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Abstract. As a second-order pooled representation, covariance matrix
has attracted much attention in visual recognition, and some pioneering
works have recently integrated it into deep learning. A recent study shows
that kernel matrix works considerably better than covariance matrix for
this kind of representation, by modeling the higher-order, nonlinear re-
lationship among pooled visual descriptors. Nevertheless, in that study
neither the descriptors nor the kernel matrix is deeply learned. Worse,
they are considered separately, hindering the pursuit of an optimal rep-
resentation. To improve this situation, this work designs a deep network
that jointly learns local descriptors and kernel-matrix-based pooled rep-
resentation in an end-to-end manner. The derivatives for the mapping
from a local descriptor set to this representation are derived to carry
out backpropagation. More importantly, we introduce the Daleckǐi-Krěin
formula from Operator theory to give a concise and unified result on
differentiating general functions defined on symmetric positive-definite
(SPD) matrix, which shows its better numerical stability in conducting
backpropagation compared with the existing method when handling the
Riemannian geometry of SPD matrix. Experiments on fine-grained im-
age benchmark datasets not only show the superiority of kernel-matrix-
based SPD representation with deep local descriptors, but also verify the
advantage of the proposed deep network in pursuing better SPD repre-
sentations. Also, ablation study is provided to explain why and from
where these improvements are attained.

Keywords: Kernel matrix, SPD representation, Deep learning, Fine-
grained image recognition.
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1 Introduction

To deal with image variations, modern visual recognition usually models the ap-
pearance of an image by a set of local descriptors. They evolve from early filter
bank responses, through traditional local invariant features, to the activation
feature maps of recent deep convolutional neural networks (CNNs). During the
course, how to pool a set of local descriptors to obtain a global image representa-
tion has been a central issue, and many excellent methods have been proposed in
the literature [1–4]. In the past few years, pooling a set of descriptors with covari-
ance matrix has attracted increasing attention and shown promising results in
object recognition [5], image set classification [6], and so on. It characterizes the
pairwise correlation of descriptor components, and is generally called symmet-
ric positive-definite (SPD) representation since covariance matrix is SPD. Also,
this inspires the research on classification, clustering, and dimension reduction
with respect to SPD representations [7–9]. In particular, several recent pioneer-
ing works integrate this covariance-matrix-based SPD representation into deep
CNNs to jointly learn the covariance matrix with local visual descriptors. These
works investigates multiple important issues on this deep learning framework,
including the derivation of some matrix-based functions for backpropagation, the
proper way to normalise covariance matrix, the help of second-order information
to large-scale visual recognition, and so on. Together, they further demonstrate
the great potential of this kind of representation [10–14].

The above works focus on covariance-matrix-based SPD representation. A
recent progress on SPD representation is to model the nonlinear information
in a set of descriptors [15–17]. Particularly, the work in [16] directly uses a
kernel matrix to represent a descriptor set demonstrates its superiority. Given
a set of d-dimensional descriptors, a d × d kernel matrix is computed with a
predefined kernel function, where each entry is the kernel value between the
realization of two descriptor components in this set. This method effectively
models the nonlinear correlation among these descriptor components. The kernel
function can be flexibly chosen to extract various nonlinear relationship, and
the covariance matrix corresponds to the special case using a linear kernel. The
resulting kernel-matrix-based SPD representation maintains the same size as its
covariance-matrix-based counterpart, but produces considerable improvement
on recognition performance.

Upon the existing literature, this work further improves the research on SPD
representation from the following aspects. Firstly, different from its covariance
counterpart, the kernel-matrix-based SPD representation in [16] has neither been
developed upon deep local descriptors (instead, traditional descriptors like pixel
intensities or Gabor filter responses are used only) nor been jointed learned with
these descriptors via a deep learning framework. As a result, its potential has
not been sufficiently explored for image recognition. The separated consideration
of local descriptors and the kernel matrix in [16] prevents them from effectively
negotiating with each other to obtain an optimal SPD representation for the
ultimate goal of classification. Secondly, the incorporation of SPD representa-
tion, be it covariance-matrix-based or kernel-matrix-based, into deep networks
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complicates the backpropagation process. Also, to make the resulting SPD repre-
sentation better work with the classifier, a matrix logarithm is usually employed
to map the kernel matrix from Riemannian geometry to Euclidean geometry.
Sometimes, matrix square rooting has also been used for this purpose. In the
literature, the seminal work in [18] develops the backpropagation algorithm for
matrix logarithm from the scratch. Although instructive and informative, it has
been reported in the literature that this matrix backpropagation could have nu-
merical stability issue when used to train the deep networks and some remedy
has to be developed instead [12].

