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Abstract. We present a method for simultaneously estimating 3D hu-
man pose and body shape from a sparse set of wide-baseline camera views.
We train a symmetric convolutional autoencoder with a dual loss that
enforces learning of a latent representation that encodes skeletal joint
positions, and at the same time learns a deep representation of volumetric
body shape. We harness the latter to up-scale input volumetric data by a
factor of 4×, whilst recovering a 3D estimate of joint positions with equal
or greater accuracy than the state of the art. Inference runs in real-time
(25 fps) and has the potential for passive human behaviour monitoring
where there is a requirement for high fidelity estimation of human body
shape and pose.
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Fig. 1. Simultaneous estimation of 3D human pose and 4× upscaled volumetric body
shape, from coarse visual hull data derived from a sparse set of wide-baseline views.

1 Introduction

Multiple viewpoint video of open spaces (e. g. for sports or surveillance) is often
captured using a sparse set of wide-baseline static cameras, in which human
subjects are relatively small (tens of pixels in height) due to their physical distance.
Nevertheless, it is useful to infer human behavioural data from this limited
knowledge for performance analytics or security. In this paper, we explore the
possibility of using a deeply learned prior inferring high fidelity three-dimensional
(3D) body shape and skeletal pose data from a coarse (low-resolution) volumetric
estimate of body shape estimated across a sparse set of camera views (Fig. 1).
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The technical contribution of this paper is to explore the possibility of learn-
ing a deep representation for volumetric (3D) human body shape driven by a
latent encoding for the skeletal pose that can, in turn, be inferred from coarse
volumetric shape data. Specifically, we investigate whether convolutional autoen-
coder architectures, commonly applied to 2D visual content for de-noising and
up-scaling (super-resolution), may be adapted to up-scale volumetric 3D human
shape whilst simultaneously providing high-level information on the 3D human
pose from the bottle-neck (latent) representation of the autoencoder. We propose
a symmetric autoencoder with 3D convolutional stages capable of refining a prob-
abilistic visual hull (PVH) [1] i. e. voxel occupancy data derived at very coarse
scale (grid resolution 32× 32× 32 encompassing the subject). We demonstrate
that our autoencoder is able to estimate an up-scaled body shape volume at up to
128× 128× 128 resolution, whilst able to estimate the skeleton joint positions of
the subject to equal or better accuracy than the current state of the art methods
due to deep learning.

2 Related Work

Our work makes a dual contribution to two long-standing Computer Vision
problems: super-resolution (SR) and human pose estimation (HPE).

Super-resolution: Data-driven approaches to image SR integrate pixel data
e. g. from auxiliary images [2], or from a single image [3, 4]) to perform image
up-scaling or restoration. Model based approaches learn appearance priors from
training images, applying these as optimization constraints to solve for SR content
[5]. A wide variety of machine learning approaches have been applied to the
latter e. g. sparse coding [6], regression trees [7], and stacked autoencoders [8];
many such approaches are surveyed in [9]. Deep learning has more recently
applied convolutional autoencoders for up-scaling of images [10–12] and video
[13]; our work follows suit, extending symmetric autoencoders commonly used
for image restoration to volumetric data using 3D (up-)convolutional layers [14].
Our work is not the first to propose volumetric super-resolution. Data-driven
volumetric SR has been explored using multiple image fusion across the depth
of field in [15] and across multiple spectral channels in [6]. Very recent work
by Brock et al. explores deep variational auto-encoders for volumetric SR of
objects [16]. However, our work is unique in its ability to upscale to 4× whilst
simultaneously estimating human pose to a high accuracy, exploiting a learned
latent representation encoding joint positions.

