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Abstract. Group activity recognition plays a fundamental role in a va-
riety of applications, e.g. sports video analysis and intelligent surveil-
lance. How to model the spatio-temporal contextual information in a
scene still remains a crucial yet challenging issue. We propose a novel at-
tentive semantic recurrent neural network (RNN), dubbed as stagNet, for
understanding group activities in videos, based on the spatio-temporal
attention and semantic graph. A semantic graph is explicitly modeled
to describe the spatial context of the whole scene, which is further inte-
grated with the temporal factor via structural-RNN. Benefiting from the
‘factor sharing’ and ‘message passing’ mechanisms, our model is capa-
ble of extracting discriminative spatio-temporal features and capturing
inter-group relationships. Moreover, we adopt a spatio-temporal atten-
tion model to attend to key persons/frames for improved performance.
Two widely-used datasets are employed for performance evaluation, and
the extensive results demonstrate the superiority of our method.

Keywords: Group Activity Recognition · Spatio-temporal Attention ·
Semantic Graph · Scene Understanding

1 Introduction

Understanding dynamic scenes in sports and surveillance videos has a wide range
of applications, such as tactics analysis and abnormal behavior detection. How
to recognize/understand group activities within the scene, such as ‘team spiking’
in a volleyball match [23] (see Figure 1), is an important yet challenging issue,
due to cluttered backgrounds and confounded relationships, etc.

Extensive efforts [33, 28, 51, 5, 44, 4, 31, 39, 38] have been made to address the
above issue in the computer vision community. Fundamentally, spatio-temporal
relations between people [17, 23, 25] are important cues for group activity recog-
nition. There are two major issues in representing such information. One is the
representation of visual appearance, which plays an important role in identifying

⋆ Corresponding author: yhwang@buaa.edu.cn.



2 M. Qi, J. Qin, A. Li, Y. Wang, J. Luo and L. Van Gool

Fig. 1. Pipeline of the semantic graph-based group activity recognition. From left to
right: (a) object proposals are extracted from raw frames by a region proposal net-
work [14]; (b) the semantic graph is constructed from text labels and visual data; (c)
temporal factor is integrated into the graph by using a structural-RNN, and the seman-
tic graph is inferred via message passing and factor sharing mechanisms; (d) finally,
a spatio-temporal attention mechanism is adopted for detecting key persons/frames
(denoted with a red star) to further improve the performance.

people and describing their action dynamics. The other is the representation of
spatial and temporal movement, which describes the interaction between people.

Traditional approaches for modeling the spatio-temporal information in group
activity recognition can be summarized as a combination of hand-crafted fea-
tures and probabilistic graph models. Hand-crafted features used in group ac-
tivity recognition include motion boundary histograms (MBH) [16], histogram
of gradients (HOG) [15], the cardinality kernel [19], etc. Markov Random Fields
(MRFs) [8] and Conditional Random Fields (CRFs) [26] have been adopted to
model the inter-object relationships.

An obvious limitation of the above approaches is that the low-level features
they adopted fall short of representing complex group activities and dynamic
scenes. With the success of convolutional neural networks (ConvNets) [27, 42,
20], deep feature representations have demonstrated their capabilities in repre-
senting complex visual appearance and achieved great success in many computer
vision tasks. However, typical ConvNets regard a single frame of a video as in-
put and output a holistic feature vector. With such architectures, spatial and
temporal relations between consecutive frames cannot be explicitly discerned.
The spatio-temporal relations [17, 23, 25] among the people are important cues
for group activity recognition in the scene. They consist of the spatial appear-
ance and temporal action of the individuals and their interaction. Recurrent
Neural Networks (RNNs) [22, 11] are able to capture the temporal features from
the video, and to represent dynamic temporal actions from the sequential data.
Therefore, it is highly desirable to explore a RNN based network architecture
that is capable of capturing the crucial spatio-temporal contextual information.

