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Abstract. Convolutional Neural Networks (CNNs)-based methods for
3D hand pose estimation with depth cameras usually take 2D depth im-
ages as input and directly regress holistic 3D hand pose. Different from
these methods, our proposed Point-to-Point Regression PointNet direct-
ly takes the 3D point cloud as input and outputs point-wise estimations,
i.e., heat-maps and unit vector fields on the point cloud, representing
the closeness and direction from every point in the point cloud to the
hand joint. The point-wise estimations are used to infer 3D joint loca-
tions with weighted fusion. To better capture 3D spatial information in
the point cloud, we apply a stacked network architecture for PointNet
with intermediate supervision, which is trained end-to-end. Experiments
show that our method can achieve outstanding results when compared
with state-of-the-art methods on three challenging hand pose datasets.

Keywords: 3D Hand Pose Estimation

1 Introduction

A key technology for human-computer interaction in virtual reality and aug-
mented reality applications is accurate and real-time 3D hand pose estimation,
which allows direct hand interaction with virtual objects. Despite the recent
progress of 3D hand pose estimation with depth cameras [23, 13, 51, 38, 43, 36,
35, 11, 22, 45, 54, 17], it remains challenging to achieve accurate and robust re-
sults due to the high dimensionality and large variations of 3D hand pose, high
similarity among fingers, severe self-occlusion, and noisy depth images.

Most of the recently proposed 3D hand pose estimation methods [11, 22, 45,
10, 53, 12, 19, 4, 5] are based on convolutional neural networks (CNNs) and have
achieved drastic performance improvement on large hand pose datasets [43, 36,
35, 55]. Many methods directly regress 3D coordinates of hand joints or hand
pose parameters using CNNs [7, 11, 9, 22, 45, 12, 19, 4, 5, 21, 56]. However, the di-
rect mapping from input representation to 3D hand pose is highly non-linear and
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difficult to learn, which makes these direct regression methods difficult to achieve
high accuracy [42]. An alternative way is to generate a set of heat-maps repre-
senting the probability distributions of joint locations on 2D image plane [43,
10, 8], which has been successfully applied in 2D human pose estimation [49,
18]. However, it is non-trivial to lift 2D heat-maps to 3D joint locations [24, 30,
41]. One straightforward solution is to generate volumetric heat-maps using 3D
CNNs, but it is computationally inefficient. Wan et al. [46] recently propose a
dense pixel-wise estimation method. Apart from generating 2D heat-maps, this
method estimates 3D offsets of hand joints for each pixel of the 2D image. How-
ever, this method suffers from two limitations. First, as it regresses pixel-wise
3D estimations from 2D images, the proposed method may not fully exploit the
3D spatial information in depth images. Second, generating 3D estimations for
background pixels of the 2D image may distract the deep neural network from
learning effective features in the hand region.

To tackle these problems, we aim at regressing point-wise estimations directly
from 3D point cloud, since the depth image is intrinsically composed of a set of
3D points on the visible object surface. We take advantages of PointNet [25, 27]
to learn features directly from 3D point cloud. Compared with [46], our method
can better utilize the 3D spatial information in the depth image in an efficient
way and concentrate on learning effective features of the hand point cloud in a
natural way, since both the input and the output of our network directly take the
form of hand point cloud. In addition, this point-to-point regression scheme also
allows us to expand the single hierarchical PointNet module [27] to a stacked
network architecture as in [18] to further improve the estimation accuracy.

As illustrated in Figure 1, we propose a point-to-point regression method for
3D hand pose estimation in single depth images. Hand is first segmented from
the depth image and is converted to a set of 3D points. The downsampled and
normalized 3D points are then fed into a hierarchical PointNet [27] with two-
stacked network architecture. The outputs of the network are heat-maps and
unit vector fields on the 3D point cloud, reflecting the closeness and directions
from 3D points to the target hand joints, respectively. Point-wise offsets to hand
joints are inferred from the network outputs and are used to vote for 3D hand
joint locations. With post-processing steps to alleviate other limitations, the
estimation accuracy is further improved.