Human pose estimation has been classically approached through top-down
fitting of models such as Pictorial structures [17], fused with Ada-Boost shape
classification in [18]. Conditional dependencies between parts (limbs) during
model fitting were explored in [19, 20]. Huang [21] tracked 3D mesh deformation
over time and attach a skeleton to tracked vertices. The SMPL body model [22]
provides a rich statistical body model that can be fitted to (possibly incomplete)
visual data. Marcard [23] explored the orthogonal modality of IMU measurements
using SMPL for HPE without visual data. Malleson [24] used IMUs with a full
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Fig. 2. Overview of the proposed method. A coarse PVH is estimated as input vol-
umetric data (323 voxels) and up-scaled via tricubic interpolation to a (32n)3 voxel
grid (where n = {1, 2, 4}). The input PVH is deeply encoded to the latent feature
representation (3D joint positions). Non-linear decoding of the feature via successive
up-convolutional layers yields a higher fidelity PVH of (32n)3 voxels.

kinematic solve to estimate 3D pose. SMPL was recently applied to a deep
encoder-decoder network to estimate 3D pose from 2D images [25]. Several deep
approaches estimate 2D pose or infer 3D pose from intermediate 2D estimations.
DeepPose [26] applies a convolutional neural network (CNN) cascade. Descriptors
learned via CNN have been used in 2D pose estimation from low-resolution 2D
images [27] and real-time multi-subject 2D pose estimates were demonstrated by
cao [28]. Sanzari [29] estimates the location of 2D joints, before predicting 3D
pose using appearance and probable 3D pose of parts. Zhou [30] integrates 2D,
3D and temporal information to account for uncertainties in the data.

The challenge of estimating 3D human pose from volumetric data is more
sparsely explored. Trumble [31] used a spherical histogram and later voxel input to
regress a pose estimate using a CNN [32]. Pavlakos [33] used a simple volumetric
representation in a 3D convnet for pose estimation. While Tekin [34] included
a pretrained autoencoder within the network to enforce structural constraints.
Our work also trains an autoencoder for HPE but simultaneously infers a high
resolution body model via a dual loss function.

3 Estimating Human Pose and Body Shape
Our method accepts a coarse resolution volumetric reconstruction of a subject as
input, and in a single inference, step estimates both the skeletal joint positions
and a higher resolution (up-scaled) volumetric reconstruction of that subject
(Fig. 2). Sec. 3.1 first describes how the input volumetric reconstruction is formed,
through a simplified form of Graumann ’s probabilistic visual hull (PVH) [1]. The
architecture of our 3D convolutional autoencoder is then described in Sec. 3.2
including the dual loss function necessary to learn a deep representation of body
shape and the latent pose representation. Finally, Sec. 3.3 describes the data
augmentation and methodology for training the network.

3.1 Volumetric Representation

The capture volume V ∈ R
3 containing the subject is observed by a set of C

calibrated cameras c = [1, C] for which camera world position Tc and orientation
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Rc (both matrices in homogeneous form) are known as are intrinsics: camera
focal length (fc) and optical center [oxc , o

y
c ]. An external process (e. g. a person

tracker) is assumed to isolate the bounding sub-volume XI ∈ V corresponding to,
and centered upon, a single subject of interest, and which is decimated to a coarse
voxel grid V = {vix, v

i
y, v

i
z} for i = [1, ..., 323] where V denotes the coarse voxel

volume passed as input to the network in Sec 3.2. Each voxel vi ∈ V projects to
coordinates (x[vi], y[vi]) in each camera view c derived in homogeneous form via
pin-hole projection:
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Given a soft matte Ic obtained, for example by background (clean-plate)
subtraction, the probability of the voxel being part of the performer in a given
view c is:

p(vi|c) = Ic(x[v
i], y[vi]). (2)

The overall probability of occupancy for a given voxel p(vi) is:

p(vi) =

C
∏

i=1

1/(1 + ep(v
i|c)). (3)

For all voxels vi ∈ V we compute p(vi) to form the coarse input PVH.