To address the first issue, this work builds the kernel-matrix-based SPD rep-
resentation upon deep local descriptors and benchmarks it against the state-of-
the-art image recognition methods. Moreover, we develop a deep network called
DeepKSPD to jointly learn the deep local descriptors and the kernel-matrix-
based SPD representation in an end-to-end training manner. Particularly, for the
proposed DeepKSPD network, we highlight the layers designed to be different
form the existing deep networks on covariance-matrix-based SPD representation
and explain the necessity of these layers.

To address the second issue, we introduce the Daleckǐi-Krěin formula in Op-
erator theory [19, 20] to the computer vision community, and utilise it to derive
all the matrix derivatives involved in the mapping from a local descriptor set to
the kernel-matrix-based SPD representation to fulfill the backpropagation algo-
rithm for the proposed deep network. As shown, the Daleckǐi-Krěin formula can
provide us a more concise and unified result on the gradients of the functions
on SPD matrices, regardless of whether matrix logarithm or matrix α-rooting
are used as the normalisation method. We give theoretical proof to illustrate the
relationship of this formula to the matrix backpropagation work [18], and show
the discrepancy that leads to the numerical stability issue of [18].

Experimental study is conducted on multiple benchmark datasets, especially
on fine-grained image recognition, to demonstrate the efficacy of the proposed
DeepKSPD framework. Firstly, in contrast to the existing kernel-matrix-based
representation built upon traditional local descriptors, we demonstrate the supe-
riority of the kernel-matrix-based SPD representation using deep local descrip-
tors. Secondly, we demonstrate the performance of the proposed DeepKSPD
network in jointly learning local descriptors and the kernel-matrix-based SPD
representation, with both normalisation methods of matrix logarithm and matrix
α-rooting. Thirdly, ablation study is conducted to manifest the functions of the
key layers in DeepKSPD, the improvement due to the kernel-matrix-based SPD
representation, and the better numerical stability by using the gradients derived
through the Daleckǐi-Krěin formula. As will be seen, the proposed DeepKSPD
network achieves the overall highest classification accuracy on the tested bench-
mark datasets, when compared with the related deep learning based methods.
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2 Related Work

In the past decade, much work on covariance-matrix-based representation has
been done in computer vision and machine learning, from a variety of perspec-
tive. Also, the recent integration of this representation with deep learning keeps
producing new research results. In the following, we focus on the important
existing works that are closely related to the DeepKSPD proposed in this paper.

LetXd×n = [x1,x2, · · · ,xn] denote a data matrix, in which each column con-
tains a local descriptor xi (xi ∈ Rd), extracted from an image. The SPD repre-
sentation traditionally computes a d×d covariance matrix over X as Σ = X̄X̄T

(or simply XXT ), where X̄ denotes the centered X. Originally, this covariance
matrix is proposed as a region descriptor, for example, characterizing the co-
variance of the color intensities of pixels in an image patch. In the past several
years, it has been employed as a promising second-order pooled image represen-
tation in visual recognition. One line of research on SPD representation models
the nonlinear information in a set of descriptors. The work in [15] implicitly
maps each descriptor xi (i = 1, 2, · · · , n) onto a kernel-induced feature space
and computes a covariance matrix therein. Nevertheless, this results in a high
(or even infinite) dimensional covariance matrix which is difficult to manipulate
explicitly or computationally. Another work in [16] directly computes a kernel
matrix K over X as follows. Let fj denote the jth row of X, consisting of the n
realizations of the jth component of x. The (i, j)th entry of K is calculated as
k(fi,fj), with a predefined kernel function k such as a Gaussian kernel. In this
way, the nonlinear relationship among the d components can be extracted. The
resulting kernel matrix K maintains the size of d×d and is more robust against
the singularity issue caused by small sample. Covariance matrix is a special case
in which k reduces to a linear kernel. As reported in [16], this kernel-matrix-
based SPD representation considerably outperforms its covariance counterpart
and the method in [15] on multiple visual recognition tasks.