Our main contributions are summarized as follows:

• We propose to directly take the 3D point cloud as network input and generate
heat-maps as well as unit vector fields on the input point cloud, which reflect
the per-point closeness and directions to hand joints, respectively. With such
a point-to-point regression network, our method is able to better utilize the
3D spatial information in the depth image and capture local structure of the
3D point cloud for accurate 3D hand pose estimation.

• We propose to apply the stacked network architecture [18] to the hierar-
chical PointNet [27] for point-to-point regression, which is the first stacked
PointNet architecture, to our best knowledge. Similar to [18], the stacked
PointNet architecture, feeding the output of one module as input into the
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Fig. 1. Overview of our proposed point-to-point regression method for 3D hand pose
estimation from single depth images. We propose to directly take N sampled and
normalized 3D hand points as network input and output a set of heat-maps as well as
unit vector fields on the input point cloud, reflecting the closeness and directions from
input points to J hand joints, respectively. From the network outputs, we can infer
point-wise offsets to hand joints and estimate the 3D hand pose with post-processing.
We apply the hierarchical PointNet [27] with two-stacked network architecture which
feeds the output of one module as input to the next. For illustration purpose, we only
visualize the heat-map, unit vector field and offset field of one hand joint. ‘C.S.’ stands
for coordinate system; ‘MLP’ stands for multi-layer perceptron network.

next, allows repeated bottom-up and top-down inference on 3D point cloud
and is able to boost the estimation accuracy in our experiments.

• We analyze the limitations of our point-to-point regression method and pro-
pose to use results of direct regression method as the alternative when the
divergence among candidate estimations of point-to-point regression method
is too large. Experiments show that the direct regression method is comple-
mentary with the point-to-point regression method and their combination
can further improve the estimation accuracy.

We conduct extensive experiments on three challenging hand pose datasets:
NYU dataset [43], ICVL dataset [36] and MSRA datasets [35]. Experimental
results on these three datasets show that our proposed point-to-point regression
method can achieve superior performance with runtime speed of 41.8fps and
network model size of 17.2MB.

2 Related Work

Hand Pose Estimation The methods for 3D hand pose estimation from depth
images can be classified into three categories: generative methods, discriminative
methods and hybrid methods. Generative methods aim at fitting a deformable
3D hand model to the 3D point cloud converted from the input depth image [23,
1, 44, 14, 31, 40, 28]. Discriminative methods use training data to learn a mapping
from a representation of the input depth image to a representation of the 3D hand
pose [13, 51, 36, 35, 11, 10, 12, 19, 4, 5]. Hybrid methods combine a discriminative



4 Liuhao Ge, Zhou Ren, and Junsong Yuan

model learned from training data for pose estimation with a generative hand
model for pose optimization [38, 43, 22, 45, 53, 32, 37].

Our work is related to research on 3D hand pose estimation with deep neural
networks-based approaches [11, 22, 45, 10, 53, 12, 19, 4, 5, 2]. Tompson et al. [43]
first propose to apply CNNs in 3D hand pose estimation. They use CNNs to
generate heat-maps representing the 2D probability distributions of hand joints
in the depth image, and recover 3D hand pose from estimated heat-maps and
corresponding depth values using model-based inverse kinematics. Ge et al. [10]
solve the problem of lacking 3D information in 2D heat-maps [43] by projecting
the depth image onto multiple views and estimating 3D hand pose from multi-
view heat-maps. Oberweger et al. [21, 19] instead directly regress 3D coordinates
of hand joints or a lower dimensional embedding of 3D hand pose from depth
images. They also propose a feedback loop [22] to iteratively refine the 3D hand
pose. Zhou et al. [56] propose to directly regress hand model parameters from
depth images. Ge et al. [11] encode the hand depth images as 3D volumes and
use 3D CNNs to directly regress 3D hand pose from 3D volumes. Guo et al. [12]
propose a region ensemble network that directly regresses 3D hand pose from
depth images. Chen et al. [4] improve [12] through iterative refinement. Although
many 3D hand pose estimation methods directly regress 3D hand pose, Wan et
al. [46] recently propose a dense pixel-wise estimation method that applies an
hourglass network to generate 2D and 3D heat-maps as well as 3D unit vector
fields, from which the 3D hand joint locations can be inferred. Our method is
inspired by this work [46], but is essentially different from it. Firstly, the network
proposed in [46] takes 2D images as input, while our method takes 3D point cloud
as the network input, thus is able to better utilize 3D spatial information in the
depth image. Secondly, the network proposed in [46] outputs estimations for each
pixel in the original image which may contain large useless background regions,
while our proposed point-to-point regression network outputs estimations for
each point in the hand point cloud, thus is able to concentrate on learning
effective features from the hand point cloud instead of background regions.

