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Abstract. Outfits in online fashion data are composed of items of many
different types (e.g . top, bottom, shoes) that share some stylistic rela-
tionship with one another. A representation for building outfits requires
a method that can learn both notions of similarity (for example, when
two tops are interchangeable) and compatibility (items of possibly dif-
ferent type that can go together in an outfit). This paper presents an
approach to learning an image embedding that respects item type, and
jointly learns notions of item similarity and compatibility in an end-to-
end model. To evaluate the learned representation, we crawled 68,306
outfits created by users on the Polyvore website. Our approach obtains
3-5% improvement over the state-of-the-art on outfit compatibility pre-
diction and fill-in-the-blank tasks using our dataset, as well as an estab-
lished smaller dataset, while supporting a variety of useful queries1.
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1 Introduction

Outfit composition is a difficult problem to tackle due to the complex interplay
of human creativity, style expertise, and self-expression involved in the process
of transforming a collection of seemingly disjoint items into a cohesive concept.
Beyond selecting which pair of jeans to wear on any given day, humans battle
fashion-related problems ranging from, “How can I achieve the same look as

celebrity X on a vastly inferior budget?”, to “How much would this scarf con-

tribute to the versatility of my personal wardrobe?”, to “How should I dress to

communicate motivation and competence at a job interview?”. This paper pro-
vides a step towards answering such diverse and logical queries.

To learn how to compose outfits the underlying representation must support
both notions of similarity (e.g ., when two tops are interchangeable) and notions
of compatibility (items of possibly different type that can go together in an outfit).
Current research handles both kinds of relationships with an embedding strategy:
one trains a mapping, typically implemented as a convolutional neural network,

1 Code and data: https://github.com/mvasil/fashion-compatibility
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Fig. 1: Left: Conventional embedding strategies embed objects of all types in one
underlying space. Objects that are compatible must lie close; as a result, all shoes
that match a given top are obliged to be close. Right: Our type-respecting
embedding, using “top”, “bottom” and “shoes” as examples. We first learn a
single, shared embedding space. Then, we project from that shared embedding
to subspaces identified by type. This means that all shoes that match a given
top must be close in shoe-top space, but can be very different in the general
embedding space. This enables us to search for two pairs of shoes that 1) match
the same top, and 2) look very different from one another

that takes input items to an embedding space (e.g . [12, 14, 34]). The training
process tries to ensure that similar items are embedded nearby, and items that
are different have widely separated embeddings (i.e. the left side of Figure 1).

These strategies, however, do not respect types (e.g . shoes embed into the
same space hats do), which has important consequences. Failure to respect types
when training an embedding compresses variation: for instance, all shoes match-
ing a particular hat are forced to embed close to one another, thus making them
appear compatible even if they are not, which severely limits the model’s ability
to address diverse queries. Worse, this strategy encourages improper triangles:
if a pair of shoes match a hat, and that hat in turn matches a blouse, then a
natural consequence of models without type-respecting embeddings is that the
shoes are forced to also match the blouse. This is because the shoes must embed
close to the hat to match, the hat must embed close to the shoes to match, thus
ensuring the shoes embed close to the blouse as well. Instead, they should be
allowed to match in one context, and not match in another. An alternative way
to describe the issue is that compatibility is not naturally a transitive property,
but being nearby is. Thus, an embedding that clusters items close together is not
a natural way to measure compatibility without paying attention to context. By
learning type-respecting spaces to measure compatibility, as in the right side of
Figure 1, we avoid the issues stemming from using a single embedding.

We begin by encoding each image in a general embedding space which we
use to measure item similarity. The general embedding is trained using a visual-
semantic loss between the image embedding, and features representing a text
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description of the corresponding item. This helps ensure that semantically similar
items are projected in a nearby space. In addition, we use a learned projection
which maps our general embedding to a secondary embedding space that scores
compatibility between two item types. We utilize a different projection for each
pairwise compatibility comparison, unlike prior work which typically uses a single
embedding space for compatibility scoring (e.g . [12, 34]). For example, if an outfit
contains a hat, a blouse, and a shoe, we would learn projections for hat-blouse,
hat-shoe, and blouse-shoe embeddings. The embeddings are trained along with
a generalized distance metric, which we use to compute compatibility scores
between items. Please refer to the supplementary material for a visualization of
our approach.