Moreover, automatically describing the semantic contents in the scene is help-
ful for better understanding the overall hierarchical structure of the scene (e.g. s-
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ports matches and surveillance videos). Yet, this task is very difficult, because
the semantic description not only captures the personal action, but also express-
es how these people relate to each other and how the whole group event occurs.
If the above RNN based network can also describe the semantics in the scene,
we can have a substantially clearer understanding of the dynamic scene.

In this paper, to address the above-mentioned issues, we propose a novel
attentive semantic recurrent neural network named stagNet for group activ-
ity recognition, based on the spatial-temporal attention and semantic graph.
In particular, individual activities and their spatial relations are inferred and
represented by an explicit semantic graph, and their temporal interactions are
integrated by a structural-RNN model. The network is further enhanced by
a spatio-temporal attention mechanism to attach various levels of importance
to different persons/frames in video sequences. More importantly, the semantic
graph and spatio-temporal attention is collaboratively learned in an end-to-end
fashion. The main contributions of this paper include:

– We construct a novel semantic graph to explicitly represent individuals’ ac-
tions, their spatial relations, and group activity with a ‘message passing’
mechanism. To the best of our knowledge, we are the first to output a se-
mantic graph for understanding group activities.

– We extend our semantic graph model to the temporal dimension via a
structural-RNN, by adopting the ‘factor sharing’ mechanism in RNN.

– A spatio-temporal attention mechanism, which places emphasis on the key
persons/frames in the video, is further integrated for better performance.

– Experiments on two benchmark datasets show that the performance of our
framework is competitive with that of the state-of-the-art methods.

2 Related Work

Group Activity Recognition. Traditional approaches [28, 51, 5, 44, 41, 35, 3, 2]
usually extract hand-crafted spatio-temporal features (e.g. MBH and HOG), fol-
lowed by graph models for group activity recognition. Lan et al. [28] introduced
an adaptive structure algorithm to model the latent structure. Amer et al. [5]
formulated Hierarchical Random Field (HiRF) to model grouping nodes and the
hidden variables in a scene. Shu et al. [44] conducted joint inference of group-
s, events and human roles with spatio-temporal AND-OR graph [4]. However,
these approaches employed shallow features that could not encode higher-level
information, and often lost temporal relationship information.

Recently, several deep models [23, 17, 43, 50, 6, 30] have been proposed for
group activity recognition. Deng et al. [17] proposed a joint graphical model
learned by gates between edges and nodes. Wang et al. [50] proposed a recurrent
interaction context framework, which unified the features of individual person,
intra-group and inter-group interactions. However, most of these works either
extracted individual features regardless of the scene context or captured the
context in an implicit manner without any semantic information. In this paper,
we attempt to explicitly model the scene context via an intuitive spatio-temporal
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semantic graph [37] with RNNs. Moreover, we adopt a spatio-temporal attention
model to attend to key persons/frames in the scene for better performance.
Deep Structure Model. Many researches have been conducted to make deep
neural networks more powerful by integrating graph models. Chen et al. [10]
combined Markov Random Fields (MRFs) with deep learning to estimate com-
plex representations. Liu et al. [32] addressed semantic image segmentation by
solving MRFs using Deep Parsing Network. In [55, 29, 49], structured-output
learning was performed using deep neural networks for human pose estimation.
Zheng et al. [57] integrated CRF-based probabilistic graphic model with RNN
for semantic segmentation. Zhang et al. [56] improved object detection with deep
ConvNets based on Bayesian optimization [46]. Most of these works were task-
specific, however, they might fail to handle spatio-temporal modeling and extract
interaction information from dynamic scenes. In [25], the Structural-RNN was
proposed by combining high-level spatio-temporal graphs and Recurrent Neu-
ral Networks. Inspired by [25], we explicitly exploit a semantic spatio-temporal
structure graph by injecting specific semantic information, such as inter-object
and intra-person relationships, and space-time dynamics in the scene.
Attention Mechanism. Attention mechanisms [24, 34, 7, 9, 53, 54] have been
successfully applied in the field of vision and language. An early work [24] intro-
duced the saliency-based visual attention model for scene recognition. Mnih et
al. [34] were the first to integrate RNNs with visual attention, and their mod-
el could extract selected regions by sequence. The mechanism proposed by [9]
could capture visual attention with deep neural networks on special objects in
images. Xu et al. [53] introduced two kinds of attention mechanisms for image
caption. A temporal attention mechanism was proposed in [54] to select the
most relevant frames based on text-generation RNNs. In this work, we integrate
our spatio-temporal semantic graph and spatio-temporal attention into a joint
framework, which is collaboratively trained in an end-to-end manner to attend
to more relevant persons/frames in the video.