Research on integrating the SPD representation with deep local descriptors or
even into deep networks is still in its very early stage but has demonstrated both
theoretical and practical values. In the recent work of Bilinear CNN [21, 13], an
outer product layer is applied to combine the activation features maps from two
CNNs, and this produces clear improvement in fine-grained visual recognition.
This outer product essentially leads to a covariance matrix (in the form ofXXT )
when the two CNNs are set as the same. The work in [18] trains a deep network
for image semantic segmentation by using the covariance-matrix-based SPD rep-
resentation. It carefully derives the gradients of covariance matrix functions from
the scratch to carry out backpropagation. Considering that SPD matrix induces
a Riemannian geometry, various normalisation operations have been used in
the literature to make the matrix work with the classifiers that usually assume
a Euclidean geometry. Matrix logarithm normalisation, log(·), has been com-
monly used [22], and it is also taken in in [18]. Recently, the work in [12] shows
that matrix square-rooting normalisation can even do better than the matrix
logarithm counterpart, when applied to covariance-matrix-based SPD represen-
tation for fine-grained image classification. The work in [10] further shows and
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Fig. 1. The structure of the proposed DeepKSPD network

analyses the effectiveness of matrix square-rooting normalisation on large-scale
image classification. Due to the verified efficacy of SPD representation on visual
recognition, more works are being developed in recent literature from a variety
of perspectives. For example, instead of directly computing a kernel as usual, the
authors of [17] utilises Taylor series to approximate a kernel function via explicit
feature maps, which allows them to generalise the Bilinear CNN framework to
consider higher-order feature interaction.

3 The proposed network DeepKSPD

DeepKSPD consists of three blocks, as shown in Fig. 1. The leftmost block maps
an input image into a set of deep local descriptors via a convolutional neural
network. The rightmost block includes the commonly used fully connected and
softmax layers for classification. In between is our design of KSPD block, which
contains the layers related to the kernel-matrix-based representation and the ma-
trix normalisation operation. For example, the input of the KSPD block is the
output of the last convolutional layer (conv5 3) of the VGG-16 network (other
CNN networks can certainly be used). It consists of d activation feature maps
of the size of w × h. They will go through the L2 normalization layer and the
KSPD layer which computes the kernel values among the d maps. Following
that is the matrix normalisation layer (say, matrix logarithm or square-rooting
based) to handle the Riemannian geometry of SPD matrix. Finally, since the
KSPD representation is a symmetric matrix, a layer extracting its upper trian-
gular and diagonal entries is deployed next to avoid redundancy. Particularly, an
L2 normalization and a batch normalization layer (not confuse with the above
matrix normalisation layer) are added at the two ends of the KSPD block, as
further explained below. We find that they help the kernel-matrix-based SPD
representation to produce better classification.

L2 normalisation layer. As aforementioned, its input is the output of the
last convolutional layer with the dimensions of w × h × d. L2 normalisation is
done within each feature channel. That is, each channel with the dimensions of
w×h are normalised to have a unit norm. This makes feature vectors and image
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representation across a whole dataset comparable in terms of magnitude. Also, it
helps to render the to-be-computed kernel values into their working range. This
is essentially true when using the Gaussian RBF function which is exponential
and bounded to (0, 1]. In this case, a poor initialisation of the Gaussian width θ
(see Eq.(1)) could cause the kernel values inK too close to the boundary, making
the backpropagation process inefficient. Also, it could decrease the discriminative
capability of the learned SPD representation. With this L2 normalisation layer,
the proposed network becomes less sensitive to initialisation by restricting the
feature vectors to a proper range and decreasing their variances.

Kernel SPD layer. The local descriptors calculated from the L2 normal-
isation layer are pooled with a kernel function to obtain a global image repre-
sentation. The input consists of the d normalised activation feature maps of the
size of w × h. These feature maps are reshaped along the depth dimension d,
and this gives the data matrix Xd×n with n = w × h. Afterwards, the kernel
matrix Kd×d is computed over X to pool the n deep local descriptors, capturing
the pairwise nonlinear relationship among the d feature maps. Note that in this
layer the Gaussian width θ in Eq.(1) will be jointly learned via backpropagation.

Matrix function Layer. Following the KSPD layer, this framework per-
forms matrix normalisation to handle the Riemannian geometry of SPD matrix,
and this produces the matrix H = f(K). Traditionally, the normalisation func-
tion f is chosen as matrix logarithm. Recent studies [12, 10] report that matrix
square rooting normalisation performs even better in majority of the cases. In
our work, all the theoretical analysis assumes no specific normalisation operation
and can handle any (continuously differentiable real) function f in backpropa-
gation. In addition, Using the theoretical result provided in our work, we further
generalize the existing matrix square-rooting normalisation to a matrix α-rooting
normalisation, in which the power α is automatically learned via backpropaga-
tion instead of being fixed as 0.5. We also found that L2 normalising the resulting
matrix to have a unit norm allows a smoother convergence.