Since many of the current fashion datasets either do not contain outfit com-
patibility annotations [20], or are limited in size and the type of annotations
they provide [12], we collect our own dataset which we describe in Section 3.
In Section 4 we discuss our type-aware embedding model, which enables us to
perform complex queries on our data. Our experiments outlined in Section 5
demonstrate the effectiveness of our approach, reporting a 4% improvement in
a fill-in-the-blank outfit completion experiment, and a 5% improvement in an
outfit compatibility prediction task over the prior state-of-the-art.

2 Related Work

Embedding methods provide the means to learn complicated relationships by
simply providing samples of positive and negative pairs. These approaches tend
to be trained as a siamese network [3] or using triplet losses [23] and have demon-
strated impressive performance on challenging tasks like face verification [26].
This is attractive for many fashion-related tasks which typically require the learn-
ing of hard-to-define relationships between items (e.g . [10–12, 14, 34]). Veit et

al . [34] demonstrate successful similarity and compatibility matching for images
of clothes on a large scale, but do not distinguish items by type (e.g . top, shoes,
scarves) in their embedding. This is extended in Han et al . [12] by feeding the
visual representation for each item in an outfit into an LSTM in order to jointly
reason about the outfit as a whole. There are several approaches which learn
multiple embeddings (e.g . [2, 5, 11, 33, 30]), but tend to assume that instances
of distinct types are separated (i.e. comparing bags only to other bags), or use
knowledge graph representation (e.g . [36]). Multi-modal embeddings appear to
reveal novel feature structures (e.g . [10, 12, 24, 25]), which we also take advantage
of in Section 4.1. Training these type of embedding networks remains difficult
because arbitrarily chosen triples can provide poor constraints [35, 43].

Fashion Studies. Much of the recent fashion related work in the computer
vision community has focused on tasks like product search and matching [6, 9,
11, 20, 41], synthesizing garments from word descriptions [42], or using synthesis
results as a search key [41]. Kiapour et al . [16] trained an SVM over a set of
hand-crafted features to categorize items into clothing styles. Vaccaro et al . [32]
trained a topic model over outfits in order to learn latent fashion concepts. Others
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Table 1: Comparison in dataset statistics. Our dataset’s variants (last two rows)
contains more outfits than related datasets along with detailed descriptions and
fine-grained semantic categories

Dataset #Outfits #Items
Max Items/

Text Available?
Semantic

Outfit Category?

Maryland Polyvore [12] 21,889 164,379 8 Titles Only –
Polyvore Outfits-D 32,140 175,485 16 Titles & Descriptions X

Polyvore Outfits 68,306 365,054 19 Titles & Descriptions X

have identified clothing styles using meta-data labels [28] or learning a topic
model over a bag of visual attributes [15]. Liu et al . [19] measure compatibility
between items by reasoning about clothing attributes learned as latent variables
in their SVM-based recommendation system. Others have focused on attribute
recognition [4, 8, 37], identifying relative strength of attributes between items
(i.e. a shoe is more/less pointy than another shoe) [29, 38–40], or focused on
predicting the popularity of clothing items [1, 27].

3 Data

Polyvore Dataset: The Polyvore fashion website enables users to create outfits
as compositions of clothing items, each containing rich multi-modal information
such as product images, text descriptions, associated tags, popularity score, and
type information. Han et al . supplied a dataset of Polyvore outfits (referred to
as the Maryland Polyvore dataset [12]). This dataset is relatively small, does
not contain item types or detailed text descriptions (see Table 1), and has some
inconsistencies in the test set that make quantitative evaluation unreliable (addi-
tional details in Section 5). To resolve these issues, we collected our own dataset
from Polyvore annotated with outfit and item ID, fine-grained item type, title,
text descriptions, and outfit images. Outfits that contain a single item or are
missing type information are discarded, resulting in a total of 68,306 outfits and
365,054 items. Statistics comparing the two datasets are provided in Table 1.