3 The Proposed Approach

The framework of the proposed approach for group activity recognition is illus-
trated in Figures 1 and 2. We utilize two-layer RNN and integrate two kinds of
RNN units (i.e. nodeRNN and edgeRNN) into our framework, which is trained
in an end-to-end fashion. In particular, the first part is to construct the semantic
graph from input frames, and then we integrate the temporal factor by using
a structural RNN. The inference is achieved via ‘message-passing’ and ‘factor
sharing’ mechanisms. Finally, we adopt a spatio-temporal attention mechanism
to detect key persons and frames to further improve the performance.

3.1 Semantic Graph

In this subsection, we introduce the semantic graph and the mapping from visual
data to the graph. We inference the semantic graph to predict person’s affilia-
tions based on their positions and visual appearance. As shown in Figure 1(b),
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the semantic graph is built by parsing a scene with multiple people into a set
of bounding boxes associated with the corresponding spatial positions. Each
bounding box of a specific person is defined as a node of the graph. The graph
edge that describes pairwise relations is determined by the spatial distance and
temporal correlation, which will be introduced in Section 3.2.

To generate a set of person-level proposals (bounding boxes) from the t-th
frame It in video I, we employ the region proposal network (RPN), which is
part of the region-based fully convolutional networks [14]. The RPN outputs
position-sensitive score maps as the relative position, and connects a position-
sensitive region-of-interest (RoI) pooling layer on top of the fully convolutional
layer. These proposals are regarded as input of the graph inference procedure.
Throughout the graph modeling, three types of information are inferred: 1) the
personal action label for each person, 2) the inter-group relationships in each
frame, and 3) the group activity label of the whole scene.

In frame It, we denote a set of K bounding boxes as BIt = (xt,1, ..., xt,K),
and the inter-person relationship set as R (e.g. whether two players belong to
the same team on the Volleyball dataset). Given the group activity or scene
labels set Cscene, and personal action labels set Caction, we denote yt ∈ Cscene

as the scene class label, xact
i ∈ Caction as the action class label of the i-th

person proposal, xpos
i as its spatial coordinates, and xi→j ∈ R as the predicted

relationship between the i-th and j-th proposal boxes. Meanwhile, we denote the
set of all variables to be x = {xact

i , xpos
i , xi→j | i = 1, ...,K; j = 1, ...,K; j 6= i}.

Specifically, the semantic graph is built up by finding the optimal x∗ and yt∗

that maximize the following probability function:

< x∗, yt∗ >= argmax
x,yt

Pr(x, yt | It, BIt),

P r(x, yt | It, BIt) =
∏

i,j∈K

∏

j 6=i

Pr(yt, xact
i , xpos

i , xi→j | I
t, BIt).

(1)

In the following, we will introduce how to infer the frame-wise semantic graph
structure in detail.

