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Abstract. We create a dataset of 543, 758 logo designs spanning 39 in-
dustrial categories and 216 countries. We experiment and compare how
different deep convolutional neural network (hereafter, DCNN) architec-
tures, pretraining protocols, and weight initializations perform in pre-
dicting design memorability and likability. We propose and provide esti-
mation methods based on training DCNNs to extract and evaluate two
independent constructs for designs: perceptual distinctiveness (“percep-
tual fluency” metrics) and ambiguity in meaning (“conceptual fluency”
metrics) of each logo. We provide evidences of causal inference that both
constructs significantly affect memory for a logo design, consistent with
cognitive elaboration theory. The effect on liking, however, is interac-
tive, consistent with processing fluency (e.g., Lee and Labroo (2004),
and Landwehr et al. (2011)).

Keywords: Marketing Application · Visual Design · Cognitive Informa-
tion Processing · Construal Level Theory

1 Introduction and Related Work

Which visual elements of a design increase memory for the design and which
increase liking for it? Are these elements the same, or different — and what is
the relationship between remembering and liking?

Ample research in cognitive psychology shows that an increased elaboration
about the target is associated with a better memory for it, for instance, [28],
[29], and [31]. For a visual design, an increased elaboration could result from two
sources — first, the perceptual fluency of the design and second, the conceptual
fluency of the design. By perceptual fluency of a design, we refer to the purely
perceptual elements of the design and the extent to which these might deviate
from a visual prototype for the category that perceivers have in memory.

Existing research shows that visual representations tend to be stored in mem-
ory as deviations from category prototypes (e.g., [4], [10]). As people are exposed
through their lifetimes to more exemplars of a category, they develop a prototype
in memory. When new exemplars are encountered, the visual memory system
checks for and encodes differences from the prototype rather than remember
every detail.The second aspect of a visual design that can affect memory for it
is its meaningfulness. People remember information by associating its meaning
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to what they already know ([5], [27], [26]). When the meaning of an attitude ob-
ject3 is very clear, it is associated easily into the knowledge a consumer already
has in the area. But the attitude object draws little elaboration and its meaning
is instantaneously incorporated into a gist of what the consumer already knows.
The lack of elaboration might reduce the distinct memory for the object or the
recognition probability.

How might these two aspects of visual design — its perceptual fluency and
its conceptual fluency — impact liking for the logo? Research in cognitive psy-
chology suggests that consumers like attitude objects that feel easy to process
([21], [1], [7], [22,20]). The idea is that information that feels easy to process be-
cause its information is perceptually clear and stands out or because its meaning
is easy to elaborate on is liked more. These findings imply that logos that are
visually distinct are likely to pop out and be liked more, and if they encourage
meaningful elaboration, they will be liked even more. But if the meaning is very
ambiguous they will be liked less.

To explore these ideas, we create a large dataset of 543, 758 logo designs span-
ning 39 industrial categories and 216 countries. We annotate it by collecting and
calculating likability and memorability scores from a series of online visual mem-
ory experiments adapted from procedures introduced by [12], [11], and [17]. On
a computing front, we first experiment with prediction tasks of design mem-
orability and likability, using different DCNN architectures, pre-training, and
transfer learning methods. On a cognitive front, we propose information mea-
sures to proxy for perceptual and conceptual fluency based on DCNN outputs.
We then regress design memorability and likability on the proposed measures
of fluency constructs, controlling various other aspects to identify the effects of
perceptual and conceptual fluencies on memorability and likability. We ensure
identification of both measures by running controlled4 online experiments when
eliciting annotations.

Major contributions of the present study include: it is the first study to (1)
release a large-scale logo design dataset, valuable to possibly both the vision
and business research communities; (2) investigate the effect of both fluencies
on memorability and likability for designs at a large scale; and (3) compare how
different deep neural network architectures, initializations, and transfer learning
methods perform on the prediction tasks of design memorability and likability.

2 Large-scale Memorability and Likability Logo Design

Dataset

We build a large dataset of 543, 758 logo designs, with memorability and likability
scores on a sub-sample of 123, 928 logos.

3 Attitude objects are what you make a judgment about or have a positive or negative
feeling toward.

4 We follow the experimental economics protocols of randomization and clear treat-
ment grouping based on perceptual and conceptual measures, on top of what was
prescribed in [15], [14], [16], and [17].
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2.1 Memorability and Likability Scores

We obtained memorability scores for a subset of the entire dataset using an online
experimental procedure that is adapted from the efficient visual memory game
developed in [15], [14], and [16,17]. We elicit liking scores by asking subjects
to rate how much do they like the logos being shown on a scale from 0 to
7. To guard against potential biases introduced by consumers’ familiarity with
the brand or the company associated with the logo, we first explicitly asked
them not to base their decision on how much they like the brand for reasons
other than esthetics. Secondly, likability scores were elicited as part of a post-
experiment questionnaire, that included a question about subject’s familiarity
of the brands being shown. Surprisingly, the percentage of encounters of familiar
logos or brands account for less than 3% ((3, 711/123, 928), we set the recognition
threshold to 40% to reduce noise) in our annotated set, indicating that such a
bias is secondary in our setting.