3D Deep Learning 3D data usually are not suitable to be directly processed
by conventional CNNs that work on 2D images. Methods in [10, 34, 26, 3] project
3D points into 2D images on multiple views and process them with multi-view
CNNs. Methods in [11, 26, 50, 16, 33] rasterize 3D points into 3D voxels and apply
3D CNNs to extract features. But the time and space complexities of 3D CNNs
are high. Octree-based 3D CNNs [29, 48] are then proposed for efficient com-
putation on 3D volumes with high resolution, but still suffer from voluminous
input data.

PointNet [25, 27] is a recently proposed method that directly takes an un-
ordered point set as input and is able to learn features on the point set. In the
basic PointNet [25], each input point is mapped into a feature vector via multi-
layer perceptron networks (MLP), of which the weights are shared across all the
input points. Then, a vector max operator aggregates per-point features into a
global feature that is invariant to different permutations of input points. The ex-
tracted global feature and per-point features can be used for various tasks. The
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basic PointNet [25] cannot capture local structures of the point cloud. To tackle
this issue, a hierarchical PointNet [27] is proposed to extract local features in a
hierarchical way. We refer readers to [27] for the details of hierarchical PointNet.
Deep Kd-networks [15], similar to PointNet, directly consumes point cloud by
adopting a Kd-tree structure. Although these methods have shown promising
performance on 3D classification and segmentation tasks, none of them has been
applied to 3D hand pose estimation in a point-to-point regression manner.

3 Methodology

Our proposed method aims at estimating 3D hand pose from single depth images.
The input is a depth image containing a hand, and the output is a set of 3D

hand joint locations Φcam =
{

φcam
j

}J

j=1
∈ Λ in the camera Coordinate System

(C.S.), where J is the number of hand joints, Λ is the 3× J dimensional hand
joint space.

3.1 Point Cloud Preprocessing

The hand depth image is first converted to a set of 3D points using the depth
camera’s intrinsic parameters. The 3D point set is then downsampled to N

points. To make our method robust to various hand orientations, we create an
oriented bounding box (OBB) from the 3D point cloud and transform the 3D
points into the OBB C.S., as shown in Fig. 1. The coordinates of 3D points are
normalized between −0.5 and 0.5 by subtracting the centroid of point cloud and
dividing by Lobb, which is the maximum edge length of OBB. We denote the

downsampled and normalized 3D point set in OBB C.S. as Pobb =
{

pobb
i

}N

i=1
. In

our implementation, we set the number of sampled points N as 1024. Since we
process the point set in OBB C.S., we will omit the superscript ‘obb’ in symbols
of points and joint locations in the following sections for simplicity.