Test-train splits: Splits for outfit data are quite delicate, as one must consider
whether a garment in the train set should be allowed to appear in unseen test
outfits, or not at all. As some garments are “friendly” and appear in many out-
fits, this choice has a significant effect on the dataset. We provide two different
versions of our dataset with respective train and test splits. An “easier” split
contains 53,306 outfits for training, 10,000 for testing, and 5,000 for validation,
whereby no outfit appearing in one of the three sets is seen in the other two,
but it is possible that an item participating in a train outfit is also encoun-
tered in a test outfit. A more “difficult” split is also provided whereby a graph
segmentation algorithm was used to ensure that no garment appears in more
than one split. Each item is a node in the graph, and an edge connects two
nodes if the corresponding items appear together in an outfit. This procedure
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requires discarding “friendly” garments, or else the number of outfits collapses
due to superconnectivity of the underlying graph. By discarding the smallest
number of nodes necessary, we end up with a total of 32,140 outfits and 175,485
items, 16,995 of which are used for training and 15,145 for testing and validation.

4 Respecting Type in Embedding

For the i’th data item xi, an embedding method uses some regression procedure
(currently, a multilayer convolutional neural network) to compute a nonlinear
feature embedding yi = f(xi; θ) ∈ R

d. The goal is to learn the parameters θ

of the mapping f such that for a pair of items (xi,xj), the Euclidean distance
between the embedding vectors yi and yj reflects their compatibility. We would
like to achieve a “well-behaved” embedding space in which that distance is small
for items that are labelled as compatible, and large for incompatible pairs.

Assume we have a taxonomy of T types, and let us denote the type of an

item as a superscript, such that x
(τ)
i represents the i’th item of type τ , where

τ = 1, . . . , T . A triplet is defined as a set of images {x
(u)
i ,x

(v)
j ,x

(v)
k } with the

following relationship: the anchor image xi is of some type u, and both xj and
xk are of a different type v. The pair (xi,xj) is compatible, meaning that the
two items appear together in an outfit, while xk is a randomly sampled item of
the same type as xj that has not been seen in an outfit with xi. Let us write
the standard triplet loss in the general form

ℓ(i, j, k) = max{0, d(i, j)− d(i, k) + µ} , (1)

where µ is some margin.
We will denote by M(u,v) the type-specific embedding space in which ob-

jects of types u and v are matched. Associated with this space is a projection
Pu→(u,v) which maps the embedding of an object of type u to M(u,v). Then,

for a pair of data items (x
(u)
i , x

(v)
j ) that are compatible, we require the distance

||Pu→(u,v)(f(x
(u)
i ; θ))− Pv→(u,v)(f(x

(v)
j ; θ))|| to be small. This does not mean

that the embedding vectors f(x
(u)
i ; θ) and f(x

(v)
j ; θ) for the two items in the gen-

eral embedding space are similar - the differences just have to lie close to the
kernel of Pu→(u,v).

This general form requires the learning of 2 (d×d) matrices per pair of types
for a d-dimensional general embedding. In this paper, we investigate two simpli-
fied versions: (a) assuming diagonal projection matrices such that Pu→(u,v) =
Pv→(u,v) = diag(w(u,v)), where w(u,v) ∈ R

d is a vector of learned weights, and
(b) the same case, but with w(u,v) being a fixed binary vector chosen in advance
for each pairwise type-specific space, and acting as a gating function that se-
lects the relevant dimensions of the embedding most responsible for determining
compatibility. Compatibility is then measured with

duvij = d(x
(u)
i ,x

(v)
j ,w(u,v)) = ||f(x

(u)
i ; θ)⊙w(u,v) − f(x

(v)
j ; θ)⊙w(u,v)||22 , (2)
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where ⊙ denotes component-wise multiplication, and learned with the modified
triplet loss:

Lcomp(x
(u)
i ,x

(v)
j ,x

(v)
k ,w(u,v); θ) = max{0, duvij − duvik + µ} , (3)

where µ is some margin.

