
Image Reassembly Combining Deep Learning

and Shortest Path Problem

Marie-Morgane Paumard1, David Picard1,2, and Hedi Tabia1⋆

1ETIS, UMR 8051, Université Paris Seine, Université Cergy-Pontoise, ENSEA, CNRS
2Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris

{marie-morgane.paumard, picard, hedi.tabia}@ensea.fr

Abstract. This paper addresses the problem of reassembling images
from disjointed fragments. More specifically, given an unordered set of
fragments, we aim at reassembling one or several possibly incomplete
images. The main contributions of this work are: 1) several deep neural
architectures to predict the relative position of image fragments that out-
perform the previous state of the art; 2) casting the reassembly problem
into the shortest path in a graph problem for which we provide several
construction algorithms depending on available information; 3) a new
dataset of images taken from the Metropolitan Museum of Art (MET)
dedicated to image reassembly for which we provide a clear setup and a
strong baseline.

Keywords: Fragments reassembly, jigsaw puzzle, image classification,
cultural heritage, deep learning

1 Introduction

The problem of automatic object reconstruction is very important in computer
vision, as it has many potential applications in, e.g. cultural heritage and archae-
ology. For instance, given numerous fragments of an art masterpiece, archaeolo-
gists may spend a long time searching their correct configuration. In recent years,
vision-related tasks such as classification [1], captioning [2] or image retrieval [3]
have been tremendously improved thanks to deep neural network architectures,
and the automatic reassembly of fragments can also be cast as a vision task and
improved using the same deep learning methods.

In this paper, we focus on global image reassembly. The fragments are 2D-
tiles and the problem consists in finding their approximated position, as shown
in Figure 1. To solve the problem, we build on the method proposed by Doersch
et al. [4] that proposes to train a classifier able to predict the relative position
of a fragment with respect to another one. We show that solving the reassembly
problem from an unordered list of fragments can be expressed as a shortest
path problem in a carefully designed graph. The structure of the graph heavily

⋆ This work is supported by the Fondation des sciences du patrimoine, LabEx
PATRIMA ANR-10-LABX-0094-01

2 M.-M. Paumard, D. Picard, H. Tabia

depends on the properties of the puzzle such as its geometry (number of positions
and their layout), its completeness (a fragment for each available positions) and
its homogeneity (all fragments have a correct position in the puzzle).

(a) Fragments (b) Reassembly

Fig. 1: Example of the reassembly task on the MET dataset

Our contributions are the following. First, we propose several deep convo-
lutional neural network architectures for predicting the relative position of a
square-cropped fragment with respect to another. The crop allows us to ignore
the borders of each piece and to focus on the content in order to achieve a global
positioning. Second, we propose several graph construction algorithms that im-
plement the reassembly problem corresponding to the different cases of puzzles
depending on the aforementioned properties. Third, we perform extensive exper-
iments of the different neural network and shortest path graph problem combi-
nations on ImageNet [5] and on a new dataset composed of 14,000 images from
the Metropolitan Museum of Art (MET). For this new dataset, we provide a
clear setup and evaluation procedure that allows future works on the reassembly
problem to be compared.

This paper is organized as follows: in section 2, we present related work on
puzzle solving and fragment reassembly as well as relevant literature on feature
combination as it is an essential step of the relative position prediction. Next,
we detail our propositions for the deep neural network building block and the
graph construction algorithms that correspond to the different image reassembly
problems. In section 4, we present our experimental setups and analyze the
results obtained for different combinations of deep neural networks and graphs.

2 Related work

In this section, we first present the related work on puzzle solving. Then we
detail the relevant literature on feature combination.

2.1 Puzzle solving

The reconstruction of archaeological pieces of art leads to better understanding
of our history and thus attracts numerous researchers, as Rasheed and Nordin

Image Reassembly Combining Deep Learning and Shortest Path Problem 3

described in their surveys [6, 7]. Most publications of this field rely on the bor-
der irregularities and aim for precise alignment. They focus on automated re-
construction, such as [8–10] and consider jigsaw puzzle solving with missing
fragments or with differently sized tiles [11–13]. These methods perform well on
a small dataset with only one source of fragments. On the downside, they stall
when fragments come from various sources and they require costly human made
annotations. Moreover,they are fragile towards erosion and fragment loss.