3.2 Graph Inference

Inspired by [52], the graph inference is performed by using the mean field
and computing the hidden states with Long Short-Term Memory (LSTM) net-
work [22], which is an effective recurrent neural network. Let the semantic graph
be G = (S, V,E), where S is the scene node, and V and E are the object nodes
and edges respectively. Specifically, S represents the global scene information in
a video frame, an object node vi ∈ V (i = 1, ...,K) indicates the person-level
proposal, and the edge E corresponds to the spatial configuration of object n-
odes V in the frame. In the mean field inference, we approximate Pr(x, yt | ·)
by Q(x, yt | ·), which only depends on the current states of each node and edge.
The hidden state of the LSTM unit is the current state of each node and edge
in the semantic graph. We define ht as the current hidden state of scene node,
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Fig. 2. Illustration of our nodeRNN and edgeRNN model. The model first extracts
visual features of nodes and edges from a set of object proposals, and then takes the
visual features as initial input to the nodeRNNs and edgeRNNs. We introduce the
node/edge message pooling to update the hidden states of nodeRNNs and edgeRNNs.
The input of nodeRNNs is the output of the edgeRNNs, and nodeRNNs also output the
labels of personal actions. The max pooling is performed subsequently. Furthermore,
a spatio-temporal attention mechanism is incorporated into our architecture. Finally,
the top-most nodeRNN (i.e. Scene nodeRNN) outputs the label of group activity.

and hvi
and heij as the current hidden state of node i and edge i → j, respec-

tively. Notably, all the nodeRNNs share the same set of parameters and all the
edgeRNNs share another set of parameters. The solution to Q(x, yt | It, BIt)
can be obtained by computing the mean field distribution as follows:

Q(x, yt | It, BIt)

=

K
∏

i=1

Q(xact
i , xpos

i , yt | hvi , h
t)Q(hi | fvi

)Q(ht | f t)

∏

j 6=i

Q(xi→j | heij )Q(heij | feij ),

(2)

where f t is the convolutional feature of the scene in the t-th frame, fvi
is the fea-

ture of the i-th node, and feij is the feature of the edge connecting the i-th node
and j-th node, which is the unified bounding box over two nodes. The feature feij
has six elements by computing the basic distances and direction vectors, which
include < |dx|, |dy|, |dx+ dy|,

√

(dx)2 + (dy)2, arctan(dy, dx), arctan2(dy, dx) >.
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All of these features are extracted by the RoI pooling layer. Then the messages
aggregated from other previous LSTM units are fed into the next step.

As shown in Figure 2, the edgeRNNs provide contextual information for the
nodeRNNs, and the max pooling is performed over the nodeRNNs. The nodeRN-
N concatenates the node feature and the outputs of edge-RNN accordingly. The
edgeRNN passes the summation of all edge features that are connected to the
same node as the message. The edgeRNNs and nodeRNNs take the visual fea-
tures as initial input and produce a set of hidden states. The model iteratively
updates the hidden states of the RNN. Finally, the hidden states of the RNN are
used to predict the frame-wise scene label, personal action label, person position
information and inter-group relationships.

Message passing [52] can iteratively improve the efficacy of inference in
the semantic graph. In the graph topology, the neighbors of the egdeRNNs
are nodeRNNs. Passing messages through the whole graph involves two sub-
graphs: i.e. node-centric sub-graph and edge-centric sub-graph respectively. For
node-centric sub-graph, the nodeRNN receives messages from its neighboring
edgeRNNs. Similarly, for edge-centric sub-graph, the edgeRNN gets messages
from its adjacent nodeRNNs. We adopt an aggregation function called message
pooling to learn adaptive weights for modeling the importance of passed mes-
sages. We compute the weight factors for each incoming message and aggregate
the messages via a total weight for representation. It is demonstrated that this
method is more effective than average pooling or max pooling [52].

Specifically, we denote the update message input to the i-th node vi as mvi ,
and the message to the edge between the i-th and j-th node eij as meij , respec-
tively. Then, we compute the message passed into the node considering its own
hidden state hvi

and the hidden states of its connected edges heij and heji , and
obtain the message passed into the edge with respect to the hidden state of its
adjacent nodes hvi and hvj

. Formally, mvi
and meij are computed as

mvi
=

∑

j:i→j

σ(UT
1 [hvi , heij ])heij +

∑

j:j→i

σ(UT
2 [hvi

, heji ])heji ,

meij = σ(WT
1 [hvi

, heji ])hvi + σ(WT
2 [hvj

, heij ])hvj ,

(3)

where W1, W2, U1 and U2 are parameters to be learned, σ is a sigmoid function,
and [·, ·] means the concatenation of two hidden vectors. Finally, we utilize these
messages to update the hidden states of nodeRNN and edgeRNN iteratively.
Once finishing updating, the hidden states are then employed to predict personal
action categories, bounding box offsets and relationship types.