4.1 Constraints on the learned embedding

To regularize the learned notion of compatibility, we further make use of the
text descriptions accompanying each item image and feed them as input to a
text embedding network. Let the embedding vector outputted by that network

for the description t
(u)
i of image x

(u)
i be denoted g(t

(u)
i ;φ), and substitute g for

f in ℓ as required; the loss used to learn similarity is then

Lsim = λ1ℓ(x
(v)
j ,x

(v)
k ,x

(u)
i ) + λ2ℓ(t

(v)
j , t

(v)
k , t

(u)
i ) , (4)

where λ1−2 are scalar parameters.
We also train a visual-semantic embedding in the style of Han et al . [12] by

requiring that image x
(u)
i is embedded closer to its description t

(u)
i in visual-

semantic space than the descriptions of the other two images in a triplet:

Lvsei = ℓ(x
(u)
i , t

(u)
i , t

(v)
j ) + ℓ(x

(u)
i , t

(u)
i , t

(v)
k ) (5)

and imposing analogical constraints on x
(v)
j and x

(v)
k .

To encourage sparsity in the learned weights w so that we achieve better dis-
entanglement of the embedding dimensions contributing to pairwise type com-
patibility, we add an ℓ1 penalty on the projection matrices P ·→(·,·). We further
use ℓ2 regularization on the learned image embedding f(x; θ). The final training
loss therefore becomes:

L(X,T,P ·→(·,·), λ, θ, φ) = Lcomp + Lsim + λ3Lvse + λ4Lℓ2 + λ5Lℓ1 (6)

where X and T denote the image embeddings and corresponding text embed-
dings in a batch, Lvse = Lvsei + Lvsej + Lvsek , and λ3−5 are scalar parameters.

We preserve the dependence on P ·→(·,·) in notation to emphasize the type de-
pendence of our embedding. As Section 5 shows, this term has significant effects.

5 Experiment Details

Following Han et al . [12] we evaluate how well our approach performs on two
tasks. In the fashion compatibility task, a candidate outfit is scored as to whether
its constitute items are compatible with each other. Performance is evaluated
using the average under a receiver operating characteristic curve (AUC). The
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second task is to select from a set of candidate items (four in this case) in a fill-
in-the-blank (FITB) fashion recommendation experiment. The goal is to select
the most compatible item with the remainder of the outfit, and performance is
evaluated by accuracy on the answered questions.

Datasets. For experiments on the Maryland Polyvore dataset [12] in Section 5.1
we use the provided splits which separate the outfits into 17,316 for training,
3,076 for testing, and 1,407 for validation. For experiments using our dataset
in Section 5.2 we use the different version splits described in Section 3. We
shall refer to the “easier” split as Polyvore Outfits, and the split containing only
disjoint outfits down to the item level as Polyvore Outfits-D.
Implementation. We use a 18-layer Deep Residual Network [13] which was
pretrained on ImageNet [7] for our image embedder with a general embedding
size of 64 dimensions unless otherwise noted. Our model is trained with a learning
rate of 5e−5, batch size of 256, and a margin of 0.2. For our text representation,
we use the HGLMM Fisher vector encoding [17] of word2vec [22] after having
been PCA reduced down to 6000 dimensions. We set λ3 = 5e−1 from Eq. (6)
for the Maryland Polyvore dataset (λ3 = 5e−5 for experiments on our dataset),
and all other λ parameters from Eq. (4) and Eq. (6) to 5e−4.

Sampling Testing Negatives. In the test set provided by Han et al . [12], a
negative outfit for the compatibility experiment could end up containing only
tops and no other items, and a fill-in-the blank question could have an earring be
among the possible answers when trying to select a replacement for a shoe. This
is a result of sampling negatives at random without restriction, and many of
these negatives could simply be dismissed without considering item compatibil-
ity. Thus, to correct this issue and focus on outfits that cannot be filtered out in
such a manner, we take into account item category when sampling negatives. In
the compatibility experiments, we replace each item in a ground truth outfit by
randomly selecting another item of the same category. For the fill-in-the-blank
experiments, our incorrect answers are randomly selected items from the same
category as the correct answer.

