search Engine|Semi-automated Clean| Public
CASIA-WebFace [25] 10k 0.5M IMDb Automatic Clean Public
MS-Celeb-1M(v1) [5] 100k 10M  |Search Engine None Public
MegaFace [13] 670K 4. 7™M Flickr Automatic Cleaned Public
Facebook [21] 4k 4.4M - - Private
Google [18] 8M 200M - - Private
IMDb-Face 59K 1.7M IMDb Manually Cleaned | Public

posters from the IMDb website!. Due to the nature of the data source, the images
exhibit large variations in scale, pose, lighting, and occlusion. We carefully clean
the dataset and simulate corruption by injecting noise on the training labels.
The experiments show that the accuracy of face recognition decreases rapidly
and nonlinearly with the increase of label noises. In particular, we confirm the
common belief that the performance of face recognition is more sensitive to-
wards label flips (example has erroneously been given the label of another class
within the dataset) than outliers (image does not belong to any of the classes
under consideration, but mistakenly has one of their labels). We also conduct an
interesting experiment to analyze the reliability of different ways of annotating
a face recognition dataset. We found that label accuracy correlates with time
spent on annotation. The study helps us to find the source of erroneous labels
and thereafter design better strategies to balance annotation cost and accuracy.

We hope that this paper could shed lights on the influences of data noise
to the face recognition task, and point to potential labelling strategies to miti-
gate some of the problems. We contribute the new data IMDb-Face with the
community. It could serve as a relatively clean data to facilitate future studies
of noises in large-scale face recognition. It can also be used as a training data
source to boost the performance of existing methods, as we will show in the
experiments.

2 How Noisy is Existing Data?

We first introduce some popular datasets used in face recognition study and then
approximate their respective signal-to-noise ratio.

2.1 Face Recognition Datasets

Table 2.1 provides a summary of representative datasets used in face recognition
research.

! www.IMDb.com
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LFW: Labeled Faces in the Wild (LFW) [7] is perhaps the most popular dataset
to date for benchmarking face recognition approaches. The database consists of
13,000 facial images of 1,680 celebrities. Images are collected from Yahoo News
by running the Viola-Jones face detector. Limited by the detector, most of the
faces in LF'W is frontal. The dataset is considered sufficiently clean despite some
incorrectly labeled matched pairs are reported. Errata of LFW are provided in
http://vis-www.cs.umass.edu/lfw/.

CelebFaces: CelebFaces [19,20] is one of the early face recognition training
databases that are made publicly available. Its first version contains 5, 436 celebri-
ties and 87,628 images, and it was upgraded to 10,177 identities and 202,599
images in a year later. Images in CelebFaces were collected from search engines
and manually cleaned by workers.

VGG-Face: VGG-Face [15] contains 2,622 identities and 2.6M photos. More
than 2,000 images per celebrity were downloaded from search engines. The au-
thors treat the top 50 images as positive samples and train a linear SVM to
select the top 1,000 faces. To avoid extensive manual annotation, the dataset
was ‘block-wise’ verified, i.e., ranked images of each identity are displayed in
blocks and annotators are asked to validate blocks as a whole. In this study we
did not focus on VGG-Face [15] since it should have the similar ‘search-engine
bias’ problem with MS-Celeb-1M [5].

CASIA-WebFace: The images in CASIA-WebFace [25] were collected from
IMDb website. The dataset contains 500K photos of 10K celebrities and it is
semi-automatically cleaned via tag-constrained similarity clustering. The au-
thors start with each celebrity’s main photo and those photos that contain only
one face. Then faces are gradually added to the dataset constrained by feature
similarity and name tag. CASIA-WebFace uses the same source as the pro-
posed IMDb-Face dataset. However, limited by the feature and clustering steps,
CASTA-WebFace may fail to recall many challenging faces.