3.3 Integrating Temporal Factors

With the semantic graph of a frame, temporal factors are further integrated
to form the spatio-temporal semantic graph (see Figure 1(c)). Particularly, we
adopt the structural-RNN [25] to model the spatio-temporal semantic graph.
Based on the graph definition in Sections 3.1 and 3.2, we add a temporal edge ET ,
such that G = (S, V,ES , ET ), where ES refers to the spatial edge. The node
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Fig. 3. Hierarchical semantic RNN structure for a volleyball match. Given object pro-
posals and tracklets of all players, we feed them into spatial CNN, followed by a RNN
to represent each player’s action and appearance of the whole scene. Then we adopt
structural-RNN to establish temporal links for a sequence of frames. Furthermore, we
integrate the LSTM based spatio-temporal attention mechanism into the model. The
output layer classifies the whole team’s group activity.

vi ∈ V and edge e ∈ ES ∪ ET in the spatio-temporal semantic graph enrolls
over time. Specifically, the nodes at adjacent time steps, e.g. the node vi at
time t and time t + 1 are connected with the temporal edge eii ∈ ET . Denote
the node label as ytv and the corresponding feature vectors for node and edge
are denoted as f t

v, f
t
e at time t, respectively. We introduce a ‘factor sharing’

mechanism, which indicates that the nodes denoting the same person and the
edges representing the same relationship tend to share factors (e.g. parameters,
original hidden states of RNNs) across different video frames. Figure 3 shows an
example of structural-RNN across three time steps in a volleyball game video.
Please refer to [25] for more technical details about structural-RNN.

We define two kinds of edges (edgeRNN) in the spatio-temporal graph. One
is spatial-edgeRNN representing the spatial relationship. It is formed by the s-
patial message pooling in each frame and computed from the neighbor player’s
nodeRNN using the Euclidean distance. The other is temporal-edgeRNN that
connects neighbor frames of the same player to represent the temporal infor-
mation. It is formed by sharing factors between players’ nodeRNNs in a video
sequence. We incorporate the features of the spatial edgeRNNs between two con-
secutive frames into the temporal edgeRNN, resulting in 12 additional features.

During the training phase, the errors of predicting the labels of scene nodes
and object nodes are back-propagated through the sceneRNNs, nodeRNNs and
edgeRNNs. The passed messages represent the interactions between nodeRNNs
and edgeRNNs. The nodeRNN is connected to the edgeRNN, and outputs the
personal action labels. Every edgeRNN simultaneously models the semantic in-
teraction between adjacent nodes and the evolution of interaction over time.
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3.4 Spatio-Temporal Attention Mechanism

The group activity involves multiple persons, but only few of them play decisive
roles in determining the activity. For example, the ‘winning point’ in a volleyball
match often occurs with a specific player spiking the ball and another player
failing to catch the ball. For a better understanding of the group activity, it is
necessary to attend higher levels of importance to key persons. Inspired by [40,
47], we attend to a set of features of different regions at each time step, which
contain key persons or objects, with a spatio-temporal soft attention mechanism.
With the attention model, we can focus on specific persons in specific frames to
improve the recognition accuracy of the group activity.

Since person-level attention is often affected by the evolution and state of
the group activity, the context information needs to be taken into consideration.
Particularly, we combine the proposals of the same person with KLT tracker-
s [36]. The whole representation of a player can be extracted by incorporating
the context information from a sequence of frames.