Comparative Evaluation. In addition to performance of the state-of-the-art
methods reported in prior work, we compare the following approaches:

– SiameseNet (ours). The approach of Veit et al . [34] which uses the same
ResNet and general embedding size as used for our type-specific embeddings.

– CSN, T1:1. Learns a pairwise type-dependent transformation using the
approach of Veit et al . [33] to project a general embedding to a type-specific
space which measures compatibility between two item categories.

– CSN, T4:1. Same as the previous approach, but where each learned pairwise
type-dependent transformation is responsible for four pairwise comparisons
(instead of one) which are assigned at random. For example, a single pro-
jection may be used to measure compatibility in the (shoe-top, bottom-hat,
earrings-top, outwear-bottom) type-specific spaces. This approach allows us
to assess the importance of having distinct learned compatibility spaces for
each pair of item categories versus forcing the compatibility spaces to “share”
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Table 2: Comparison of different methods on the Maryland Polyvore dataset [12]
using their unrestricted randomly sampled negatives on the fill-in-the-blank and
outfit compatibility tasks. “All Negatives” refers to using their entire test split as
is, while “Composition Filtering” refers to removing easily identifiable negative
samples. The numbers in (a) are the results reported from Han et al . [12] or run
using their code, and (b) reports our results

All Negatives w/Composition Filtering

Method
FITB Compat. FITB Compat.

Accuracy AUC Accuracy AUC

(a) SetRNN [18] 29.6 0.53 – –
SiameseNet [34] 52.0 0.85 – –
Bi-LSTM (512-D) [12] 66.7 0.89 – –
Bi-LSTM + VSE (512-D) [12] 68.6 0.90 81.5 0.78

(b) SiameseNet (ours) 54.2 0.85 72.3 0.81
CSN, T1:1 51.6 0.83 74.9 0.83
CSN, T1:1 + VSE 52.4 0.83 73.1 0.83
CSN, T1:1 + VSE + Sim 51.5 0.82 75.1 0.79
CSN, T4:1 + VSE + Sim + Metric 84.2 0.90 75.7 0.84
CSN, T1:1 + VSE + Sim + Metric 86.1 0.98 78.6 0.84

multiple pairwise comparisons, thus allowing for better scalability as we add
more fine-grained item categories to the model.

– VSE. Indicates that a visual-semantic embedding as described in Section 4.1
is learned jointly with the compatibility embedding.

– Sim. Along with training the model to learn a visual-semantic embedding
for compatibility between different categories of items as done with the VSE,
the same embeddings are also used to measure similarity between items of
the same category as described in Section 4.1.

– Metric. In the triplet loss, rather than minimizing Euclidean distance be-
tween compatible items and maximizing the same for incompatible ones, an
empirically more robust way is to optimize over the inner products instead.
To generalize the distance metric, we take an element-wise product of the em-
bedding vectors in the type-specific spaces and feed it into a fully-connected
layer, the learned weights of which act as a generalized distance function.

5.1 Maryland Polyvore

We report performance using the test splits of Han et al . [12] in Table 2 where the
negative samples were sampled completely at random without restriction. The
first line of Table 2(b) contains our replication of the approach of Veit et al . [34],
using the same convolutional network as implemented in our models for a fair
comparison. We see on the second line of Table 2(b) that performance on both
tasks using all the negative samples in the test split is actually reduced, while
after removing easily identifiable negative samples it is increased. This is likely
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Table 3: Comparison of different methods on the Maryland Polyvore Dataset [12]
on the fill-in-the-blank and outfit compatibility tasks using our category-aware
negative sampling method. (a) contains the results of prior work using their
code unless otherwise noted, and (b) contains results using our approach

Method
FITB Compat.