MS-Celeb-1M: MS-Celeb-1M [5] contains 100K celebrities who are selected
from the 1M celebrity list in terms of their popularities. Public search engines are
then leveraged to provide approximately 100 images for each celebrity, resulting
in about 10M web images. The data is deliberately left uncleaned for several
reasons. Specifically, collecting a dataset of this scale requires tremendous efforts
in cleaning the dataset. Perhaps more importantly, leaving the data in this form
encourages researchers to devise new learning methods that can naturally deal
with the inherent noises.

MegaFace: Kemelmacher-Shlizerman et al. [13] clean massive number of im-
ages published on Flickr by proposing algorithms to cluster and filter face data
from the YFCC100M dataset. For each user’s albums, the authors merge face
pairs with a distance closer than § times of average distance. Clusters that con-
tain more than three faces are kept. Then they drop ‘garbage’ groups and clean
potential outliers in each group. A total of 672K identities and 4.7M images were
collected. MegaFace2 avoids ‘search-engine’ bias as in VGG-Face [15] and MS-
Celeb-1M [5]. However, we found this cluster-based approach introduces new
bias. MegaFace prefers small groups with highly duplicated images, e.g., face
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Fig. 2. (a) A visualization of size and estimated noise percentage of datasets. (b) Noise
distribution of MS-Celeb-1M(v1) [5]. (c¢) Noise distribution of MegaFace [13]. The two
horizontal lines in each bar represent the lower- and upper-bounds of noise, respectively.
See Sec. 2.2 for details.

captured from the same video. Limited by the base model for clustering, consid-
erable groups in MegaFace contain noises, or sometimes mess up multiple people
in the same group.

2.2 An Approximation of Signal-to-Noise Ratio

Owing to the source of data and cleaning strategies, existing large-scale datasets
invariably contain label noises. In this study, we aim to profile the noise distri-
bution in existing datasets. Our analysis may provide a hint to future research
on how one should exploit the distribution of these data.

It is infeasible to obtain the exact number of these noises due to the scale
of the datasets. We bypass this difficulty by randomly selecting a subset of
a dataset and manually categorize them into three groups — ‘correct identity
assigned’, ‘doubtful’, and ‘wrong identity assigned’. We select a subset of 2.7M
images from MegaFace [13] and 3.7M images from MS-Celeb-1M [5]. For CASTA-
WebFace [25] and CelebFaces [19, 20], we sampled 30 identities to estimate their
signal-to-noise ratio. The final statistics are visualized in Figure 2(a). Due to the
difficulty in estimating the exact ratio, we approximate an upper and a lower
bound of noisy data during the estimation. The lower-bound is more optimistic
considering doubtful labels as clean data. The upper-bound is more pessimistic
considering all doubtful cases as badly labeled. We provide more details on the
estimations in the supplementary material. As observed in Figure 2(a), the noise
percentage increases dramatically along the scale of data. This is not surprising
given the difficulty in data annotation. It is noteworthy that the proposed IMDb-
Face pushes the envelope of large-scale data with a very high signal-to-noise ratio
(noise is under 10% of the full data).
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Fig. 3. The second row depicts the raw data from the IMDb website. As a comparison,
we show the images of the same identity queried from the Google search engine in the
first row.

We investigate further the noise distribution of the two largest public datasets
to date, MS-Celeb-1M [5] and MegaFace [13]. We first categorize identities in a
dataset based on their number of images. A total of six groups/bins are estab-
lished. We then plot a histogram showing the signal-to-noise ratio of each bin
along the noise lower- and upper-bounds. As can be seen in Figure 2(b,c), both
datasets exhibit a long-tailed distribution, i.e., most identities have very few im-
ages. This phenomenon is especially obvious on the MegaFace [13] dataset since
it uses automatically formed clusters for determining identities, therefore, the
same identity may be distributed in different clusters. Noises across all groups
in MegaFace [13] are less in comparison to MS-Celeb-1M [5]. However, we found
that many images in the clean portion of MegaFace [13] are duplicated images.
In Sec. 4.2, we will perform experiments on the MegaFace and MS-Celeb-1M
datasets to quantify the effect of noise on the face recognition task.