3.2 Dual Loss Convolutional Autoencoder

We use a convolutional autoencoder with a symmetrical ‘hourglass’ (encoder-
decoder) architecture. The goal of the network is learn a deep representation
given an input tensor VI ∈ R

N×N×N×1 encoding the coarse PVH, V at a given
resolution N = (32n)3, where n = {1, 2, 4} is a configuration parameter determin-
ing the degree of up-scaling required from the network (1×, 2×, 4×) respectively.
The coarse PVH input V is scaled via tri-cubic interpolation to fit VI. We
train the deep representation to solve the prediction problem VH = F(VI) for
similarly encoded output tensor VO, where

VO = F(VI) = D(E(VI)) (4)

for the end to end trained encoder (E) and decoder (D) functions The encoder
yields a latent feature representation via a series of 3D convolutions, max-pooling
and fully-connected layers. We enforce J(VI) = E(VI) where J(VI) is a skeletal
pose vector corresponding the input PVH; specifically a 78-D vector concate-
nation of 26× 3D Cartesian joint coordinates in {x, y, z}. The decoder half of
the network inverts this process to output tensor VO matching the input reso-
lution but with higher fidelity content. Fig. 3 illustrates our architecture which
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Fig. 3. Proposed convolutional autoencoder structure. The coarse input PVH is encoded
into a latent feature representation via 3D (C)onvolutional, (M)ax-(P)ooling and (F)ully-
(C)onnected layers. The decoder uses the latent representation to synthesize an up-
scaled PVH via (D)e-(C)onvolutional layers. Two skip connections bridge the latent
representation which is constrained during training to encode Cartesian joint positions.
During inference these are passed through an LSTM to enhance temporal consistency to
produce the joint position skeleton estimate. Architecture pictured here is for 2× scale-
up – in order to accommodate different receptive field sizes for VI/VO (de-)convolutional
layer count is adjusted – see Tbl. 1.

incorporates two skip connections bypassing the network bottleneck to allow the
output from a convolutional layer in the encoder to feed into the corresponding
up-convolution layer in the decoder. Activations from the preceding layer in the
main network and skip connection data are combined via mean average rather
than channel augmentation/residuals.

Tbl. 1 describes the parameters (filter count and size) of each layer. We report
experiments up-scaling to n = {1, 2, 4} requiring varying sizes of receptive field to
accommodate VI and VO. For each step up in scale, we add a single additional
convolutional layer to the encoder, and two additional de-convolutional layers to
the decoder. Max-pooling occurs always at the fourth convolutional layer, and
the filter size is 3× 3× 3 except for the first two and last two layers, where the
filter size is 5× 5× 5 .

Learning the end-to-end mapping from coarse PVH to both an up-scaled
PVH and accurate 3D joint positions requires estimation of the weights φ in F
represented by the convolutional and deconvolutional kernels.

Specifically, given a collection of M training triplets {V̂I, V̂O, Ĵ}, where pi ∈

V̂I is voxel data from a coarse (input) PVH, qi ∈ V̂O is voxel data of an ideal
up-scaled PVH, and j is a vector of ideal joint positions for the given volume.
We minimize the Mean Squared Error (MSE) at the outputs of the bottleneck
and decoder stages across M = N ×N ×N voxels:

L(φ) =
1

M

M
∑

i=1

‖F(pi : φ)− qi‖22 + λ‖E(V̂I : φ)− j‖22. (5)

These training triplets are formed by extracting voxel volumes from exemplar
multi-view video footage at resolution N ×N ×N (yielding V̂O and the artifi-
cially down-sampling to 32× 32× 32 to yield V (from which VI is up-sampled
via tri-cubic interpolation). Human pose (joint positions) corresponding to the
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Network Stage #Layers #Channels/Layer

E1 5 96* 96* 96 96-M 96
E2 6 32* 64* 96 96-M 96 96
E4 7 32* 32* 32 64-M 96 96 96

B 4 1024 1024 78-J 216

D1 6 96 96 96 96 64* 1*
D2 8 96 96 96 96 64 64 32* 1*
D4 10 96 96 96 96 64 64 32 32 32* 1*

Table 1. Convolution layer parameters for the encoder (En), bottleneck (B), and decoder
(Dn) stages for n = {1, 2, 4)×. Suffix −M indicates max-pooling. All En and Dn layers
learn 3× 3× 3 filters, except where indicated by ∗ filters are 5× 5× 5. All B layers are
fully-connected including the latent representation (3D joint positions) suffixed −J .

multi-view video frame is acquired using a commercial (Vicon Blade) human per-
formance capture system run in parallel with video acquisition (such annotations
are provided with the TotalCapture and Human3.6M datasets).