3.2 Point Cloud based Representation for 3D Hand Pose

Most existing CNN-based methods for 3D hand pose estimation directly regress
3D coordinates of hand joints [11, 22, 45, 12, 4] or hand pose parameters [19, 5,
21, 56]. In contrast to direct regression approaches that require to learn a highly
non-linear mapping, our method aims at generating point-wise estimations of
hand joint locations from the point cloud, which is able to better utilize the
local evidence. The point-wise estimations can be defined as the offsets from
points to hand joint locations. However, estimating offsets for all points in the
point set is unnecessary and may make the per-point votes noisy. Thus, we only
estimate offsets for the neighboring points of the hand joint, as shown in Fig. 2.
We define the element in the target offset fields V for point pi (i = 1, · · · , N)
and ground truth hand joint location φ∗

j (j = 1, · · · , J) as:

V
(

pi,φ
∗

j

)

=

{

φ∗

j − pi pi ∈ PK

(

φ∗

j

)

and
∥

∥φ∗

j − pi

∥

∥ ≤ r,

0 otherwise;
(1)
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Fig. 2. An illustration of the ground truth of the point cloud based representation
for 3D hand pose. We visualize the neighboring points, offset field, heat-map and unit
vector field on 3D point cloud for the root joint of the thumb finger. For illustration
propose, we enlarge the region of neighboring points of the hand joint location on the
right of each complete point cloud.

where PK

(

φ∗

j

)

is a set of K nearest neighboring points (KNN) of the ground

truth hand joint location φ∗

j in the point set Pobb; r is the maximum radius of
ball for nearest neighbor search; in our implementation, we set K as 64 and r

as 80mm/Lobb. We combine KNN with ball query for nearest neighbor search
in order to guarantee that both the number of neighboring points and the scale
of neighboring region are controllable.

However, it is difficult to train a neural network that directly generates the
offset field due to the large variance of offsets. Similar to [46], we decompose the
target offset fields V into heat-maps H reflecting per-point closeness to hand
joint locations:

H
(

pi,φ
∗

j

)

=

{

1−
∥

∥φ∗

j − pi

∥

∥

/

r pi ∈ PK

(

φ∗

j

)

and
∥

∥φ∗

j − pi

∥

∥ ≤ r,

0 otherwise;
(2)

and unit vector fields U reflecting per-point directions to hand joint locations:

U
(

pi,φ
∗

j

)

=

{(

φ∗

j − pi

)/∥

∥φ∗

j − pi

∥

∥ pi ∈ PK

(

φ∗

j

)

and
∥

∥φ∗

j − pi

∥

∥ ≤ r,

0 otherwise.
(3)

Different from [46] that generates heat-maps and unit vector fields on 2D images,
our proposed method generates heat-maps and unit vector fields on the 3D point
cloud, as shown in Fig. 2, which can better utilize the 3D spatial information
in the depth image. In addition, generating heat-maps and unit vector fields on
2D images with large blank background regions may distract the neural network
from learning effective features in the hand region. Although this problem can be
alleviated by multiplying a binary hand mask in the loss function, our method
is able to concentrate on learning effective features of the hand point cloud in
a natural way without using any mask, since the output heat-maps and unit
vector fields are represented on the hand point cloud.
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Fig. 3. An illustration of a single network module which is based on the hierarchical
PointNet [27]. Here, ‘SA’ stands for point set abstraction layers; ‘FP’ stands for fea-
ture propagation layers; ‘MLP’ stands for multi-layer perceptron network. The dotted
shortcuts denote skip links for feature concatenation.

3.3 Network Architecture

In this work, we exploit the hierarchical PointNet [27] for learning heat-maps and
unit vector fields on 3D point cloud. Different from the hierarchical PointNet for
point set segmentation adopted in [27], our proposed point-to-point regression
network has a two-stacked network architecture in order to better capture the
3D spatial information in the 3D point cloud.

We first describe the network architecture of a single hierarchical PointNet
module. As illustrated in Fig. 3, the input of the network is a set of d-dim coor-
dinates with Cin-dim input features, i.e., 3D surface normals that are approxi-
mated by fitting a local plane for the nearest neighbors of the query point in the
point cloud (d = 3 and Cin = 3 in this work). Similar to the network architecture
for set segmentation proposed in [27], a single module of our network extracts
a global feature vector from point cloud using three set abstraction levels and
propagates the global feature to point features for original points using three
feature propagation levels, as shown in Fig. 3. In the feature propagation level,
we use nearest neighbors of the interpolation point in Nl points to interpolate
features for Nl−1 points [27]. The interpolated Cl-dim features of Nl−1 points
are concatenated with the corresponding point features in the set abstraction
level and are mapped to Cl−1-dim features using per-point MLP, of which the
weights are shared across all the points (l = 1, 2, 3;N0 = N,C0 = Cout, N3 = 1).
The heat-map and the unit vector field are generated from the point features
for the original point set using per-point MLP. In our implementation, we set
N = 1024, N1 = 512, N2 = 128, C1 = 128, C2 = 256 and Cout = 128.