Batch normalisation layer. Batch normalisation layer is used as a post-
processing step in our framework. During the forward propagation, each batch
is normalised to have zero-mean and unit standard deviation. During the test,
overall population statistics are used. In the literature, a layer alike has been
used after convolutional layers to speed up convergence and reduce the sensitiv-
ity to initialisation. This batch normalisation layer in our framework functions
in a similar way: it speeds up the convergence and allows a wider selection of
an initial Gaussian width θ, in conjunction with the above L2 normalisation
layer, and helps to increase the overall classification accuracy subsequently. In
the literature, the Bilinear CNN models use the setting of “element-wise signed
square-rooting plus L2 normalisation” after the image representation stage as
the post-processing stage. Our investigation shows that the above batch normal-
isation setting works better with the proposed DeepKSPD framework and it is
therefore taken in this paper.
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4 End-to-end training of DeepKSPD

4.1 Derivatives between X and the kernel matrix K

Recall that Xd×n denotes a set of local descriptors. Considering that Gaussian
RBF kernel is commonly used in the literature and that it is used in [16] to
show the advantage of the kernel-matrix-based representation, we exemplify the
proposed DeepKSPD with this kernel and derive the related gradients. Other
kernels such as polynomial kernel can be dealt with in a similar way.

Let Id×d and 1d×d denote an identity matrix and a matrix of 1s. Let ◦ denote
the entry-wise product (Hadamard product) of two matrices, and exp[·] denote
an exponential function applied to a matrix in an entry-wise manner. In this
way, the RBF kernel matrix K computed on X can be compactly expressed as

K = exp
[

−θ ·
(

(I ◦XX
T )1+ 1T (I ◦XX

T )T − 2XX
T
)]

, (1)

where θ is the Gaussian width. Let J be the objective function to be optimized
by the DeepKSPD network. By temporarily assuming that the derivative ∂J

∂K
has been known (will be resolved in the next section), we now work out the
derivatives ∂J

∂X
and ∂J

∂θ
. J is a composition of functions applied to X and it can

be rewritten as a function of each of the intermediate variables as follows.

J(X) = J1(A) = J2(E) = J3(K), (2)

where A, E, and K are defined, respectively, as

A = XX
T
, E =

(

(I ◦A)1+ 1T (I ◦A)T − 2A
)

, K = exp[−θ ·E]. (3)

Following the rules for differentiation, the following relationship can be obtained

δA = (δX)XT +X (δX)T ,

δE = (I ◦ δA)1+ 1T (I ◦ δA)T − 2δA, δK = (−θK) ◦ δE.
(4)

It is known from the differentiation of a scalar-valued matrix function that

δJ =

〈

vec

(

∂J3

∂K

)

, vec(δK)

〉

= trace

(

(

∂J3

∂K

)T

δK

)

, (5)

where vec(·) denotes the vectorization of a matrix and 〈·, ·〉 denotes the inner
product. Combining this result with δK = (−θK) ◦ δE in Eq.(4) and using the
identity that trace(AT (B ◦C)) = trace((B ◦A)TC), we can obtain

δJ = trace

(

(

∂J3

∂K

)T

δK

)

= trace

(

(

−θK ◦
∂J3

∂K

)T

δE

)

= trace

(

(

∂J2

∂E

)T

δE

)

.

(6)
The last equality holds because from Eq.(2) we know that δJ can also be written

as trace
(

(

∂J2

∂E

)T
δE

)

. Noting that Eq.(6) is true for any δE, we obtain

∂J2

∂E
= (−θK) ◦

∂J3

∂K
. (7)
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Repeating the above process by using the relationship of δE and δA and that
of δA and δX in Eq.(4), we can further have (proof is provided in the supple-
mentary file

∂J1

∂A
= I ◦

((

∂J2

∂E
+

(

∂J2

∂E

)T
)

1T

)

− 2
∂J2

∂E
;

∂J

∂X
=

(

∂J1

∂A
+

(

∂J1

∂A

)T
)

X. (8)

In addition, the derivative ∂J
∂θ

can be obtained as

∂J

∂θ
= trace

(

(

∂J3

∂K

)T

(−K ◦E)

)

. (9)

Therefore, when ∂J3

∂K
is available, we can work out ∂J

∂X
and ∂J

∂θ
accordingly.