3.3 Training Methodology

To train F we use Adadelta [35] an extension of Adagrad, with the pose term of
the dual loss (eq. 5) scaled by a factor of λ. We found the approach insensitive to
this parameter up to an order of magnitude setting λ = 10−3 for all experiments.
Below 10−3, the bottleneck convergences to a semantic representation of the
pose that is stable but does not resemble joint angles — above 10−2 the network
will not converge. Data is augmented during training with a random rotation
around the central vertical axis of the PVH. Before full network training, the
encoder stage is trained separately, purely as a pose regression task, up to the
latent representation layer. These trained weights initialize the encoder stage to
help constrain the latent representation during full, dual-loss network training.
Training typically converges within 100 epochs.

3.4 Enforcing Temporal Consistency

Given the rich temporal nature of the pose sequences, it is prudent to exploit
and enforce the temporal consistency of the otherwise detection based human
joint estimation. By enforcing temporal consistency it is possible to smooth noise
in individual joint detections that otherwise would cause large estimation errors.
To learn a model of the motion over time we employ Long Short Term Memory
(LSTM) layers [36], they have been heavily utilized in applications where long
term temporal correlation can be exploited such as e.g. speech recognition [37],
video description [38], and pose estimation [39]. LSTM layers are based on a
recurrent neural network (RNN). They can store and access information over
long periods of time but are able to mitigate the vanishing gradient problem
common in RNNs through a specialized gating mechanism. The input vector
from the encoder Ji(t) = E(VI) at time t consisting of concatenated joint spatial
coordinates is passed through a series of gates resulting in an output joint vector
Jo(t). The aim is to learn the function that minimizes the loss between the
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Fig. 4. Representative visual results for pose estimation on Human 3.6M across four
test sequences (source footage from four views and inferred 3D skeletal pose).

input vector and the output vector Jo = ot ◦ tanh(ct) (◦ denotes the Hadamard
product) where ot is the output gate, and ct is the memory cell, a combination
of the previous memory ct−1 multiplied by a decay based forget gate, and the
input gate. Thus, intuitively the LSTM result is the combination of the previous
memory and the new input vector. In the implementation, our model consists of
two LSTM layers both with 1024 memory cells, using a look back of f = 5.

4 Evaluation and Discussion

To quantify the improvement in both the upscaling of low resolution volumetric
representations and human pose estimation, we evaluate over three public multi-
view video datasets of human actions. For Human 3.6M [40] we estimate the 3D
human pose, and examine the performance of the skeleton estimation and volume
upscaling in the TotalCapture [32] dataset. Finally, we visualize the results of
the skeleton estimation and upscaling on the dataset TotalCaptureOutdoor [41],
a challenging collection of multi-view human actions shot outdoors.

4.1 Human 3.6M evaluation

The 3D human pose estimation dataset Human3.6M [40] is a 4 camera view
dataset of 10 subjects performing 210 actions at 50Hz in a 360◦ arrangement.
A 3D ground truth for joint positions (key points) are available via annotation
using a commercial marker-based motion capture system, allowing quantification
of error. The dataset consists of 3.6 million video frames, balanced over 5 female
and 6 male subjects. They perform common activities such as posing, sitting and
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Approach Direct. Discus Eat Greet. Phone Photo Pose Purch.

Lin [42] 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3
ekin [43] 85.0 108.8 84.4 98.9 119.4 95.7 98.5 93.8
Tome [44] 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8
Trumble [32] 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0
Lin [45] 58.0 68.3 63.3 65.8 75.3 93.1 61.2 65.7
Martinez [46] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1