Inspired by the stacked hourglass networks for human pose estimation [18],
we stack two hierarchical PointNet modules end-to-end to boost the performance
of the network. The two hierarchical PointNet modules have the same network
architecture and the same hyper-parameters, except for the hyper-parameter in
the input layer. As shown in Fig. 4, the output heat-map and unit vector field
of the first module are concatenated with the input and output point features
of the first module as the input into the second hierarchical PointNet module.
For real-time consideration, we only stack two hierarchical PointNet modules.
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Fig. 4. An illustration of the two-stacked hierarchical PointNet architecture with in-
termediate supervision. The input feature dimension of the 2nd network module is
Cin2 = Cin1 + Cout + 4J .

We apply intermediate supervision when training the two-stacked hierarchical
PointNet. The loss function for each training sample is defined as:

L =

T
∑

t=1

J
∑

j=1

N
∑

i=1

[

(

Ĥ
(t)
ij −H

(

pi,φ
∗

j

)

)2

+
∥

∥

∥
Û

(t)
ij −U

(

pi,φ
∗

j

)

∥

∥

∥

2
]

, (4)

where T is the number of stacked network modules, in this work T = 2; Ĥ
(t)
ij

and Û
(t)
ij are elements in the heat-maps and unit vector fields estimated by the

t-th network module, respectively; H
(

pi,φ
∗

j

)

and U
(

pi,φ
∗

j

)

are elements in the
ground truth heat-maps and ground truth unit vector fields defined in Eq. 2 and
Eq. 3, respectively.

3.4 Hand Pose Inference

During testing, we infer the 3D hand pose from the heat-maps Ĥ and the unit
vector fields Û estimated by the last hierarchical PointNet module. According
to the definition of offset fields, heat-maps and unit vector fields in Eq. 1-3, we
can infer the offset vector V̂ij from point pi to joint φ̂j as:

V̂ij = r ·
(

1− Ĥij

)

· Ûij . (5)

According to Eq. 1, only the offset vectors for the neighboring points of the
hand joint are used for hand pose inference, which can be found from the esti-
mated heat-map reflecting the closeness of points to the hand joint. We denote
the estimated heat-map for the j-th hand joint as Ĥj that is the j-th column

of Ĥ. We determine the neighboring points of the j-th hand joint as the points
corresponding to the largest M values of the heat-map Ĥj . The indices of these

points in the point set are denoted as {im}
M

m=1. The hand joint location φ̂j can

be simply inferred from the corresponding offset vectors V̂imj and 3D points pim

(m = 1, · · · ,M) using weighted average:

φ̂j =
∑M

m=1
wm

(

V̂imj + pim

)

/

∑M

m=1
wm, (6)
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(a) (b)

Fig. 5. (a) A failure case in which the candidate estimations of the middle fingertip
can not converge to a small local region in 3D space due to missing depth data near
the hand joint. The ground truth hand joint locations are plotted in this figure. (b)
An illustration of the two-stacked hierarchical PointNet architecture in which we add
three fully-connected layers to directly regress the 3D coordinates of hand joints from
the global feature extracted by the second hierarchical PointNet module.

where wm is the weight of the candidate estimation. In our implementation, we
set the weight wm as the corresponding heat-map value Ĥimj , and set M as 25.

3.5 Post-processing

There are two issues in our point-to-point regression method. The first issue
is that the estimation is unreliable when the divergence of the M candidate
estimations are large in 3D space, as shown in Fig. 5(a). This is usually caused
by missing depth data near the hand joint. The second issue is that there is no
explicit constraint on the estimated 3D hand pose, although the neural network
may learn joint constraints in the output heat-maps and unit vector fields.