3 Building a Noise-Controlled Face Dataset

As shown in the previous section, face recognition datasets that are more than
a million scale typically have a noise ratio higher than 30%. How about building
a large scale noise controlled face dataset? It can be used to train better face
recognition algorithms. More importantly, it can be used to further understand
the relationship between noise and face recognition performance. To this end,
we seek not only a cleaner and more diverse source to collect face data, but also
an effective way to label the data.

3.1 Celebrity Faces from IMDb

Search engines are important sources from which we can quickly construct a
large-scale dataset. The widely used ImageNet [3] was built by querying images
from Google Image. Most of the face recognition datasets were built in the
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same way (except MegaFace [13]). While querying from search engines offers
the convenience of data collection, it also introduces data bias. Search engines
usually operate in a high-precision regime [2]. Observing the queried images in
Figure 3, they tend to have a simple background with sufficient illumination, and
the subjects are often in a near frontal posture. These data, to a certain extent,
are more restricted than those we could observe in reality, e.g., faces in videos
(IJB-A [9] and YTF [24]) and selfie photos (millions of distractors in MegaFace).
Another pitfall in crawling images from search engines is the low recall rate. We
performed a simple analysis and found that on average the recall rate is only
40% for the first 200 photos we query for a particular name.

In this study, we turn our data collection source to the IMDb website. IMDb
is more structured. It includes a diverse range of photos under each celebrity’s
profile, including official photos, lifestyle photos, and movie snapshots. Movie
snapshots, we believe, provide essential data samples for training a robust face
recognition model. Those screenshots are rarely returned by querying a search
engine. In addition, the recall rate is much higher (90% on average) when we
query a name on IMDb. This is much higher than 40% from search engines. The
IMDb website lists about 300K celebrities who have official and gallery photos.
By clawing IMDb dataset, we finally collected and cleaned 1.7M raw images
from 59K celebrities.

3.2 Data Distribution

Figure 4-a presents the distribution of yaw angle in our dataset compared with
MS-Celeb-1M and MegaFace. Figures 4-c, -d and -e present the age, gender and
race distributions. As can be observed, images in IMDb-Face exhibit larger pose
variations, and they also show diversity in age, gender and race.

3.3 How Good can Human Label Identity?

The data downloaded from IMDb are noisy as multiple celebrities may co-exist
on the same image. We still need to clean the dataset before it can be used
for training. We take this opportunity to study how human annotators would
clean a face data. The study will help us to identify the source of noise during
annotation and design a better data cleaning strategy for the full dataset.

For the purpose of the user study, we extract a small subset of 30 identities
from the IMDb raw data. We carefully select three images with confirmed iden-
tity serving as gallery images. The remaining images of these 30 identities are
treated as query images. To make the user study more challenging and statisti-
cally more meaningful, we inject 20% outliers to the query set. Next, we prepare
three annotation schemes as follows. The interface of each scheme is depicted in
Figure 5.

Scheme I - Draw the box: We present the target person to a volunteer by
showing the three gallery faces. We then show a query image selected from the
query set. The image may contain multiple persons. If the target appears in the
query image, the volunteer is asked to draw a bounding box on the target. The



8 Fei Wang et al.

a) .  MS-Celeb-IM o MegaFace g IMDb-Face

Image Numbers

°

|||| il
|||II||. ........ oL - ,__...||I||| . Y
20 40

60 80 80 60 40 20 0 20 40 60 80 80 -60 40 20 0 20 40 60 80

2 I||||l
Py R —— llllllll
-80 -40 20 0
Yaw Distribution

b) Catherine Hicks on MS-Celeb-1M Catherine Hicks on IMDb

©)

® Caucasian
= African
W Asian

= male
w female

Image Numbers

o ) ST
(©.10] (1020] 2030] (3040] (0.50] (S0.60] (60.70] (T050] (80.90] (90.100]