Proposed 41.7 43.2 52.9 70.0 64.9 83.0 57.3 63.5

Sit. Sit D Smke Wait W.Dog walk W. toget. Mean

Lin [42] 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1
ekin [43] 73.8 170.4 85.1 116.9 113.7 62.1 94.8 100.1
Tome [44] 110.2 173.9 85.0 85.8 86.3 71.4 73.1 88.4
Trumble [32] 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3
Lin [45] 98.7 127.7 70.4 68.2 73.0 50.6 57.7 73.1
Martinez [46] 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Proposed 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5
Table 2. A Comparison of our approach to other works on the Human 3.6m dataset

giving directions. To allow comparison to other approaches we follow the same
data partition protocol as in previous works [40, 42, 43, 45, 44, 46], and we use the
publicly released foreground mattes. The training data consists of subjects S1, S5,
S6, S7, S8 and it is tested on unseen subjects S9, S11. We compare our approach
to many previously published state of the art methods, using 3D Euclidean (L2)
error to compute accuracy. The error is measured between each ground truth
and estimated 3D joint position and is averaged over all frames and all 17 joints
in millimetres (mm). The results of our approach are evaluated qualitatively in
Fig 4 and quantitatively in Tbl. 2, drawing a comparison to state of the art
approaches.

Our approach outperforms with the lowest mean joint error on the challeng-
ing Human3.6M dataset, slightly reduced over the state of the art approach by
Martinez [46], with a similar mean joint error of just over 6cm. This is averaged
over both test subjects and the 59 sequences. The error decrease over the other
approaches is possible due to the dual loss formulation ensuring that the skeleton
is kept bounded by realistic 3D volume representations after the decoder. Our
approach struggles with the actions Sit Down and Photo, the action sit down
contains a chair and given the already poor quality of the PVH it is likely that
such incorrect joint estimations occur. In the sequences of photo the hands of the
subject are close the subject head and it is likely the PVH volume doesn’t contain
enough discriminative information to correctly estimate their location. However,
despite these two sequences, all others have a low error score and are smooth
and qualitatively realistic. We show qualitative comparisons with respect to the
ground truth in Fig. 4. To illustrate the stability of our approach across different
test subjects we performed five rounds of cross-validation using multiple pairs of
test subjects with the remaining subjects held out for training the model. Table 3
shows the standard test on S9 and S11 (mean accuracy of 62.5mm) from Table 2
against the mean and standard deviation from our cross-validation experiment.
The mean performance across random pairs of test subjects is similar to that
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Approach Direct. Discus Eat Greet. Phone Photo Pose Purch.

CrossVal mean 52.2 49.8 53.0 63.1 61.4 76.8 63.2 59.3
CrossVal sd 7.6 5.1 9.1 5.8 3.9 4.7 10.4 6.9

Proposed 41.7 43.2 52.9 70.0 64.9 83.0 57.3 63.5

Sit. Sit D Smke Wait W.Dog walk W. toget. Mean

CrossVal mean 64.9 108.3 68.9 63.0 63.6 57.4 55.0 70.2
CrossVal sd 5.2 15.8 5.7 3.2 6.9 5.2 3.0 3.3

Proposed 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5
Table 3. A Comparison of testing on subjects S9 and S11 against a five-fold cross
validation of other subject pairs on the Human 3.6m dataset

of the official S9/S11 test split, and the σ is low. Thus they serve to show the
stability of the approach across different test subject pairings.

4.2 TotalCapture evaluation

Approach SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
W2 FS3 A3 W2 FS3 A3

Tri-CPM-LSTM [28] 45.7 102.8 71.9 57.8 142.9 59.6 80.1
2D Matte-LSTM [31] 94.1 128.9 105.3 109.1 168.5 120.6 121.1
Trumble [32] 30.0 90.6 49.0 36.0 112.1 109.2 70.0

AutoEnc-Front-Half 42.0 120.5 59.8 58.4 162.1 103.4 85.4
AutoEnc-x1-LSTM 15.1 54.8 26.6 25.9 76.0 42.7 38.6
AutoEnc-x2-LSTM 13.0 47.0 23.0 21.8 68.5 40.9 34.1
AutoEnc-x4-LSTM 13.4 49.8 24.3 22.0 71.7 40.7 35.5

Table 4. Comparison of our approach on TotalCapture to other human pose estimation
approaches, expressed as average per joint error (mm).