4.2 Derivatives of the matrix function on the kernel matrix K

Now, to obtain ∂J3

∂K
we deal with the matrix normalisation operation between K

and J , which can be written as

J(X) = J4(H) = J4(f(K)). (10)

Note that ∂J4

∂H
is ready to obtain because it only involves the classification layers

like fully-connected layer, softmax regression and cross-entropy computation.
The key issue is to obtain ∂H

∂K
. Now, we introduce the Daleckiǐ-Kreǐn formula [19]

to give a concise and unified result on differentiating SPD matrix functions, of
which both matrix logarithm and square-rooting normalisations are special cases.
Theorem 1 (pp.60, [20]) Let Md be the set of d×d real symmetric matrices. Let
I be an open interval and Md(I) is the set of all real symmetric matrices whose
eigenvalues belong to I. Let C1(I) be the space of continuously differentiable real
functions on I. Every function f in C1(I) induces a differentiable map from A
in Md(I) to f(A) in Md. Let DfA(·) denote the derivative of f(A) at A. It is a
linear map from Md to itself. When applied to B ∈ Md, DfA(·) is given by the
Daleckiǐ-Kreǐn formula as

DfA(B) = U

(

G ◦
(

U
T
BU

))

U
T
, (11)

where A = UDUT is the eigen-decomposition of A with D = diag(λ1, · · · , λd),
and ◦ is the entry-wise product. The entry of the matrix G is defined as

gij =

{

f(λi)−f(λj)

λi−λj
if λi 6= λj

f ′(λi), otherwise.
(12)

This theorem indicates that for a matrix function f(·) applied to A, perturbing
A by a small amount B will vary f(A) by the quantity DfA(B) in Eq.(11),
where the variation is in the sense of the first-order approximation. Now we
show how to derive the functional relationship between ∂J4

∂H
and ∂J3

∂K
based on

Theorem 1. According to Eq.(2) and following the argument in Eq.(5),

δJ = trace

(

(

∂J4

∂H

)T

δH

)

= trace

(

(

∂J3

∂K

)T

δK

)

. (13)
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Applying the Daleckǐi-Krěin formula, we can explicitly represent δH as

δH = DfK(δK) = U

(

G ◦
(

U
T
δKU

))

U
T
. (14)

Replacing δH in Eq.(13) with this result and applying the properties of trace(ATB),
the relationship of ∂J4

∂H
and ∂J3

∂K
can be derived similarly as in Eqs.(6) and (7):

∂J3

∂K
= U

(

G ◦

(

U
T ∂J4

∂H
U

))

U
T
. (15)

where U and G are obtained from the eigen-decomposition of K = UDUT . For
matrix logarithm (or square-rooting) normalisation, gij in Eq.(12) is computed

as
log λi−log λj

λi−λj
(or

√
λi−

√
λj

λi−λj
) when i 6= j, and λ−1

i (or 1
2
√
λi
) otherwise.

The work in [18] derives the derivative of the matrix logarithm from the
scratch with the basic facts of matrix differentiation, which is detailed and in-
structive. As previously mentioned, that work does not connect with the well-
established Daleckǐi-Krěin formula. Moreover, it is reported that the derivation
in [18] could lead to numerical instability during training a deep model [12]. To
solve this problem and clarify the link with the existing result in [18], we prove
the following proposition (proof is provided in the supplementary file).
Proposition 1 The functional relationship obtained in [18] shown in Eq.(16)
(with the notation in this work for consistency) is equivalent to that in Eq.(15)
obtained by this work.

∂J3

∂K
= U

{(

G̃ ◦

(

2UT

(

∂J4

∂H

)

sym

U log(D)

))

+

(

D
−1

(

U
T ∂J4

∂H
U

))

diag

}

U
T
,

(16)

where K = UDUT ; g̃ij = (λi − λj)
−1 when i 6= j and zero otherwise; Adiag

means the off-diagonal entries of A are all set to zeros; and Asym is defined to
represent (A+AT )/2.

Connecting with the results in operator theory not only facilitates the access
to the derivatives of general SPD matrix functions, but also provides us more
insight on these functions that could be useful for future research.

4.3 Numerical Stability Issue of the Matrix Gradients

The numerical stability issue associated with the derivation in [18] is explained
as follows. Recall that Eq.(16) is used in [18] to calculate the gradients of the
matrix function ∂J3/∂K. In the matrix G̃, the elements are g̃ij = (λi − λj)

−1

when i 6= j and 0 when i = j in Eq.(16). When two of the eigenvalues are too
close to each other, due to the finite precision arithmetic, the λi will cancel λj

and the g̃ij will become infinity. This causes problems in the backpropagation
process, as reported by [12]. Using double precision is not enough to alleviate
the problem. A few possible workarounds are: excluding the batches causing this
problem or appending a small number ǫ to the term g̃ij . However, both of these
approaches cause considerable performance drop.
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In our derivation with the Daleckǐi-Krěin formula, this issue is resolved in

Eq.(12), where gij is defined as
f(λi)−f(λj)

λi−λj
if λi 6= λj when λi 6= λj and

f ′(λi) otherwise. In this case, when λi is too close to λj , we can formulate

the problem as gij = limλi→λj

f(λi)−f(λj)
λi−λj

, where λj is viewed as constant.