Age Distribution Gender Distribution Race Distribution

Fig. 4. a) Comparing the distribution of yaw angle of images in the proposed dataset
against MS-Celeb-1M and MegaFace. b) A qualitative sample from the proposed IMDb-
Face and MS-Celeb-1M. ¢) Age distribution of images in IMDb-Face. d) Gender dis-
tribution of identities in IMDb-Face. e) Race distribution of identities in IMDb-Face.

volunteer can either confirm the selection or assign a ‘doubt’ flag on the box
if he/she is not confident about the choice. ‘No target’ is selected when he/she
cannot find the target person.

Scheme II - Choose 1 in 3: Similar to Scheme I, we present the target person
to a volunteer by showing the gallery images. We then randomly sample three
faces detected from the query set, from which the volunteer will select a single
image as the target face. We ensure that all query faces have the same gender
as the target person. Again, the volunteer can choose a ‘doubt’ flag if he/she is
not confident about the selection or choose ‘no target’ at all.

Scheme III - Yes or No: Binary query is perhaps be the most natural and
popular way to clean a face recognition set. We first rank all faces based on their
similarity to probe faces in the gallery, and then ask a volunteer to make a choice
if each belongs to the target person. The volunteer is allowed to answer ‘doubt’.
Which scheme to choose?: Before we can quantify the effectiveness of differ-
ent schemes, we first need to generate the ground truth of these 30 identities.
We use a ‘consensus’ approach. Specifically, each of the aforementioned schemes
was conducted on three different volunteers. We ensure that each query face
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Fig. 5. Interfaces for user study: (a) Scheme I - volunteers were asked to draw a box
on the target’s face. (b) Scheme II - given three query faces, volunteers were asked to
select the face that belongs to the target person. (c¢) Scheme III - volunteers were asked
to select the face that belongs to the target.
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was annotated nine times across the three schemes. If four of the annotations
consistently point to the same identity, we assign the query face to the tar-
geted identity. With this ground truth, we can measure the effectiveness of each
annotation scheme.

Figure 6 shows the Receiver operating characteristic (ROC) curve of each of
the three schemes?. Scheme I achieves the highest F} score. It recalls more than
90% faces with under 10% false positive samples. Finding a face and drawing a
box seems to make annotators more focused on finding the right face. Scheme II
provides a high true positive rate when the false positive is low. The existence of
distractors forces annotators to work harder to match the faces. Scheme III yields
the worse true positive rate when the false positive is low. This is not surprising
since this task is much easier than Schemes I and II. The annotators tend to
make mistakes given this relaxing task, especially after a prolonged annotation
process. We observe an interesting phenomenon: the longer a volunteer spends
on annotating a sample, the more accurate the annotation is. With full speed in
one hour, each volunteer can draw 180-300 faces in Scheme I, or finish around
600 selections in Scheme II, or answer over 1000 binary questions in Scheme

2 We should emphasize that the curves in Figure 6 are different from actual human’s
performance on verifying arbitrary face pairs. This is because in our study the faces
from a query set are very likely to belong to the same person. The ROC thus rep-
resents human’s accuracy on ‘verifying face pairs that likely belong to the same
identity’.
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ITI. We believe the most reliable way to clean a face recognition dataset is to
leverage both Schemes I and II to achieve a high precision and recall. Limited
by our budget, we only conducted Scheme I to clean the IMDb-Face dataset.

During the cleaning of the IMDb-Face, since multiple identities may co-exist
on the same image, first we annotated gallery images to make sure the queried
identity. The gallery images come from the official gallery provided by the IMDb
website, which most of these official gallery images contain the true identity. We
ask volunteers to look through the 10 gallery images back and forth and draw
bounding box of the face that occurs most frequently. Then, annotators label the
rest of the queried images guided by the three largest labeled faces as galleries.
For identities having fewer than three gallery images, their queried images may
have too much noise. To save labor, we did not annotate their images.