In addition, we evaluate our approach on the TotalCapture dataset [32]. This
is also a 3D human pose estimation dataset with the ground truth joint position
provided by Vicon markers. It is also captured indoors in a volume roughly
measuring 8x4m with 8 calibration HD video cameras at 60Hz in a 360◦. There
are a total of 5 subjects performing 4 actions with 3 repetitions at 60Hz in a 360◦

arrangement. There are publicly released foreground mattes that we use as the
input to our approach. Note to provide the Vicon groundtruth the subjects in
both TotalCapture and Human3.6M are wearing dots visible to infrared cameras.
However these dots are not used explicitly by our algorithm, and their size is
negligible compared to the performance volume. There are five subjects in the
dataset, four male, and one female, each performs four diverse performances, that
are repeated 3 times: ROM, Walking, Acting, and Freestyle. The length of each
sequence is between 3000-5000 frames, this results in a total of ∼ 1.9M frames of
synchronized groundtruth video data. Especially within the acting and freestyle
sequences, there is great diversity in the actions performed, as illustrated in the
qualitative results in Fig. 5. To allow for comparison between seen and unseen
subjects in the test evaluation, the test consists of sequences Freestyle3 (FS3),
Acting (A3) and Walking2 (W2) on subjects 1,2,3,4 and 5. While the training
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Fig. 5. Representative visual results from TotalCapture showing 3D pose estimation
(×2 up-scaling). See Tbl. 4 for quantitative results.

is performed using the sequences of ROM1,2,3; Walking1,3; Freestyle1,2 and
Acting1,2 on subjects 1, 2 and 3. We compare the pose estimation error for a
number of upscale models; x1, x2, and x4 upscaling of the input PVH. Thus at
the largest upscaling the PVH volume vector is v ∈ R

128×128×128. Tbl. 4 shows
the results of the different upscaling models against the previous state of the art
for the dataset.

All three learnt upscaling models reduce the mean error of the joints by over
50% compared to previously published works for this dataset, with the error
for some subjects sequences being reduced by an order of magnitude. Figure 5
provides some examples of the actions performed by the subjects and the excellent
ability of the approach to estimating the pose.

Also, the table presents the AutoEnc-FrontHalf results, this shows initial
convolutional encoder, without the decoder loss constraints. It provides a far
higher error measure, indicating the importance of the dual loss constraining
the skeleton pose space during training and inference. It is possible to examine
the per frame error for subject 3, sequence Acting3, in Fig 6. This figure shows
how consistently low the error is across the full sequence. despite a number of
challenging poses being performed by the actor. There are a few error peaks,
especially at the centre point, and these are generally caused by a failure in
the background segmentation from which the input PVH is generated, resulting
in, for example, missing or weakly defined limb extremities. This data is under-
represented within the training data, however, otherwise the error is low. Use of
the symmetrical network and dual loss has provided a large reduction in joint
error for the skeleton it is also possible to upscale the initially very coarse and
small volume at up to 4× times. Figure 7 displays the initial volume estimate, the
4x upscaled volume and the skeleton estimate for 1x, 2x and 4x for a selection of
example frames on the TotalCapture dataset. The pose estimate for each upscaled
model (1×,2× and 4×) is nearly identical as born out by the results previously
presented in Tbl. 4. however, the volume enhancement from the 4× upscaling
is impressive allowing for greater details to be hallucinated without noise or
degeneration. Tbl. 5 compares the input and output PVH volumes against a
groundtruth high resolution volume generated directly from the camera views.
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Fig. 6. Per frame skeletal error millimetres (mm) per joint on subject S3 A3 in the
TotalCapture test sequence.

The input volume is a naive tricubic upsampled volume and the error metric is
MSE. The table shows that an order of magnitude improvement occurs using

Approach SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
W2 FS3 A3 W2 FS3 A3

AutoEnc-x2 input 9.27 10.14 9.65 9.80 10.66 10.21 9.88
AutoEnc-x2 output 0.34 0.37 0.34 0.40 0.46 0.39 0.37
AutoEnc-x4 input 9.83 10.83 10.19 10.64 11.45 11.03 10.56
AutoEnc-x4 output 0.50 0.55 0.50 0.58 0.68 0.59 0.56

Table 5. Accuracy of generated volumes compared to tri-cubic upsampled input, over
TotalCapture dataset. Expressed as mean voxel squared error ×10−3 from ground truth
high resolution volume

our proposed method against a naive tricubic up-sampling method. Comparing
the x2 and x4 outputs, the MSE increases only slightly despite the generative
doubling of the actor volume. An illustration of the upscaling performance is
shown in Figure 8, where the input and output volumes at up to x4 upscaling
are shown for the TotalCapture dataset.