Without being interested in jigsaw puzzle solving, Doersch et al. proposed a
deep neural network to predict the relative position of two adjacent fragments in
[4]. The end goal of the authors is to use this task as a pretraining step of deep
convolutional neural network (CNN), harnessing the vast amounts of unlabeled
images since the ground truth for such task can be automatically generated.
The intuitions for training features able to predict their context are the same
as what is found in the text literature with word2vec [14] or skip-thought [15].
In [4], the authors show their proposed task outperforms all other unsupervised
pretraining methods. Based on [4], Noroozi and Favaro [16] introduce a network
that compares all the nine tiles at the same time. They claim that the complete
representation obtained allows discarding the ambiguities that may have been
learned with the algorithm proposed by Doersch et al. Gur et al. [17] consider
missing fragments, but heavily rely on border to solve the puzzle.

In this paper, we focus on solving the jigsaw puzzle and not on the building
of generic images features. In cultural heritage, we have missing pieces, as well
as pieces from various images. Therefore, the setup of [16] is impractical, as it
requires exactly the nine correct fragments to make a prediction. For this rea-
son, we base our work on the method proposed in [4], but we do not share the
same objective and we bring two significant innovations. First, we consider the
correlations between localized parts of the fragments when merging the features,
something that is difficult to achieve in [4]. We believe these correlations are
important, since, e.g., we expect the right part of the baseline fragment to be
correlated with the left part of the right fragment. Second, we look for a com-
plete fragment reassembly, which we perform by using the deep neural network
predictions to build a shortest path graph problem.

2.2 Feature combination

Doersch et al. [4] separately processed fragments using a deep CNN with shared
weights which output comparable features. These features are then serially con-
catenated and fed to a multi-layer perceptron (MLP) that performs the classifi-
cation. The full network has been trained in an end-to-end fashion with standard
back-propagation using stochastic gradient descent.

In Doersch et al. [4] formulation, the cross-covariance between the features
of both fragments is neglected. Indeed, the output of the CNN can be viewed
as localized pattern activations. The prediction of the relative position depends
on the conjunction of specific patterns occurring at specific positions in the
first fragment and specific patterns occurring at specific positions in the second

4 M.-M. Paumard, D. Picard, H. Tabia

fragment. It can be argued that a sufficiently deep MLP can model these cross-
covariances, but it also seems easier to model them directly.

In [18], the authors suggest modeling these co-occurrences of patterns using
a bilinear model which can be computed using the Kronecker product of the
feature vectors. They report improved accuracy on fine-grained classification.
However, using the Kronecker product leads to high dimensional features that
are intractable in practice. To overcome this burden, the authors of [19] propose
to use random projections combined with the Hadamard (element-wise) prod-
uct to approximate the bilinear model. This strategy is further extended in [20]
where the projections are trained in true deep learning fashion. Another factor-
ization based on the Tucker decomposition is also proposed in [21] which allows
controlling the rank of the considered co-occurrences.

3 Method

In this section, we detail our proposed method. We start by presenting the deep
CNN model upon which we build to solve the image reassembly problem.

3.1 Relative position prediction

To solve a puzzle, we need to pick the fragments to use. We compare each
selected fragment with the central fragment and compute their relative position.
We examine several ways to articulate this problem.

Problem formulation The first step towards reassembly consists in discrimi-
nating between the fragments that may be of use and the others. On our puzzle,
it means that we predict which fragments are allegedly extracted from the same
image as a given central fragment, which is a binary classification problem. Once
only relevant fragments are selected, we model the position prediction as an 8-
classes classification problem, as shown in Figure 2. Both these classification
tasks are performed by a deep CNN described later.

We also propose an alternative model by merging these two networks into a
single network. This single network predicts the relative position of the second
fragment among the 8 possible positions and a 9th class, activated if the fragment
is not part of the same image.