It took 50 annotators one month to clean the IMDb-Face dataset. Finally,
we obtained 1.7M clean facial images from 2M raw images. We believe that the
cleaning is of high quality. We estimate the noise level of IMBb-Face as the
product of approximated noise level in the IMDb raw data (2.7 +4.5%) and the
false positive rate (8.7%) of Scheme I. The noise level is controlled under 2%.
The quality of IMDb-Face is validated in our experiments.

4 Experiments

We divide our experiments into a few sections. First, we conduct ablation studies
by simulating noise on our proposed dataset. The studies help us to observe the
deterioration of performance in the presence of increasing noise, or when a fixed
amount of clean data is diluted with noise. Second, we perform experiments on
two existing datasets to further demonstrate the effect of noise. Third, we exam-
ine the effectiveness of our dataset by comparing it to other datasets with the
same training condition. Finally, we compare the model trained on our dataset
with other state-of-the-arts. Next, we describe the experimental setting.
Evaluation Metric: We report rank-1 identification accuracy on the Megaface
benchmark [8]. It is a very challenging task to evaluate the performance of face
recognition methods at the million scale of distractors. The MegaFace bench-
mark consists of one gallery set and one probe set. The gallery set contains
more than 1 million images and the probe set consists of two existing datasets:
Facescrub [14] and FGNet. We use Facescrub [14] as MegaFace probe dataset
in our experiments. Verification performance of MegaFace (reported as TPR at
FPR= 1079) is included in the supplementary material due to page limit. We
also test LFW [7] and YTF [24] in Section 4.4.

Architecture: To better examine the effect of noise, we use the same architec-
ture in all experiments. After a comparison among ResNet-50, ResNet-101 and
Attention-56 [22], we finally choose Attention-56 that achieves a good balance
between computation and accuracy. As a reference, the model converges on a
database with 80 hours on an 8-GPU server with a batch-size of 256. The output
of Attention-56 is a 256-dimensional feature for each input image. We use cosine
similarity to compute scores between image pairs.
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Pre-processing: We cropped and aligned faces, then rigidly transferred them
onto a mean shape. Then we resized the cropped image into 224 x 256, and
subtracted them with the mean value in each RGB channel.

Loss: We apply three losses: SoftMax [20], Center Loss [23] and A-Softmax [12].
Our implementation is based on the public implementation of these losses:
Softmazx: Softmax loss is the most commonly used loss, either for model initial-
ization or establishing a baseline.

Center Loss: Wen et al. [23] propose center loss, which minimizes the intra-class
distance to enhance features’ discriminative power. The authors jointly trained
CNN with the center loss and the softmax loss.

A-Softmax: Liu et al. [12] formulate A-Softmax to explicitly enforce the an-
gle margin between different identities. The weight vector of each category was
restricted on a hypersphere.

4.1 Investigating the Effect of Noise on IMDb-Face

The proposed IMDb-Face dataset enables us to investigate the effect of noise.
There are two common types of noise in large-scale face recognition datasets:
1) label flips: example has erroneously been given the label of another class
within the dataset 2) outliers: image does not belong to any of the classes under
consideration, but mistakenly has one of their labels. Sometimes even non-faces
may be mistakenly included. To simulate the first type of noise, we randomly
perturb faces into incorrect categories. For the second type, we randomly replace
faces in IMDb-Face with images from MegaFace.

a) Label flip noise b) Outlier noise ¢) Dilution with noise
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Fig. 7. 1:1M rank-1 identification results on MegaFace benchmark: (a) introducing
label flips to IMDb-Face, (b) introducing outliers to IMDb-Face, and (c) fixing the size

of clean data and dilute it with different ratios of label flips.

Here we perform two experiments: 1) We gradually contaminate our dataset
with different types of noise. We gradually increase the noise in our dataset by
10%, 20% and 50%. 2) We fix the size of clean data and ‘dilute’ it with label
flips. We do not use ensemble models in these experiments.