Despite the initial block low-res PVH, we are able to accurately generate
a hi-res PVHs at up to 4 times the size, that compare favorably to a natively
generated (i. e. R128×128×128) PVH. we are able to maintain extremity and no
phantom volumes are formed in the upscaling process. Figure 9 shows the per
frame MSE over a sequence, for x2 and x4 upscaling. There is little difference
between the two scales despite the greatly increased volume. Table 6 shows the
training and inference times (the latter near real-time) of our approach.
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Fig. 7. Results illustrating the ×1,×2,×4 upscaled volume for a representative coarse
PVH alongside upscaling inferred skeletons.

4.3 Outdoor footage evaluation

To further demonstrate the flexibility of our upscaling and pose estimation ap-
proach, we test on a recent challenging dataset, TotalCaptureOutdoor [24]. This
is a multi-view video dataset captured outdoors in challenging uncontrolled con-
ditions with a moving and varying background of trees and differing illumination.
There are 6 video cameras placed in a 120◦ arrangement around the subject,
with a large 10x10m capture volume used. This large capture volume means the
subjects are small in the scene as shown in Figure 10 below. For this dataset
there are no released mattes, therefore we background subtraction was performed
as a per pixel difference in HSV colour space to provide robust invariance against
illumination change. There is no groundtruth annotation available for TotalCap-
tureOutdoor, however, we are present several illustrative results on two sequences:
Subject1, Freestyle, and Acting1. Given the small size of the subjects, a traditional
3D pose estimation or volume reconstruction would be challenging. However as
shown in Figure 11 we are able to use a small blocky low resolution PVH volume,
that is upscaled by a factor of ×4 to produce a smooth approximation of the
distant subject together with an accurate estimation of their joints. Furthermore,

Encoder Pre-train Full Training Inference

PVH Scale
Epochs to
converge

minutes/epoch
Epochs to
converge

minutes/epoch millisec

x1 50 34 20 71 15
x2 42 32 40 58 21
x4 13 43 23 180 313

Table 6. Computational cost of model training and inference (TotalCapture dataset)
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Fig. 8. Illustration of the upscaling ability of our approach on the TotalCapture dataset
together with the native 128x128x128 groundtruth PVH

despite the camera being arranged in a 120◦ arc, we are able to simulate novel
viewpoints of the upscaled full volume as shown in Figure 12, where complete
360 views are possible. This upscaling enables a future avenue of work, creating
a 3D model of the upscaled volume to produce VR/AR compositions or for film/
sports post-production.

5 Conclusion

We proposed a deep representation for volumetric (3D) human body shape driven
by a latent encoding for the skeletal pose that can, in turn, be inferred from very
coarse (R32×32×32) volumetric shape data. In a single inference pass our convolu-
tional autoencoder both up-scales up the provided volumetric data (demonstrated
to a factor of 4×) and predicts 3D human pose (joint positions) with greater or
equal accuracy to state of the art deep human pose estimation approaches.

Fig. 9. Plotting volumetric reconstruction error per frame (MSE/voxel) on unseen
subject S4 A3 of the TotalCapture test sequence.
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Fig. 10. TotalCaptureOutdoor dataset; red box indicates the person in the scene.

Fig. 11. Representative TotalCaptureOutdoor results showing the low-res input PVH,
and resulting skeleton and upscaled volumes

Future work could explore the end-to-end integration of the LSTM to the
autoencoder during training since the latter currently learns no temporal prior
to aid pose or volume regression. Nevertheless, we achieve state of the art results
on very low resolution volumetric input, indicating the technique has potential to
enable behavioural analytics using multi-view video footage shot at a distance.
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