Person-Level Spatial Attention We apply a spatial attention model to as-
sign weights to different persons via LSTM networks. Specifically, given one
frame that involves K players xt = (xt,1, ..., xt,K), we define the scores st =
(st,1, ..., st,K)T as the importance of all person-level actions in each frame:

st = Ws tanh(Wxsxt + Uhsh
s
t−1 + bs), (4)

where Ws, Wxs, Uhs are the learnable parameter matrices, and bs is the bias
vector. hs

t−1 is the hidden variable from an LSTM unit. For the k-th person, the
spatial attention weight is computed as a normalization of the scores:

αt,k =
exp(st,k)

∑K

i=1 exp(st,i)
. (5)

Subsequently, the input to the LSTM unit is updated as x′
t = (x′

t,1, ..., x
′
t,K)T ,

where x′
t,k = αt,kxt,k. Then the representation of the attended player can be used

as the input to the RNN nodes in the spatio-temporal semantic graph described
in Section 3.1.

Frame-Level Temporal Attention We adopt a temporal attention model to
discover the key frames. For T frames in a video, the temporal attention model
is composed of an LSTM layer, a fully connected layer and a nonlinear ReLU
unit. The temporal attention weight of the t-th frame can be computed as

βt = ReLU(Wxβxt + Uhβh
β
t−1 + bβ), (6)

where xt is the current input and hβ
t−1 is the hidden variables at time step t-1.

The temporal attention weight controls how much information of every frame
can be used for the final recognition. Receiving the output zt of the main LSTM
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network and the temporal attention weight βt at each time step t, the important
scores for Cscene classes are the weighted summation w.r.t. all time steps:

o =
T
∑

t=1

βt · zt, (7)

where o = (o1, o2, · · · , oCscene
)T . The probability that a video I belongs to the

i-th class is

p(Ci
scene|I) =

eoi
∑Cscene

j=1
eoj

. (8)

3.5 Joint Objective Function

Finally, we formulate the overall objective function with a regularized cross-
entropy loss, and combine the semantic graph modeling and the spatio-temporal
attention network learning as

L = −

Cscene
∑

i=1

yi log ŷi −
1

K

K
∑

i=1

x∗
i log x̂

∗
i+

λ1

K
∑

k=1

(1−

∑T

t=1 αt,k

T
)2 +

λ2

T

T
∑

t=1

‖βt‖2 + λ3‖W‖1,

(9)

where yi and x∗
i denote the ground-truth label of group activity and personal

action, respectively. If a video sequence is classified as the i-th category, yi = 1

and yj = 0 for j 6= i. ŷi = p(Ci
scene|I) is the probability that a sequence is

classified as the i-th category. x̂∗
i = p(Ci

action|BIt) is the probability that a
personal action belongs to the i-th category. For classification, we perform max
pooling over the hidden representations followed by a softmax classifier. λ1, λ2

and λ3 denote regularization terms. The third regularization term ensures to
attend to more persons in the spatial space, and the fourth term regularizes the
learned temporal attention via ℓ2 normalization. The last term regularizes all
the parameters of the spatio-temporal attention mechanism [47].

4 Experiments

We evaluate our framework on two widely-adopted benchmarks, i.e. the Collec-
tive Activity dataset for group activity recognition, and the Volleyball dataset
for group activity recognition and personal action recognition.

Collective Activity [13] contains 44 video clips (about 2,500 frames cap-
tured by low-resolution cameras), in which there are five group activities: cross-
ing, waiting, queueing, walking and talking, and six individual actions: N/A,
crossing, waiting, queueing, walking and talking. The group activity label is
predicted based on the majority of people’s actions. Following the same exper-
imental setting in [28], we use the tracklet data provided in [12]. The scene is
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modeled as a bag of individual action context feature descriptors, and we select
1/3 of the video clips for testing and the rest for training.

Volleyball [23] contains 55 volleyball videos with 4,830 annotated frames.
Each player is labeled with a bounding box and one of the nine personal action
labels: waiting, setting, digging, falling, spiking, blocking, jumping, moving and
standing. The whole frame is annotated with one of the eight group activity
labels: right set, right spike, right pass, right winpoint, left winpoint, left pass,
left spike and left set. Following [23], we choose 2/3 of the videos for training
and the remaining 1/3 for testing. Particularly, we split all the players in each
frame into two groups using the strategy in [23], and define four additional team-
level activities: attack, defense, win and lose. The labeled data are beneficial for
training our semantic RNN model.