Since this is a 0
0 uncertainty, by applying L’Hôpitals rule we obtain that gij =

limλi→λj

f(λi)−f(λj)
λi−λj

= limλi→λj

f ′(λi)
1 = f ′(λj). In this way, the numerical sta-

bility in [18] is avoided. This theoretical analysis will be further supported by
an experiment conducted later in this paper.

4.4 Generalise to Matrix α-rooting normalisation

We are aware of the recent success of matrix square-rooting [12, 10] used in
deep learning structures to handle the Riemannian geometry of SPD matrices.
In addition to highlighting that matrix square-rooting and matrix logarithm
are two special cases of our derivation in Eq.(12), we further generalise the
existing matrix square-rooting normalisation to a case that we call “matrix α-
rooting” normalisation. It is defined as f(λ) = λα where α is a parameter to
be jointly learned by our DeepKSPD framework, instead of being fixed as 0.5
in the matrix square-rooting normalisation. ∂J3

∂K
will still maintain as in Eq.(15)

and the derivative with respect to the parameter α, ∂J
∂α

, can be derived as:

∂J

∂α
= trace

(

(

∂J4

∂H

)T
[

U(log(D) ◦Dα)UT
]

)

, (17)

where U and D are the eigen-decomposition of K as previous. Note that this
matrix α-rooting is still guaranteed to be numerically stable in backpropagation,
as shown in Section 4.3. Its performance will also be experimentally verified later.

5 Experimental Result

We have two tasks: i) test the performance of KSPD built upon deep local
descriptors and ii) test the performance of the proposed DeepKSPD network,
on fine-grained image and scene recognition. Bounding boxes are not used in all
datasets. Example images are in the supplementary file.

Datasets. Four benchmark data sets are tested. For scene recognition, the
MIT Indoor data set has 67 classes with predefined 5600 training and 1340
test images. For fine-grained image recognition, three data sets of Cars [23],
Birds [24], and Aircrafts [25] are tested. The Cars dataset has 16185 images
from 196 classes; the Aircrafts contains 10200 images of 100 classes (variants).
The Birds has 11788 samples of 200 bird species. Note that in order to have
a fair comparison with [13] and [12] on the Aircraft dataset, images are first
resized 512 × 512 then a central 448 × 448 patch is cropped. This increases the
classification accuracy by 2% ∼ 3%.

Setting of Proposed Methods. For the first task, we propose a method called
KSPD-VGG, which builds kernel-matrix-based SPD representation upon the
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deep local descriptors from VGG-19 pretrained on ImageNet. Specifically, the
512 feature maps (of size 27× 27) of the last convolutional layer are reshaped to
form 512 vectors with the dimensions of 729. These vectors are further used to
compute the 512× 512 kernel matrix K. Then, the matrix logarithm is applied
and the resulting KSPD representations of all images are further processed by
PCA dimension reduction (to 4096 dimensions), standardization (to zero mean
and unit standard deviation), and ℓ2 normalization. A linear SVM classifier is
employed to perform the classification.

For the second task, the proposed DeepKSPD network is trained and tested.
DeepKSPD has three blocks (Fig. 1). In the local descriptor block, the net-
work hyperparameters are set by following VGG-16. In the proposed KSPD
block, no hyperparameter needs to be tuned, and θ and α will be automatically
learned with their initial values set as 0.1 and 0.5, respectively, for all the ex-
periments. We test both matrix logarithm (denoted as DeepKSPD-logm) and
matrix α-rooting (denoted as DeepKSPD-rootm) normalisations. In the classifi-
cation block, the size of FC layer is set as the number of classes for each data set.
DeepKSPD is trained by Adaptive Moment Estimation (Adam) in mini-batch
mode (with the batch-size of 20). A two-step training procedure [26] is applied
as good performance is observed [26, 21]. Specifically, we first train the last layer
using softmax regression for 100 epochs, and fine-tune the whole system. The
total training epochs are 70 ∼ 100. We only use flipping in training time as data
augmentation.

Methods in Comparison. We compare our KSPD-VGG and DeepKSPD with
methods that are either comparable or competitive in the literature, as listed in
the first column in Table 1, and are roughly grouped into three categories.

The first category can be deemed as feature extraction methods, to which
KSPD-VGG belongs. This category also includes FV-SIFT [27], FC-VGG [18],
FV-VGG [28], and COV-VGG (standing for covariance-matrix-based SPD rep-
resentation). COV-VGG’s setting is same as that of KSPD-VGG, except that
a covariance matrix is constructed instead of a kernel matrix. Note that, we
directly quote the results of FV-SIFT and FC-VGG from the literature, and
provide our own implementation of FV-VGG, COV-VGG, and KSPD-VGG to
ensure the same setting for fair comparison.