To tackle the first issue, when the divergence of the M candidate estimations
is larger than a threshold, we replace the estimation result with the result of the
direct regression method that directly regresses 3D coordinates of hand joints,
since the direct regression method does not have this issue. In order to save
the inference time, instead of training a separate PointNet for direct hand pose
regression, we add three fully-connected layers for direct hand pose regression
to the pre-trained two-stacked hierarchical PointNet, as shown in Fig. 5(b). The
three fully-connected layers are trained to directly regress the 3D coordinates
of hand joints from the features extracted by the second hierarchical PointNet
module. The divergence of the M candidate estimations is defined as the sum of
standard deviations of x, y and z coordinates of candidate estimations. In our
implementation, we set the divergence threshold as 7.5mm/Lobb. Experimental
results in Section 4.1 will show that although only a small portion of the hand
joint estimations requires to be replaced by the direct regression results, this
replacement strategy can improve the estimation accuracy to some extent.

To tackle the second issue, we explicitly constrain the estimated 3D hand pose
Φ̂ on a lower dimensional space learned by principal component analysis (PCA).
By performing PCA on the ground truth 3D joint locations in the training
dataset, we can obtain the principal components E = [e1, e2, · · · , eH ] (H < 3J)
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and the empirical mean u. The constrained 3D hand pose can be calculated
using the following formula:

Φ̂cons = E ·ET ·
(

Φ̂− u
)

+ u. (7)

In our implementation, we set the number of principle components H as 30.
Experimental results in Section 4.1 will show that adding PCA constraint will
improve the accuracy slightly, which shows that the neural network may have
already learned joint constraints in the output heat-maps and unit vector fields.

Finally, the estimated 3D hand joint locations in the normalized OBB C.S.
are transformed back to joint locations in the camera C.S. Φ̂cam.

4 Experiments

We evaluate our proposed method on three public hand pose datasets: NYU
dataset [43], ICVL dataset [36] and MSRA dataset [35]. NYU dataset [43]
contains 72,757 frames for training samples and 8,252 frames for testing. The
ground truth of each frame contains 3D locations of 36 hand joints. Following
previous work in [43, 11, 22], we estimate and evaluate on a subset of 14 hand
joints. Since the frames in this dataset are original depth images containing
human body and background, we use a single hourglass network [18] to de-
tect 2D hand joint locations and use the corresponding depth information for
hand segmentation. We augment the training data with random arm lengths
due to various lengths of hand arm in the segmented images. ICVL dataset [36]
contains 22,059 frames for training and 1,596 frames for testing. The ground
truth of each frame contains 3D locations of 16 hand joints. We use the same
method as that used on NYU dataset for hand segmentation. The training data
is randomly augmented with various arm lengths and stretch factors. MSRA
dataset [35] contains nine subjects, each subject contains 17 hand gestures and
each hand gesture contains about 500 frames with segmented hand depth image.
The ground truth of each frame contains 3D locations of 21 hand joints. In the
experiments, we train on eight subjects and test on the remaining one. This is
repeated nine times for all subjects. We do not perform any data augmentation
on this dataset.

We adopt two metrics to evaluate the performance of 3D hand pose estima-
tion methods. The first metric is the per-joint mean error distance over all test
frames as well as the overall mean error distance for all joints on all test frames.
The second metric is the proportion of good frames in which the worst joint
error is below a threshold [39]. This metric is more strict.