4.1 Implementation Details

Our model is implemented using the TensorFlow [1] library. We adopt the VGG-
16 model [45] pre-trained on ImageNet, which is then fine-tuned on the Collective
Activity and Volleyball datasets, respectively. Based on [14], we only employ the
convolution layers of VGG-16 and concatenate a 1024-d 1 × 1 convolutional
layer. As such, each frame is represented by a 1024-d feature vector. Specifically,
a person bounding box is represented as a 2805-d feature vector, which includes
1365-d appearance information and 1440-d spatial information. Based on the
RPN detector [14], the appearance features can be extracted by feeding the
cropped and resized bounding box through the backbone network, and utilizing
spatially pooling to obtain the response map from a lower layer. To represent
the bounding box at multiple scales, we follow [14] and employ spatial pyramid
pooling [14], with respect to a 32× 32 spatial histogram.

The LSTM layers used as nodes and edges contain 1024-d hidden units, and
they are trained by adding a softmax loss on top of the output at each time step.
We use a softmax layer to produce the score maps for the group activity class
and action class. The batch size for training the bottom layer of LSTM and fully
connected layer of RPN is 8, and the training is performed within 20,000 itera-
tions. The top layer of LSTM is trained in 10,000 iterations with a batch size of
32. For optimization, we adopt RMSprop [21] with a learning rate ranging from
0.00001 to 0.001 for mini-batch gradient descent. In practice, we set {λ1,λ2,λ3} as
{0.001,0.0001,0.0001} for Collective Activity, and {0.01,0.001,0.00001} for Vol-
leyball. Besides, the training and output semantic graph in our paper is recorded
as a JavaScript Object Notation (JSON) file, which is a popular tool for extract-
ing structure data.

4.2 Compared Methods

We compare our approach with VGG-16 Network [45], LRCN [18], HDTM [23],
Contextual Model [28], Deep Structure Model [17], Cardinality Kernel [19],
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Table 1. Performance comparison of our method and the state-of-the-art approaches.

Methods Semantic?
Accuracy

Collective Volleyball Volleyball
Activity (Group) (Personal)

VGG-16-Image [45] × 68.3 71.7 -
VGG-16-Person [45] × 71.2 73.5 -
LRCN-Image [18] × 64.2 63.1 -
LRCN-Person [18] × 64.0 67.6 -
HDTM (1 group) [23] × 81.5 70.3 75.9
HDTM (2 groups) [23] × - 81.9 -
Contextual Model [28] × 79.1 - -
Deep Structure Model [17] × 80.6 - -
Cardinality kernel [19] × 83.4 - -
CERN-1 (1 group) [43] × 84.8 34.4 69.0
CERN-2 (1 group) [43] × 87.2 73.5 -
CERN-2 (2 groups) [43] × - 83.3 -
SSU-temporal (MRF) [6] × - 87.1 -
SSU-temporal (GT) [6] × - 89.9 82.4

Ours w/o attention (PRO)
√

85.6 85.7 79.6
Ours w/ attention (PRO)

√
87.9 87.6 -

Ours w/o attention (GT)
√

87.7 87.9 81.9
Ours w/ attention (GT)

√
89.1 89.3 -

‘PRO’ and ‘GT’ indicate that we use proposal-based and ground-truth bounding boxes [23], respec-
tively. The best performance is highlighted in red and the second best in blue.

CERN [43] and SSU [6]. Particularly, in Table 1, ‘VGG-16-Image’ and ‘LRCN-
Image’ utilize the holistic image features in a single frame for recognition. ‘VGG-
16-Person’ and ‘LRCN-Person’ predict group activities with features pooled over
all fixed-size individual person-level features. ‘HDTM’ and ‘CERN’ conduct ex-
periments on the Volleyball Dataset using the grouping strategy, which divides
all persons into one or two groups. ‘SSU-temporal’ models adopted two kind-
s of detection methods on the Volleyball Dataset, with one using the ground
truth (GT) bounding boxes, and the other using Markov Random Fields (MRF)
based detection. Note that ‘LRCN’, ‘HDTM’ and ‘Deep Structure Model’ adop-
t the AlexNet [27] as the backbone, and ‘SSU’ employs the Inception-V3 [48]
framework, while ‘CERN’ and our model utilize the VGG-16 architecture.