The second category includes six end-to-end learning methods. DeepKSPD-
logm and DeepKSPD-rootm are the proposed methods. B-CNN denotes the
bilinear CNN method [21] and Improved BCNN [12] is an extension of B-CNN
where matrix square-rooting is applied. CBP [14] and LRBP [11] are both COV-
based methods and KP [17] estimates Gaussian RBF features using Taylor series.

In the third category, additional methods previously reported on these data
sets are quoted to extend the comparison and provide a whole picture.

Results and Discussion. From Table 1 we have the following observations. First,
the proposed KSPD-VGG, DeepKSPD-logm, DeepKSPD-rootm demonstrate
their effectiveness for visual recognition. On every dataset, the best performance
is achieved by the proposed DeepKSPD. Moreover, DeepKSPD is superior to
KSPD-VGG (up to 9.7 percentage points on Cars) and other competitive meth-



12 M Engin, L Wang, L Zhou, X Liu

Table 1. Comparison of Methods

ACC (%) MIT indoor Cars Aircraft Birds Average

Symbiotic Model [29] – 78.0 72.5 – –

FV-revisit [30] – 82.7 80.7 – –

FV-SIFT [27] – 59.2 61.0 18.8 –

FC-VGG [21] 67.6 36.5 45.0 61.0 52.5

FV-VGG [28] 73.7 75.2 72.7 71.3 73.1

FV-VGG-ft [21] − 85.7 78.7 74.7 73.1

COV-VGG 74.2 80.3 81.4 76 78.0

KSPD-VGG (proposed) 77.2 83.5 83.8 78.5 80.1

BCNN [13] 77.6 91.3 86.6 84.1 84.5

Improved BCNN [12] − 92.0 88.5 85.8 −

CBP [14] 76.17 − − 84.0 −

LRBP [11] − 90.9 87.3 84.2 −

KP [17] − 92.4 86.9 86.2 −

DeepKSPD-logm (proposed) 79.6 90.5 91.5 84.8 86.6

DeepKSPD-rootm (proposed) 81.0 93.2 91.0 86.5 87.9

ods, demonstrating the essentials of the end-to-end learning of kernel-matrix-
based representation. Among the two DeepKSPD methods, DeepKSPD-rootm
performs better on MIT indoor, Cars, and Birds, while DeepKSPD-logm per-
forms better on Aircraft. Overall, DeepKSPD-rootm wins over DeepKSPD-logm,
which is consistent with the observation in [13] that matrix α-rooting seems to
have some advantages in scaling the eigenvalues over matrix logarithm.

Second, KSPD-based methods consistently win COV-based ones (or bilin-
ear) on all data sets, either based on feature extraction (KSPD-VGG vs COV-
VGG) or using end-to-end training (Deep KSPD vs other COV-based methods
including B-CNN, improved B-CNN, CBP and LRBP). It is interesting to see
that KP also shows promising performance by approximating kernel representa-
tion, which supports our arguments of employing kernel representation for visual
recognition. However, this method neither directly learns kernel representation
nor explicitly handles the Riemannian geometry of SPD matrix as our method.
Instead, it approximates the kernel representation by Taylor expansion.

Third, the SPD representation (being it based on an outer product, covari-
ance, or kernel matrix) outperforms Fisher vector representation in the given
tasks. DeepKSPD also outperforms FV-VGG-ft obtained from fine-tuned VGG-
16. The latter attained 78.7% on Aircraft, 74.7% on Birds, and 85.7% on Cars [21],
which is worse than 81.0%, 86.5% and 93.2% achieved by DeepKSPD.

Fourth, in the literature, matrix logarithm normalisation has not been very
successfully incorporated into deep CNNs up to our work due to numerical in-
stability issue. Furthermore, it was dismissed due to poor results compared to
matrix square-rooting. Our numerically stable gradients render the embedding
of matrix logarithm into deep architecture possible. More importantly, we show
that matrix logarithm is still relevant as it yields the best results on Aircraft
dataset. Thus, matrix functions to handle the Riemannian geometry could be
regarded as hyper-parameters and properly chosen via validation mechanism.
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Fig. 2. On numerical stability.

ACC (%) MIT
indoor

Cars Aircraft Birds

Improved
BCNN [12]

− 92.0 88.5 85.8

DeepCOV-
rootm

79.2 91.7 88.7 85.4

DeepKSPD-
rootm

81.0 93.2 91.0 86.5

Table 2. DeepKSPD vs Deep-
COV.