Network architecture The global network architecture is described in Figure
3. Given two input fragments, we first extract fragment representations using a
shared feature extraction network (FEN). We tested the most common architec-
tures and empirically found out that a VGG-like [22] network works the best.
Therefore, the FEN architecture is inspired by a simplified version of VGG [22]
and is shown on Table 1. The network is composed of sequences of a 3× 3 con-
volution followed by batch-normalization [23], ReLU activation [24] and max-
pooling. We also tried other models based on more recent architectures such as

Image Reassembly Combining Deep Learning and Shortest Path Problem 5

Fig. 2: Overview of our method. Knowing a central fragment, we are looking for
the correct arrangement to reassemble the image (a). We extract the feature
of all the fragments (b) and we compare them to the features of the central
fragment. We predict which fragments are part of the image (c). We retrieve the
top eight fragments and we predict their relative position with respect to the
central one. We turn the prediction into a graph (d). We then run a shortest
path algorithm to reconstruct the image

Fig. 3: General network architecture block diagram

Resnet [25], but we empirically found that they were underperforming compared
to the simpler architecture. This can be explained by the fact that contrarily to
full images, fragments do not contain as much semantic information and thus
require less involved features. Remark also that there is no global pooling [26] in
the FEN and thus spatial information is preserved, which we believe is important
for the relative position prediction.

The features of each fragment are then combined in a combination layer (CL).
Contrarily to the concatenation that is proposed at this stage in [4], we explore
variations on the bilinear product in order to model cross-covariances among the
features. With φFEN(f) the output of the FEN for fragment f , the full bilinear
product is obtained by using the Kronecker product of the features [18]:

ykron = φFEN(f1)⊗ φFEN(f2). (1)

However, this leads to very high dimensional vectors. Similarly to [20], we
explore a compressed version using the entry-wise product:

yhad = (W⊤φFEN(f1)) ◦ (W
⊤φFEN(f2)), (2)

where ◦ denotes the Hadamard product. This compressed version can be effi-
ciently implemented by changing the output size of the last layer in the FEN.

6 M.-M. Paumard, D. Picard, H. Tabia

Finally, the classification stage consists of two sequences of a fully connected
layer followed by a batch-normalization and a ReLU activation, and a final pre-
diction layer with softmax activation.

Table 1: Architecture of the Feature Extraction Network. Conv: convolution,
BN: Batch-Normalization, ReLU: ReLU activation. OUT is chosen among 512,
1024, 2048 and 4096, depending on what merging function we use

Layer Output shape Parameters shape Parameters count

Input 96× 96× 3 0
Conv+BN+ReLU 96× 96× 32 3× 3× 32 1k
Maxpooling 48× 48× 32 -
Conv+BN+ReLU 48× 48× 64 3× 3× 32 19k
Maxpooling 24× 24× 64 -
Conv+BN+ReLU 24× 24× 128 3× 3× 32 74k
Maxpooling 12× 12× 128 -
Conv+BN+ReLU 12× 12× 256 3× 3× 32 296k
Maxpooling 6× 6× 256 -
Conv+BN+ReLU 6× 6× 512 3× 3× 32 1.2M
Maxpooling 3× 3× 512 -
Fully Connected+BN OUT OUTnb param

3.2 Puzzle resolution

Once the position is predicted by the neural network for each fragment, we
can solve the puzzle, which consists in assigning fragments to a position in the
image. We consider several cases depending on whether we already have a well-
positioned fragment, and whether we have supernumerary fragments.

Problem formulation We first consider the case where we are given the central
fragment as well as an unordered list of 8 fragments corresponding to the possible
neighbors of the central fragment. Solving the puzzle then consists in solving the
assignment problem where each fragment i has to be associated with a position j.
Given the relevance pi,j of fragment i at position j, and the assignment variable
xi,j = 1 if fragment i is at position j, we want to maximize:

max
xi,j

∑

i,j

pi,j · xi,j (3)

under the constraints:

Image Reassembly Combining Deep Learning and Shortest Path Problem 7

∀j,

8
∑

i=0

xi,j = 1 , (4)

∀i,

8
∑

j=0

xi,j = 1 , (5)

∀i, j, xi,j ∈ {0, 1}. (6)

Remark that only one fragment can occupy a position (Equation 4) and a frag-
ment can be placed only once (Equation 5).