Accuracy AUC

(a) Bi-LSTM + VSE (512-D) [12] 64.9 0.94
SiameseNet (ours) 54.4 0.85

(b) CSN, T1:1 57.9 0.87
CSN, T1:1 + VSE 58.1 0.88
CSN, T1:1 + VSE + Sim 59.0 0.87
CSN, T4:1 + VSE + Sim + Metric 59.9 0.90
CSN, T1:1 + VSE + Sim + Metric 61.0 0.90
CSN, T1:1 + VSE + Sim + Metric (512-D) 65.0 0.93

Table 4: Effect the embedding size has on performance on the fill-in-the-blank
and the outfit compatibility tasks on the Maryland Polyvore dataset [12] using
our negative samples

Method
FITB Compat.

Accuracy AUC

CSN, T1:1 + VSE + Sim + Metric (32-D) 55.7 0.88
CSN, T1:1 + VSE + Sim + Metric (64-D) 61.0 0.90
CSN, T1:1 + VSE + Sim + Metric (128-D) 62.4 0.92
CSN, T1:1 + VSE + Sim + Metric (256-D) 62.8 0.92
CSN, T1:1 + VSE + Sim + Metric (512-D) 65.0 0.93

due to how the negatives were sampled. We only learn type specific embeddings
to compare the compositions of items which occur during training. Thus, at test
time, if we are asked to compare two tops, but no outfit seen during training
contained two tops, we did not learn a type-specific embedding for this case and
are forced to compare them using our general embedding. This also explains why
our performance drops using the negative samples of Han et al . when we include
the similarity constraint on the third line of Table 2(b), since we explicitly try to
learn similarity in our general embedding rather than compatibility. The same
effect also accounts for the discrepancy when we train our learned metric shown
in the last two lines of Table 2(b). Although we report much better performance
than prior work using all the negative samples, our performance is much closer
to the LSTM-based method of Han et al . [12] after removing the easy negatives.

Since many of the negative samples of Han et al . [12] can be easily filtered
out, and thus make it difficult to evaluate our method due to their invalid outfit
compositions, we report performance on the fill-in-the-blank and outfit com-
patibility tasks where the negatives are selected by replacing items of the same
category in Table 3. The first line of Table 2(b) shows that using our type-specific
embeddings, we obtain a 2-3% improvement over learning a single embedding
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Fig. 2: Left: t-SNE of the learned general embedding space on Polyvore Outfits.
We see the learned embedding respects color variations and for types where
shape is a unique identifier (e.g ., pants and sunglasses) items are more closely
grouped together. Right: Overlapping items for each cell of the highlighted four
columns in the t-SNE plot. Note that each row contains items that are very
similar to each other, which suggests a well-behaved embedding. Best viewed in
color at high resolution

to compare all types. In the second and third lines of Table 3(b), we see that
including our visual semantic embedding, along with training our general embed-
ding to explicitly learn similarity between objects of the same category, provides
small improvements over simply learning our type-specific embeddings. We also
see a pronounced improvement using our learned metric, resulting in a 3-4%
improvement on both tasks over learning just the type-specific embeddings. The
last line of Table 3(b) reports the results of our approach using the same embed-
ding size as Han et al . [12], showing that we obtain similar performance. This
is particularly noteworthy since Han et al . uses a more powerful feature rep-
resentation (Inception-v3 [31] vs. ResNet-18), and takes into account the entire
outfit when making comparisons, both of which would likely further improve our
model. A full accounting of how the dimensions of the final embedding affects
the performance of our approach is provided in Table 4.