Numerical stability. Before ending the experiment part, we also conduct a
test on the numerical stability of our formulation of matrix derivative. We in-
vestigate the performance of our DeepKSPD-logm on MIT indoor dataset with
the derivative of matrix logarithm computed by [18] and our formulation, respec-
tively. The result is shown in Fig. (2). As can be seen, our method achieves lower
classification error consistently in all epochs. After 100 epochs of training, the
classification error is 22.4% using our method, and 24% using the formulation
in [18], well demonstrating the advantage of our derived unified solution.

6 Ablation Study

Different from the literature, our framework utilizes an L2 normalisation layer
before the pooling layer and a batch normalization layer after. Traditionally,
these layers are not used in bilinear models. However, RBF kernel matrix has a
very different nature than covariance matrix. As previously explained, its kernel
values are bounded between 0 and 1. If one feature channel dominates the others
in terms of the magnitude, it will cause numerical problems. A common way in
machine learning to tackle this problem is to normalise feature channels o make
them comparable in magnitude. We also adopt this approach and integrate L2

normalisation as a layer into our framework before kernel pooling stage.
Post-processing is very important in SPD representations. In the literature,

bilinear models [14, 12, 21, 17, 11] use element-wise signed rooting followed by
L2 normalisation layers, which contributes around 5.7% [21] of the classifica-
tion accuracy. In our framework, KSPD layer has a parameter θ which must be
initialized properly. We found that batch normalisation layer, that is used to
cope with poor initialization of convolutional layers, can be used for this task.
Therefore, we replace element-wise signed square root with batch normalisation
layer. In the table below, the experiments are conducted with DeepKSPD-rootm
structure built on VGG-16 network.

According to Table 3 on average, batch normalization layer contributes to
2.56% of the performance; whereas, element-wise signed square root + L2 nor-
malisation processing increases performance about 1.45%. Furthermore, the con-
vergence is around 3 times faster. Most importantly, our design choice allows a
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Table 3. Comparison of Post Processing

ACC (%) MIT
indoor

Cars Aircraft Birds

DeepKSPD-
sqrt-L2

80.6 90.1 86.1 84.7

DeepKSPD-
w/o BN

77.6 89.6 84.3 81.0

DeepKSPD-
w BN

81.0 93.2 91.0 86.5

Table 4. Final Parameter Values

ACC (%) MIT
indoor

Cars Aircraft Birds

Initial θ 0.1 0.1 0.1 0.1

Initial α 0.5 0.5 0.5 0.5

Final θ 0.63 1.4 0.67 0.93

Final α 0.49 0.52 0.53 0.52

universal initial value (we choose 0.1) for the parameter θ for all the datasets.
Note that we conduct a grid search for θ and report the best result in Table 3
for DeepKSPD-sqrt-L2 and DeepKSPD-w/o BN.

In the Table 4 the initial and final values of α and θ are given. In the literature,
[12, 10] do a similar experiment with matrix rooting; however, the authors only
do a grid search to find the best root. We provide derivatives for matrix rooting
and update rooting power α with each iteration in our work.

As shown, α values do not deviate much from their initial values. However
θ values end up in much different values from their starting point. Even when
the initial θ is much lower than its final values, DeepKSPD performs excellent
in each case; supporting our design choice to tackle the initialization problem.

6.1 Kernel Representation versus Covariance Representation

Since DeepKSPD does not adopt the same network as bilinear methods, to show
the benefits purely from kernelising, we test the covariance and the kernel repre-
sentations when they share an identical network. For this purpose, we introduce
another model called DeepCOV that is identical to DeepKSPD except that Deep-
COV adopts covariance-based-matrix representation. We compare DeepCOV to
DeepKSPD in Table 2. As shown, on all the datasets DeepKSPD outperforms
DeepCOV. This is a clear demonstration of the superiority of kernelising local
descriptors over the second-order pooling of them. Furthermore, DeepCOV per-
forms almost identically to [12]. This indicates that the layers and strategies
designed in our DeepKSPD cater well for the special characteristics of KSPD
representation that are not necessarily presented in the bilinear models.

7 Conclusion

Motivated by the recent progress on SPD representation, we develop a deep neu-
ral network that jointly learns local descriptors and kernel-matrix-based SPD
representation for fine-grained image recognition. The matrix derivatives re-
quired by the backpropagation process are derived and linked to the established
literature on the theory of positive definite matrix. Experimental result on bench-
mark datasets demonstrates the improved performance of kernel-matrix-based
SPD representation when built upon deep local descriptors and the superiority
of the proposed DeepKSPD network.
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