Then, if we allow the puzzle to be uncompleted (i.e. some positions are not
used), we replace the constraint 4 with:

∀j,

8
∑

i=0

xi,j ≤ 1. (7)

Similarly, if we have supernumerary fragments (i.e. some fragments are not
used), we replace the constraint 5 with:

∀i,

N
∑

j=0

xi,j ≤ 1. (8)

Finally, if we do not know which fragment is the central fragment, we have to
solve the extended assignment problem where one fragment has to be assigned
to the central position and the remaining fragment are assigned to the relative
positions. This leads to the following problem:

max
c,xi,j

∑

i,j

pi,j,c · xi,j,c (9)

under the following constraints:

∀c, j,

N
∑

i=0

xi,j,c ≤ 1; ∀c, i 6= c,

8
∑

j=0

xi,j,c ≤ 1; ∀c, j, ∀i 6= c, xi,j,c ∈ {0, 1};

∀c, j, ∀i = c, xi,j,c = 0.

3.3 Graph formulation

Solving the mentioned problem can be done by finding the shortest path in a
corresponding directed graph, which can be done using Dijkstra’s algorithm or
any of its variants. In this section, we show how to construct such graphs.

Each graph starts with a source S and ends with a sink T . Each subsequent
depth level from S corresponds to a fragment. All nodes at a given depth i from

8 M.-M. Paumard, D. Picard, H. Tabia

S correspond to the position that could be assigned to a fragment i given all
previous assignments. Each edge receives the corresponding classification score
as the weight.

When the central fragment is known and we have the exact number of missing
fragments, the construction procedure is given in Algorithm 1. We also give a
very simple example with only two relative positions in Figure 4a.

Algorithm 1 Graph building from central fragment

1: procedure Construct edges(Y) ⊲ Y is the predicted values matrix for i, j
2: empty pos← [1..9]
3: used pos← [S]
4: next frag ← 1
5: tree← Add children(Y, empty pos, used pos, next frag)
6: return tree ⊲ The list of the edges: related fragment, position of the previous

node, position of the current node, cost of the edge.
7: end procedure

1: procedure Add children(Y, empty pos, used pos, next frag)
2: edges← []
3: if empty pos is empty then

4: edges← [(None, last(used pos), T, 0)] ⊲ Append the j → T edge
5: return edges

6: end if

7: for pos in empty pos do

8: edges← edges ∪ [(next frag, last(used pos), pos, Y [next fragment, pos])]
9: empty pos← empty pos \ pos
10: used pos← used pos ∪ pos

11: edges← edges ∪ (Add children(Y, empty pos, used pos, next frag + 1))
12: end for

13: return edges

14: end procedure

In the case where the central fragment is known, the size of the resulting
graph is |E| = n!

(n−p)! +
∑n−1

i=n−p
n!
i! for the number of edges and |N | = 2 +

∑n−1
i=n−p

n!
i! for the number of vertices, with n the number of fragments and p

the number of positions. With 8 fragments and positions, this corresponds to
|E| = 150k and |N | = 100k.

In the case where we do not know the central fragment, we simply perform
the central fragment selection as a first step. The first expansion from S consists
in all the possible cases where each fragment is used as the central fragment.
The corresponding subgraphs are the built using Algorithm 1. The size of the
resulting graph is unchanged, except we have n+1 fragments, with n the number
of the fragment to be assigned to a relative position. With n = 8, we obtain
|N | = 1M and |E| = 1.3M. We show in Figure 4b a simplified example with 3
fragments and 2 relative positions.