5.2 Polyvore Outfits

We report our results on the fill-in-the-blank and outfit compatibility exper-
iments using our own dataset in Table 5. The first line of Table 5(b) shows
that learning our type specific embeddings gives a consistent improvement over
training a single embedding to make all comparisons. We note that our relative
performance using the entire dataset is higher than our disjoint set, which we
attribute to likely being due to the additional training data for learning each
type-specific embedding. Analogous to the Maryland dataset, the next three
lines of Table 5 show a consistent performance improvement as we add in the
remaining pieces of our model.
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(a) (b) (c)

Fig. 3: t-SNE of the learned type-specific embedding space on our Polyvore
dataset for: (a) tops and bags; (b) shoes and sunglasses; (c) scarves and jew-
elery. As hypothesized, respecting type allows the embedding to specialize to
features that dominate compatibility relationships for each pair of types: for ex-
ample, color seems to matter more in (a) than in (c), where shape is an equally
important feature, with a concentration of long pendants in the lower right and
smaller pieces towards the top. Best viewed in color at high resolution

Fig. 4: Examples of learned compatibility relationships by our model. The query
item (top row) is randomly pulled from some type u. Rows shaded in gray show
our model’s suggestions for items compatible with the query item of a randomly
selected type v. Bottom row shows items of type v sampled at random

Fig. 5: Examples of learned similarity relationships by our model. Column out-
lined in yellow shows the query image for each row. Rows contain similar items
of the same type as the query item. Note that the learned notion of similarity
is more abstract than matching simply based on color or shape. For example,
in the second row, the model is perfectly happy suggesting as alternatives both
short- and long-leg pants as well as skirts, so long as the general light colors,
flowery patterns and flowy materials are present. Similarly, in the third row, all
similar shoes are black but they vastly differ in style (e.g., platform vs. sandal
vs. bootie vs. loafer) and all have a unique statement element just like the straps
detail of the query item: laces, a golden clasp, yellow detail, metal bridge
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Table 5: Comparison of different methods on the two versions of our dataset
on the fill-in-the-blank and outfit compatibility tasks using our category-aware
negative sampling method. (a) contains the results of prior work using their
code unless otherwise noted, and (b) contains results using our approach

Polyvore Outfits-D Polyvore Outfits

Method
FITB Compat. FITB Compat.

Accuracy AUC Accuracy AUC

(a) Bi-LSTM + VSE (512-D) [12] 39.4 0.62 39.7 0.65
SiameseNet (ours) 51.8 0.81 52.9 0.81

(b) CSN, T1:1 52.5 0.82 54.0 0.83
CSN, T1:1 + VSE 53.0 0.82 54.5 0.84
CSN, T1:1 + VSE + Sim 53.4 0.82 54.7 0.85
CSN, T4:1 + VSE + Sim + Metric 53.7 0.82 55.1 0.85
CSN, T1:1 + VSE + Sim + Metric 54.1 0.82 55.3 0.86
CSN, T1:1 + VSE + Sim + Metric (512-D) 55.2 0.84 56.2 0.86

Table 6: Effect the embedding size has on performance on the fill-in-the-blank
and the outfit compatibility tasks using the two versions of our dataset

Polyvore Outfits-D Polyvore Outfits

Method
FITB Compat. FITB Compat.

Accuracy AUC Accuracy AUC

CSN, T1:1 + VSE + Sim + Metric (32-D) 53.2 0.81 53.9 0.85
CSN, T1:1 + VSE + Sim + Metric (64-D) 54.1 0.82 55.3 0.86
CSN, T1:1 + VSE + Sim + Metric (128-D) 54.3 0.83 55.2 0.86
CSN, T1:1 + VSE + Sim + Metric (256-D) 54.8 0.84 55.6 0.86
CSN, T1:1 + VSE + Sim + Metric (512-D) 55.2 0.84 56.2 0.86

We note that the LSTM-based method of Han et al . [12] works relatively
poorly on our dataset, which suggests that the limited number of items in the
outfits in the Maryland dataset (the maximum length of an outfit sequence is
fixed to 8 items) may play an important role in obtaining good performance
with their approach. The last line of Table 5(b) reports the performance of our
model using the same embedding size as the Han et al . [12]. The full effect the
embedding dimension has on our approach is provided in Table 6. Additional
results including an ablation study can be found in supplementary material.