We train and evaluate our proposed deep neural network models on a work-
station with two Intel Core i7 5930K, 64GB of RAM and an Nvidia TITAN Xp
GPU. The deep neural network models are implemented within the PyTorch
framework. When training the deep neural network models, we use Adam [14]
optimizer with initial learning rate 0.001, batch size 32, momentum 0.5 and
weight decay 0.0005. The learning rate is divided by 10 after 30 epochs. The
training is stopped after 60 epochs to prevent overfitting.
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Fig. 6. Self-comparison of different methods on NYU dataset [43]. Left: the impacts
of the stacked network architecture and different network outputs on the proportion of
good frames. Middle: the impacts of our point-to-point regression method and post-
processing methods on the proportion of good frames. We use two-stacked network for
point-to-point regression in this figure. Right: the impact of point-to-point regression
method, stacked network architecture and post-processing methods on the per-joint
mean error distance (R: root, T: tip). ‘P2P Reg.’ stands for point-to-point regression.
The overall mean error distances are shown in parentheses.

# Candidate Estimations M 5 15 25 35 45 55

Unweighted Average 9.50mm 9.47mm 9.48mm 9.57mm 9.70mm 9.84mm

Weighted Average 9.50mm 9.47mm 9.46mm 9.53mm 9.61mm 9.71mm

Table 1. The impacts of the number of candidate estimations M and weighted average
on the overall mean error distance on NYU dataset [43].

4.1 Self-comparisons

We first evaluate the impact of the stacked network architecture for hierarchical
PointNet. As shown in Fig. 6 (left and right), the two-stacked network evidently
performs better than the single network module, which indicates the importance
of the stacked network architecture on our point-to-point regression method.

We also evaluate the impact of different network outputs. In our method, we
train the network to output heat-maps and unit vector fields for hand joints, then
use them to recover the offset fields, as described in Section 3. In this experiment,
we compare our method with a baseline method in which a network is trained to
generate offset fields instead of unit vector fields. The network also outputs heat-
maps which are only used to find neighboring points of hand joints. As shown in
Fig. 6 (left), when adopting the two-stacked network architecture, the network
generating unit vector fields performs better than the network generating offset
fields. This result shows that the network regressing unit vectors of offsets may
be easier to learn than the network regressing offset vectors, since the variance
of the offset vectors is larger than the unit vectors.

To evaluate our proposed point-to-point regression method, we compare our
method with the direct regression method. In this experiment, we use a hierarchi-
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cal PointNet [27] with three set abstraction levels and three full-connected levels
to directly regress the 3D coordinates of hand joints. As shown in Fig. 6 (middle),
our point-to-point regression method outperforms the direct regression method
when the error threshold is smaller than 45mm. But when the error threshold
is larger than 45mm, our point-to-point regression method performs worse than
the direct regression method. This may be caused by the large divergence of the
candidate estimations in some results, as described in Section 3.5. By combin-
ing the point-to-point method with the direct regression method as described in
Section 3.5, the estimation accuracy can be further improved, as shown in Fig. 6
(middle). Furthermore, the performance of the combination method is superior
to or on par with the direct regression method over all the error thresholds.
In this experiment, only 7.9% of joint locations estimated by point-to-point re-
gression method are replaced by the results of direct regression method, which
indicates that the estimation results are dominated by the point-to-point re-
gression method, and the direct regression method is complementary with the
point-to-point regression method. In addition, adding the PCA constraint can
further improve the estimation accuracy slightly.

We further study the influence of the number of candidate estimations M

used in Eq. 7 and the weighted average on the overall mean error distance. As
shown in Table 1, the mean error distance is the smallest when the number of
candidate estimations M is between 15 and 25. When M is larger than 25, the
mean error distance will become larger. In addition, when M is smaller than
25, the weighted average will not improve the mean error distance. But when
M becomes larger, the improvement of the weighted average on the mean error
distance is more and more evident. Thus, the weighted average is able to make
the estimation more robust to noisy candidate estimations. We set M as 25 and
use weighted average with post-processing in the following experiments.