4.3 Results and Analysis

Results on the Collective Activity Dataset. The experimental results of
group activity recognition are shown in Table 1. As can be seen, our model
with the attention model achieves the best performance among the compared
state-of-the-art methods, regardless of using the proposal-based or ground-truth
bounding boxes. For instance, our model achieves ≈15% higher in accuracy than
image-level and person-level classification methods, mostly because of our RNN-
based semantic graph with the iteratively message passing scheme. Meanwhile,
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Fig. 4. Confusion matrices for the two group activity datasets.

our method is the only one that incorporates semantics into the model. The
improved performance also indicates that the spatio-temporal semantic graph is
beneficial for improving the recognition performance. Note that the cardinality
kernel approach [19] achieves the best performance among non-deep learning
methods. This approach predicts the group activity label by directly counting
the numbers of individual actions based on hand-crafted features. In addition, we
draw the confusion matrix based on our model with the spatio-temporal atten-
tion in Figure 4(a). We can observe that nearly 100% recognition accuracies can
be obtained in terms of ‘queueing’ and ‘talking’, proving the effectiveness of our
framework. However, there are also some failure cases, which is probably due to
that some action classes share high similarities, such as ‘walking’ and ‘crossing’.
More training data are needed for distinguishing these action categories.

Results on the Volleyball Dataset. The recognition results of our method
and the state-of-the-art ones are shown in Table 1. As we can see, the group
activity and personal action recognition accuracies of our model are superior to
most state-of-the-art methods, and also highly competitive to the best ‘SSU’
method. It should be noted that ‘SSU’ obtains the bounding boxes by a much
more sophisticated multi-scale method and adopts the more advanced Inception-
V3 as the backbone. In contrast, we just employ the basic VGG-16 model, and
the ‘ground-truth’ bounding boxes provided by [23] are obtained with a rela-
tively simple strategy. Hence, it can be expected that our performance could be
further improved by adopting more advanced backbone networks. Besides, our
model outperforms other RNNs based methods by about 5 ∼ 8% w.r.t. group
activity recognition, since our semantic graph with structural-RNN can capture
spatio-temporal relationships. Integrating the attention model can further im-
prove the recognition performance, indicating that key persons’ visual features
are crucial for recognizing the whole scene label. It is also worth noting that
all the other methods, including ‘SSU’, could not extract the semantic struc-
tural information to describe the scene context. On the contrary, our method
can output the semantic description of the scene owing to our semantic graph
model. We visually depict the recognition results in Figure 5, including semantic
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(a) (b)

Fig. 5. Visualization of results on the Volleyball dataset. (a) Semantic graphs obtained
by our method. (b) From top to bottom: group activity and personal action recognition
results; attention heat maps using proposal-based bounding boxes; attention heat maps
using ground-truth bounding boxes. The important persons are denoted with red stars.
The attention weights decrease along with the colors changing from red to blue.

graphs and attention heat maps. In addition, the confusion matrix using our
method is shown in Figure 4(b). As we can see from the figure, our method
can achieve promising recognition accuracies (≥87%) in terms of the majority
of group activities.

5 Conclusion

In this paper, we presented a novel RNN framework (i.e. stagNet) with semantic
graph and spatio-temporal attention for group activity recognition. The stagNet
could explicitly extract spatio-temporal inter-object relationships in a dynamic
scene with a semantic graph. Through the inference procedure of nodeRNNs
and edgeRNNs, our model could simultaneously predict the label of the scene
and inter-person relationships. By further integrating the spatio-temporal atten-
tion mechanism, our framework attended to important persons or frames in the
video, leading to enhanced recognition performance. Extensive results on two
widely-adopted benchmarks showed that our framework achieved competitive
results to the state-of-the-art methods, whilst uniquely outputting the semantic
description of the scene.
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