Figure 7(a) and (b) summarize the results of our first experiment. 1) Label
flips severely deteriorate the performance of a model, more so than outliers. 2)
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Table 2. Noisy data vs. Clean data. The results are obtained from rank-1 identification
test on the MegaFace benchmark [8]. Abbreviation MSV1 = MS-Celeb-1M(v1).

MegaFace Rank-1(%)

Dataset|#Iden. #Imegs. Softmax Center A-softmax
MSVl-raw| 96k 86M | 71.70 73.82  73.99
-sampled| 46k  3.7M | 66.15 69.81 70.56
-clean| 46k 1.76M | 70.66 73.15  73.53
MegaFace-raw| 670k 4.7M | 64.32 64.71 66.95
-sampled| 270k 2.7M | 59.68 62.55 63.12
-clean| 270k 1.5M | 62.86 67.64  68.88

A-Softmax, which used to achieve a better result on a clean dataset, becomes
worse than Center loss and Softmax in the high-noise region. 3) Outliers seem
to have a less abrupt effect on the performance across all losses, matching the
observation in [10] and [17].

The second experiment was inspired by a recent work from Rolnick et al. [17].
They found that if a dataset contains sufficient clean data, a deep learning model
can still be properly trained on it when the data is diluted by a large amount of
noise. They show that a model can still achieve a feasible accuracy on CIFAR-
10, even the ratio of noise to clean data is increased to 20 : 1. Can we transfer
their conclusion to face recognition? Here we sample four subsets from IMDb-
Face with 1E5, 2E5, 5E5 and 1E6 images. And we dilute them with an equal
number, double, and five times of label flip noise. Figure 7(c) shows that a
large performance gap still exists against the completely clean baseline, even
we maintain the same number of clean data. We conjecture two reasons that
cleanliness of data still plays a key role in face recognition: 1) current dataset,
even it is clean, still far from sufficient to address the challenging face recognition
problem thus noise matters. 2) Noise is more lethal on a 10,000-class problem
than on a 10-class problem.

4.2 The Effect of Noise on MegaFace and MS-Celeb-1M

To further demonstrate the effect of noise, we perform experiments on two public
datasets: MegaFace and MS-Celeb-1M. In order to quantify the effect of noise
on the face recognition, we sampled subsets from the two datasets and manually
cleaned them. This provides us with a noisy sampled subset and a clean subset
for each dataset. For a fair comparison, the noisy subset was sampled to have the
same distribution of image numbers to identities as the original dataset. Also,
we control the scale of noisy subsets to make sure the scales for each clean subset
are nearly the same. Because of the large size of the sampled subsets, we have
chosen the third labeling method mentioned in Sec. 3.3, which is the fastest.
Three different losses, namely, SoftMax, Center Loss and A-Softmax, are re-
spectively applied to the original datasets, sampled, and cleaned subsets. Table 2
summarizes the results on the MegaFace recognition challenge [8]. The effect of
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clean datasets is tremendous. By comparing the results between cleaned datasets
and sampled datasets, the average improvement of accuracy is as large as 4.14%.
The accuracies on clean subsets even surpass those on raw datasets, which are
4 times larger on average. The results suggest the effectiveness of reducing noise
for large-scale datasets. As the mater of fact, the result of this experiment is
part of our motivation to collect IMDb-Face dataset.

It is worth pointing out that recent metric learning based methods such as
A-Softmax [12] and Center-loss [23] also benefit from learning on clean datasets,
although they already perform much better than Softmax [20]. As shown in Ta-
ble 2, the improvements of accuracy on MegaFace using A-Softmax and Center-
loss are over 5%. The results suggest that reducing dataset noise is still helpful,
especially when metric learning is performed. Reducing noisy samples could help
an algorithm focuses more on hard examples learning, rather than picking up
meaningless noises.