Interestingly, the two splits of our data obtain similar performance, with the
better results using the easy version of our dataset only a little better than
on the version where all items in all outfits are novel. This suggests that having
unseen outfits in the test set is more important than ensuring there are no shared
items between the training and testing splits, and hence in reproductions of our
experiments, using the larger version of our dataset is a fair approach.

Why does respecting type help? We visualize the global embedding space
and some type-specific embedding spaces with t-SNE [21]. Figure 2 shows the
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Fig. 6: Examples of outfit generation by recursive item swaps. The top row repre-
sents a valid (i.e., human-curated) outfit. At each step, we replace an item from
the starting outfit with one that is of the same type and equally compatible with
the rest of the outfit, but different from the removed item. For full figure, refer
to the supplementary. Best viewed in color

global embedding space; Figure 3 shows three distinct type-specific embedding
spaces. Note how the global space is strongly oriented toward color matches
(large areas allocated to each range of color), but for example the scarf-jewelery
space in Figure 3(c) is not particularly focused on color representation, preferring
to encode shape (long pendants vs. smaller pieces). As a result, local type-specific
spaces can specialize in different aspects of appearance, and so force the global
space to represent all aspects fairly evenly.

Geometric Queries. In light of the problems pointed out in the introduction,
we show that our type-respecting embedding is able to handle the following
geometric queries which previous models are unable or ill-equipped to perform.
SiameseNet [34] is not able to answer such queries by construction, and it is not
straightforward how the approach of Han et al . [12] would have to be repurposed
in order to handle them. Our model is the first to demonstrate that this type of
desirable query can be successfully addressed.

– Given an item x
(u)
i of a certain type, show a collection of items {x

(v)
j }Nj=1 of

a different type that are all compatible with x
(u)
i but dissimilar from each

other (see Figure 4).

– Given an item x
(u)
i of a certain type, show a collection of items {x

(u)
j }Nj=1

of the same type that are all interchangeable with x
(u)
i but have diverse

appearance (see Figure 5)

– Given a valid outfit S = {x
(τ)
k }K,T

k=1,τ=1, replace each item x
(τ)
k in turn with

an item x̃(τ) of the same type which is different from x
(τ)
k , but compatible

with the rest of the outfit S
\{x

(τ)
k

}
(see Figure 6).

– Given an item x
(u)
i from a valid outfit S = {x

(τ)
k }K,T

k=1,τ=1, show a collection

of replacement items {x
(u)
j }Nj=1 of the same type that are all compatible with

the rest of the outfit S
\{x

(u)
i

}
but visually different from x

(u)
i (see Figure 7).
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Fig. 7: Examples of item swaps and outfit diversification. Row shaded in green
represents a human-curated outfit. Highlighted in blue is a randomly selected
heldout item from the outfit to be replaced. Rows shaded in gray displays alter-
natives that are all equally compatible with the rest of the outfit as the heldout
item. The bottom row shows a random selection of alternatives of the same type
as the heldout item. The suggested alternatives made by our model in the middle
row, although equally compatible with the rest of the items in the outfit, are
not forced to be similar to each other but differ vastly in color, style, shape and
fine-grained type. Best viewed in color

6 Conclusion

Our qualitative and quantitative results show that respecting type in embed-
ding methods produces several strong and useful effects. First, on an established
dataset, respecting type produces better performance at established tasks. Sec-
ond, on a novel, and richer, dataset, respecting type produces strong performance
improvements on established tasks over previous methods. Finally, an embedding
method that respects type can represent both similarity relationships (whereby
garments are interchangeable - say, two white blouses) and compatibility rela-
tionships (whereby a garment can be combined with another to form a coherent
outfit). Visualizing the learned embedding spaces suggests that the reason we
obtain significant improvements on the fill-in-the-blank and outfit compatibility
tasks over prior state-of-the-art is that different type-specific spaces specialize
in encoding different kinds of appearance variation. The resulting representation
admits new and useful queries for clothing. One can search for item replace-
ments; one can find a set of possible items to complete an outfit that has high
variation; and one can swap items in garments to produce novel outfits.
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