Image Reassembly Combining Deep Learning and Shortest Path Problem 9

(a) (b)

Fig. 4: Examples of graphs for a complete problem with known and unknown
central fragment, for empty 2 positions

Finally, we now consider the case where the puzzle may not be solved with
all the fragments we have. This means that we can have more than 8 fragments,
coming from various sources. We also may have missing fragments, and con-
sequently, we prefer an algorithm that proposes an incomplete solution than a
wrong reassembly. We construct a graph allowing such configurations by en-
abling the algorithm to pick no fragment. A simplified example of the graph
shown in Figure 5.

Fig. 5: Example of a graph allowing empty positions

The graph building algorithm is similar to the Algorithm 1; if we add a
position Ø at the antecedents list, we do not exclude it from the further available
choices, as detailed in Algorithm 2. This graph has:

10 M.-M. Paumard, D. Picard, H. Tabia

|N | = 2 +

n
∑

l=0

p
∑

k=p−l

(

l

p− k

)

(k + 1)p!

k!
(10)

vertices and

|E| =

p
∑

k=p−n

(

l

p− k

)

(k + 1)p!

k!
+

n
∑

l=0

p
∑

k=p−l

(

l

p− k

)

(k + 1)p!

k!
(11)

edges, with n fragments and p positions. If the breadth of the graph is limited by
the number of position, the depth depends on the number of fragments. In the
case of 10 fragments and 8 relative positions, the size of the graph is |E| = 5 ·109

and |N | = 4 · 108.
Once the graph has been set up, the shortest path from S to T can be found

with Dijkstra’s algorithm [27] for which the complexity is O(|E|+ |N |× log(N)).

Algorithm 2 Graph building with empty positions

1: procedure Add children(Y, empty pos, used pos, next frag)
2: edges← []
3: if empty pos is empty or next frag > n then

4: edges← [(None, last(used pos), T, 0)] ⊲ Append the j → T edge
5: return edges

6: end if

7: for pos in empty pos∪Ø do

8: edges← edges ∪ [(next frag, last(used pos), pos, Y [next fragment, pos])]
9: if pos in empty pos then

10: empty pos← empty pos \ pos
11: end if

12: used pos← used pos ∪ pos

13: edges← edges ∪ (Add children(Y, empty pos, used pos, next frag + 1))
14: end for

15: return edges

16: end procedure

Greedy method We implement a greedy method to enable us to benchmark
the Dijkstra algorithm. We solve iteratively the puzzle, picking at each step the
top value from the neural network predictions. We expect this method will make
worst choices than Dijkstra’sn considering the dependencies between the steps.

4 Experiments

In this section, we first describe our experimental setup as well as our new
dataset related to cultural heritage. Then, we give experimental results on the
classification task and on full image reassembly.

Image Reassembly Combining Deep Learning and Shortest Path Problem 11

4.1 Experimental setup

The neural networks are trained using fragments from 1.2M images of ImageNet.
We use 50k images to evaluate the classification accuracy. Each image is resized
and square-cropped to 398× 398 pixels, and divided into 9 parts separated by a
48-pixel margin, corresponding to the erosion of the fragments. Each fragment
has a size of 96× 96 pixels and has to be contained in one of the 9 parts, which
means that it can be chosen within a ±7-pixels range in each direction.

For the reassembly, the neural networks are then fine-tuned on a cultural
heritage dataset, consisting of 14,000 open-source images from the Metropolitan
Museum of Art. Such dataset is close to our aimed application, puzzle solving
for cultural heritage

4.2 Classification

To evaluate our proposed architectures for classification, we reproduce the ar-
chitecture Doersch et al. detailed in [4]. The authors reported a 40% accuracy
on ImageNet for the 8-classes classification task. Replicating the architecture of
their neural network, we obtain an accuracy of 57%. This may be explained by
the tuning of the hyperparameters.

In Table 2, we report the accuracy for the different combination layers on the
8-classes problem on ImageNet validation images. As we can see, the Kronecker
product obtain slightly better results than the concatenation. However, using
the low-rank approximation of [20] yields lower results which means that the full
covariances are needed to obtain the best performances. Remark that all of our
architecture outperforms the architecture proposed in [4].