4.3 Comparing IMDb-Face with other Face Datasets

In the third experiment, we wish to show the competitiveness of IMDb-Face
against several well-established face recognition training datasets including: 1)
CelebFaces [19,20], 2) CASIA-WebFace [25], 3) MS-Celeb-1M(v1) [5], and 4)
MegaFace [13]. The data size of the two latter datasets is a few times larger
than the proposed IMDb-Face. Note that MS-Celeb-1M has a larger subset(v2),
containing 900,000 identities. Limited by our computational resources we did not
conduct experiments on it. We do not use ensemble models in this experiment.
Table 3 summarizes the results of using different datasets as the training source
across three losses. We observed that the proposed noise-controlled IMDb-Face
dataset is competitive as a training source despite its smaller size, validating the
effectiveness of the IMDb data source and the cleanliness of IMDb-Face.

4.4 Comparisons with State-of-the-Arts
We are interested to compare the performance of model trained on IMDb-Face

with state-of-the-arts. Evaluation is conducted on MegaFace [8], LFW [7], and

Table 3. Comparative results on using different face recognition datasets for training.
Rank-1 identification accuracy on MegaFace benchmark is reported.

Rank-1 (%
Dataset #fIden. 7#Imgs. SoftmaX[Center Lo(ss[)A-SoftmaX
CelebFaces| 10k 0.20M | 36.15 42.54 43.72
CASTA-WebFace| 10.5k 0.49M | 65.17 68.09 70.89
MS-Celeb-1M(V1)| 96k 8.6M | 71.70 73.82 73.99
MegaFace| 670k 4.7M | 64.32 64.71 66.95
IMDbFace| 59k 1.7M | 74.75 79.41 84.06
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Table 4. Comparisons with state-of-the-arts methods on LFW, MegaFace and YTF
benchmarks.

Method, Dataset| LEFW Mega(Ident.) YTF

Vocord-deep V3T, Private| - 91.76 -
YouTu Lab', Private| - 83.29 -
DeepSense V27, Private| - 81.23 -

Marginal Loss® [4] MS-Celeb-1M[99.48 80.278 95.98
SphereFace [12],CASIA-WebFace| 99.42 75.77 95.00
Center Loss [23],CASIA-WebFace| 99.28 65.24 94.90
A-Softmax®, MS-Celeb-1M] 99.58 73.99 97.45
A-Softmax®, IMDb-Face|99.79  84.06  97.67

1 Commercial, have not been published
f Single Model

YTF [24] following the standard protocol. For LFW [7] we compute equals error
rate (EER). For YTF [24] we report accuracy for recognition. To highlight the
effect of training data, we do not adopt model ensemble. The comparative results
are shown in Table 4. Our single model trained on IMDb-Face (A-Softmax*,
IMDb-Face) achieves a state-of-the-art performance on LFW, MegaFace, and
YTF against published methods. It is noteworthy that the performance of our
final model is also comparable to a few private methods on MegaFace.

5 Conclusion

Beyond existing efforts of developing sophisticated losses and CNN architectures,
our study has investigated the problem of face recognition from the data per-
spective. Specifically, we developed an understanding of the source of label noise
and its consequences. We also collected a new large-scale data from IMDb web-
site, which is naturally a cleaner and wilder source than search engines. Through
user studies, we have discovered an effective yet accurate way to clean our data.
Extensive experiments have demonstrated that both data source and cleaning
effectively improve the accuracy of face recognition. As a result of our study,
we have presented a noise-controlled IMDb-Face dataset, and a state-of-the-art
model trained on it. A clean dataset is important as the face recognition com-
munity has been looking for large-scale clean datasets for two practical reasons:
1) to better study the training performance of contemporary deep networks as
a function of noise level in data. Without a clean dataset, one cannot induce
controllable noise to support a systematic study. 2) to benchmark large-scale
automatic data cleaning methods. Although one can use the final performance
of a deep network as a yardstick, this measure can be affected by many uncon-
trollable factors, e.g., network hyperparameters setting. A clean and large-scale
dataset enables unbiased analysis.
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