4.2 Comparisons with State-of-the-arts

We compare our proposed point-to-point regression method with 16 state-of-
the-art methods: latent random forest (LRF) [36], hierarchical regression with
random forest (RDF, Hierarchical) [35], local surface normal based random for-
est (LSN) [47], collaborative filtering [6], 2D heat-map regression using 2D CNNs
(Heat-map) [43], feedback loop based 2D CNNs (Feedback Loop) [22], hand mod-
el parameter regression using 2D CNNs (DeepModel) [56], Lie group based 2D
CNNs (Lie-X) [52], improved direct regression with a pose prior using 2D CNNs
(DeepPrior++) [19], hallucinating heat distribution using 2D CNNs (Hallucina-
tion Heat) [5], multi-view CNNs [10], 3D CNNs [11], crossing nets using deep
generative models (Crossing Nets) [45], region ensemble network (REN) [12],
pose guided structured REN (Pose-REN) [4] and dense 3D regression using 2D
CNNs (DenseReg) [46]. We evaluate the proportion of good frames over dif-
ferent error thresholds and the per-joint mean error distances as well as the
overall mean error distance on NYU [43], ICVL [36] and MSRA [35] datasets, as
presented in Fig. 7 and Fig. 8, respectively.
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Fig. 7. Comparison with state-of-the-art methods on NYU [43] (left), ICVL [36] (mid-
dle) and MSRA [35] (right) datasets. The proportions of good frames and the overall
mean error distances (in parentheses) are presented in this figure.
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Fig. 8. Comparison with state-of-the-art methods on NYU [43] (left), ICVL [36] (mid-
dle) and MSRA [35] (right) datasets. The per-joint mean error distances and the overall
mean error distances are presented in this figure (R: root, T: tip).

As can be seen in Fig. 7 and Fig. 8, our method can achieve superior per-
formance on these three datasets. On NYU [43] and ICVL [36] datasets, our
method outperforms other methods over almost all the error thresholds and
achieves the smallest overall mean error distances on these two datasets. Specif-
ically, on NYU dataset [43], when the error threshold is between 15mm and
20mm, the proportions of good frames of our method is about 15% better than
DenseReg [46] and 20% batter than Pose-REN [4]; on ICVL dataset [36], when
the error threshold is between 10mm and 15mm, the proportions of good frames
of our method is more than 10% better than DenseReg [46] and Pose-REN [4]
methods. On MSRA dataset [35], our method outperforms other methods over
almost all the error thresholds, except for the DenseReg [46] method. Although
our method is about 10% better than DenseReg [46] when the error threshold is
10mm and the overall mean error distance of our method is only 0.5mm worse
than that of DenseReg [46], our method is worse than the DenseReg [46] method
when the error threshold is larger 15mm. As mentioned in [20] and shown in the
qualitative results, some of the 3D hand joint annotations in MSRA dataset [35]
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exhibit significant errors, which may make the evaluation on this dataset less
meaningful and may limit the learning ability of our deep neural network.

In addition, we present some qualitative results for NYU [43], ICVL [36] and
MSRA [35] datasets in the supplementary material.

4.3 Runtime and Model Size

The runtime of our method is 23.9ms per frame in average, including 8.2ms
for point sampling and surface normal calculation, 15.1ms for the two-stacked
hierarchical PointNet forward propagation, 0.6ms for hand pose inference and
post-processing. Thus, our method runs in real-time at about 41.8fps.

In addition, the model size our network is 17.2MB, including 11.1MB for the
point-to-point regression network which is a two-stacked hierarchical PointNet
and 6.1MB for the additional direct regression module which consists of three
fully-connected layers. Compared with the model size of the 3D CNNs proposed
in [11] which is about 420MB, our model size is smaller.

5 Conclusion

In this paper, we propose a novel approach that directly takes the 3D point cloud
of hand as network input and outputs heat-maps as well as unit vector fields on
the point cloud, reflecting the per-point closeness and directions to hand joints.
We infer 3D hand joint locations from the estimated heat-maps and unit vector
fields using weighted fusion. Similar to the stacked hourglass network [18], we
apply the stacked network architecture for the hierarchical PointNet [27], which
allows repeated bottom-up and top-down inference on point cloud and is able to
further boost the performance. Our proposed point-to-point regression method
can also be easily combined with direct regression method to achieve more robust
performance. Experimental results on three challenging hand pose datasets show
that our method achieves superior accuracy performance in real-time.
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