Table 2: Accuracy for different fusion strategies, for the 8-classes classification
problem on ImageNet validation. ⋆ denotes our implementation

Fusion Accuracy

Doersch et al. [4]⋆ 57.0%
Concatenation 64.6%
Kronecker product 66.4%
Hadamard product 59.2%

We show the results of the sequential classification approach (2 classes, then
8 classes) and the joint classification approach (9 classes) on Table 3. For the
binary classification problem, we set the proportion of fragments belonging to the
same image to 50% and we obtain 92.5% accuracy. which means that deciding
whether two fragments belong to the same image seems to be an easy problem.
For the 8 classes problem, we obtain 66.4% accuracy. It is not surprising to
reach around 33% error since many fragments are ambiguous with respect to
the precise location among three positions. For example, sky fragments are easy

12 M.-M. Paumard, D. Picard, H. Tabia

to classify on top with respect to the central fragment, but which of the three
top positions is often difficult to guess. Finally, the joint classification problem
achieves 64.2% (the proportion of fragment belonging to the same image was
set to 70%), which indicates that solving the joint problem is not harder than
solving the sequence of simpler problems.

Table 3: Classification accuracy for the 2-classes, 8-classes and 9-classes problems
on Imagenet, using the Kronecker combination layer

Problem Accuracy

2-classes neighborhood classifier 92.5%
8-classes position classifier 66.4%
9-classes classifier 64.2%

4.3 Reassembly

In Table 4, we compare various cases of reassembly tasks, using two different ac-
curacy measures. The reconstruction accuracy describe if the puzzle is perfectly
solved. The position accuracy counts how many fragments are well placed.

Table 4: Reconstruction accuracies and position accuracies for different reassem-
bly problems

Reconstruction accuracy Position accuracy
Problem Greedy Dijkstra Greedy Dijkstra

Central known, complete puzzle 41.0 44.4 87.7 89.9
Central unknown, complete puzzle 36.2 39.2 69.5 71.1
Central known, incomplete puzzle 26.5 29.5 80.5 82.4

As we can see, in the case of the complete puzzle where the central fragment
is known, we are able to perfectly reassemble the image in 44.4% of the cases
using Dijkstra’s algorithm, which represent a 3% improvement over the greedy
algorithm, which is closer to the optimal solution than one might think. Remark
that the position accuracy is around 90%, which is much better than the 66.4%
accuracy of the neural network used to solve the task. This shows that solving
the reassembly problem can remove some uncertainty the classifier has.

When the central fragment is not know, the reassembly accuracy drops only
to 39.2% and the position accuracy drops to 71.1%. This means that reassembling
the image without knowing the central fragment is not much more complicated
than with the central fragment known, however, if that first step is missed, then
all subsequent assignments are likely to be wrong.

Image Reassembly Combining Deep Learning and Shortest Path Problem 13

We consider adding outsider fragments to the puzzle (Table 5), making the
accuracy drop. The increase of computation time triggered by the addition is
reasonable as long as the puzzle still contains 9 pieces. Any increment of the
number of pieces leads to an factorial increase of the number of solution, making
the problem quickly intractable. Nonetheless, any puzzle can be divided into
3× 3 puzzles, that would be solved individually and fused.

Table 5: Position and reconstruction accuracies with additional fragments
Number of additional fragments 0 1 2

Reassembly accuracy (Dijkstra) 44.4% 26.3% 14.3%
Position accuracy (Dijkstra) 89.9% 75.3% 64.8%

In Figure 6, we selected few reconstructions with unknown central fragment.
The two first images illustrate a significant part of our dataset in which it is easy
to misplace background fragments. Most of our reconstruction errors are due to
similar reversals. The type of error illustrated by the right image is rare; but,
when the central fragment is misplaced, all the other fragments are shifted.

Fig. 6: Examples of reconstructions with unknown central fragment. The red
outlined fragments are misplaced

Finally, we study the case where we have missing fragments (Table 4, last
row). In that scenario, only 4 fragment are taken from the image while 8 posi-
tions are available. We are still able to predict the position with high accuracy

14 M.-M. Paumard, D. Picard, H. Tabia

Fig. 7: Examples of reconstructions with 4 missing fragments. The red outlined
fragments are misplaced

(surprisingly better than in the case where the central fragment is unknown),
but perfectly reassembling the image is very difficult. This means that the algo-
rithm tends to drop fragments instead of assigning them to an uncertain location.
Figure 7 shows examples of reconstructions in the case of missing fragments.

5 Conclusion

In this paper, we tackled the image reassembly problem where given a unordered
list of image fragments, we want to recover the original image. To that end, we
proposed a deep neural network architecture that predicts the relative position of
a given pair of fragments. Then, we cast the reassembly problem into a shortest
path in a graph algorithm for which we propose several construction algorithms
depending on whether the puzzle is complete or if there are missing pieces. We
propose a new dataset containing 14,000 images to test several reassembly tasks
and we show that we are able to perfectly reassemble the image 44.4% of the
time in the simpler case and 29.5% of the time if there are missing pieces.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: NIPS. Volume 1. (2012) 1097–1105

2. Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: Fully convolutional localization
networks for dense captioning. In: CVPR. (2016)

3. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: Learning
global representations for image search. In: ECCV. (2016) 241–257

Image Reassembly Combining Deep Learning and Shortest Path Problem 15

4. Doersch, C., Gupta, A., Efros, A.: Unsupervised visual representation learning by
context prediction. In: ICCV. (2015)

5. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV 115(3) (2015) 211–252

6. Rasheed, N., M.J., N.: A survey of classification and reconstruction methods for
the 2d archaeological objects. In: ISTMET. (August 2015) 142–147

7. Rasheed, N., M.J., N.: A survey of computer methods in reconstruction of 3d
archaeological pottery objects. Volume 3. (2015) 712–714

8. McBride, J., Kimia, B.: Archaeological fragment reconstruction using curve-
matching. In: CVPRW. (2003)

9. Jampy, F., Hostein, A., Fauvet, E., Laligant, O., Truchetet, F.: 3d puzzle recon-
struction for archeological fragments. In: 3DIPM. (2015)

10. Zhu, L., Zhou, Z., Zhang, J., Hu, D.: A partial curve matching method for auto-
matic reassembly of 2d fragments. ICI LNCIS 345 (2006) 645–650

11. Hammoudeh, Z., Pollett, C.: Clustering-based, fully automated mixed-bag jigsaw
puzzle solving. In: Computer Analysis of Images and Patterns. (2017) 205–217

12. Andaló, F., Taubin, G., Goldenstein, S.: Psqp: Puzzle solving by quadratic pro-
gramming. IEEE TPAMI 39 (Feb 2017) 385–396

13. Lifang, C., Cao, D., Liu, Y.: A new intelligent jigsaw puzzle algorithm base on
mixed similarity and symbol matrix. IJPRAI 32 (2018)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: NIPS. (2013)
3111–3119

15. Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A.,
Fidler, S.: Skip-thought vectors. In: NIPS. (2015) 3294–3302

16. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. (2015)

17. Gur, S., Ben-Shahar, O.: From square pieces to brick walls: The next challenge in
solving jigsaw puzzles. In: ICCV. (2017)

18. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual
recognition. In: ICCV. (2015) 1449–1457

19. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: IEEE
CVPR. (2016) 317–326

20. Kim, J.H., On, K.W., Lim, W., Ha, J., B.-T., Z.: Hadamard product for low-rank
bilinear pooling. In: ICLR. (2017)

21. Ben-younes, H., Cadene, R., Cord, M., Thome, N.: Mutan: Multimodal tucker
fusion for visual question answering. (2017) 2612–2620

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition, ILSVRC (2014)

23. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. (2015)

24. Nair, V., Hinton, G.: Rectified linear units improve restricted boltzmann machines.
In: ICML. (2010)

25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE CVPR. (2016) 770–778

26. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

27. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