We recruited 38, 542 US-based subjects from Amazon Mechanical Turk and
obtained 66 scores of both memorability and likability from each Turker, result-
ing in around 20 scores per logo. We calculated the estimated memorability and
likability scores for each logo following the optimization procedure adopted in
[17]. In the game, Turkers view a sequence of logos, each of which is displayed
for 1 second, with a 1.4 second gap in between logo representations. Their task
is to press the button whenever they see a repeat of a logo. Each task is designed
to last about 4.5 minutes consisting a total of 186 logos divided into 66 targets,
30 filters, and 12 vigilance repeats. Targets are repeated after at least 35 logos,
and at most 150 logos. Vigilance repeats are shown within 7 logos from the first
showing. The vigilance repeats ensure that Amazon Mechanical Turkers are in-
deed paying attention. Turkers failing more than 25% of the vigilance repeats
are blocked and all their answers are discarded. We refer readers to [15,17] for
more procedural details.

Nonetheless, our experiments differ in at least two main ways. First, we use
a 2 × 2 × 2 × 2 full factorial design and examine 16 different between-subject
treatments varying the levels (above median or below median) of perceptual
Fluency measures (Perceptual Complexity and Image Prototypicality, detailed
in Section 1 and Section 3.2) and Conceptual Fluency measures (Entropy and
Kullback-Leibler Divergence from deep neural network feature distributions)
with a logo memory game, following experimental economics protocols, which
provides greater control and facilitates causal inference. Second, rather than re-
peating identical natural images at variable time intervals, we repeat logos in
different forms (logo pattern or plain text towards the end of the experimental
session) and elicit memory scores accordingly. Fig. 1 shows sample designs from
our dataset arranged by annotated scores.

2.2 Summary of the Dataset

We collected vector logos from various sources on the Internet courtesy of Brands
of the World, Logo Types, World Vector Logo, Vector Me. Our dataset contains

brandsoftheworld.com
brandsoftheworld.com
logotypes.ru
worldvectorlogo.com
vector.me
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Fig. 1: Sample images arranged by their memorability and likability scores: top
left logos are of high memorability scores, top right of low memorability scores,
bottom left of high likability scores, bottom right of low likability scores

logo designs spanning 39 industry categories and 216 countries. Access is avail-
able at Logo Designs. We present the distributions of industrial categories and
countries based on the annotated subset in Fig. 2. We detail the distribution of
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Fig. 2: Histograms of Logo Industrial Categories and Countries

logos across the most concentrated countries and categories in the spider charts
of Figure 3. Most logos of the design category are from Brazil, US, Turkey, Mex-
ico and Europe, whereas logos of food and drinks are from North and South
America. Sports logos are more even distributed among European countries and
South America with greater concentration on Brazil and US. Brazilian logos
are mostly concentrated in sports, design, and business, whereas US logos are
more evenly distributed across categories including food and drinks, technology,
media, automobile, music and finance in our annotated sample from the larger
dataset.

2.3 Summary of Image Features

We explore a variety of image features of our dataset, including size (entropy),
hue, saturation, value, the number of edges, the number of straight lines, the
number of corners, the number of circles, number of polygons, and the presence

meredithhu.github.io/logos.html
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Fig. 3: Spider Chart of Logo Distributions Across Countries (Categories) By
Category (Country)

of texts. We measure the size by taking the average of local entropy values of
all pixels within an image, and plot the distribution by country and category.
Figure 4 shows the comparative distribution of the most concentrated coun-
tries (top six) and categories (top ten). Interestingly, logos of the technology
category appear to be much more concentrated on the lower end of the size
spectrum, whereas media logos and food/drinks logos show the greatest varia-
tions in terms of size. Across countries, logos from European countries appear
more concentrated towards the smaller sizes whereas the overall variation across
countries are much less pronounced than that across industries, as are shown in
Figure 5.
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Fig. 4: Histograms of Logo Size Distributions Across Most Concentrated Coun-
tries and Categories

3D plots of representative countries and categories are shown in Figure 6,
where the hue, saturation, and value values are the averages taken across all
pixels of an image. Some descriptive patterns include: sports logos are distribu-
tionally more saturated than design logos, logos from North American countries
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Fig. 5: Density Plots of Logo Size Distributions Across Most Concentrated Coun-
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are distributionally both more saturated and less concentrated in hues than logos
from European countries.
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We also measure the number of edges with Canny detector, the number of
corners with Harris detector, the number of straight lines, circles, and polygons
with probabilistic Hough line transformation. We plot a selection of empirical
densities of the resulting number of edges, circles, straight lines and polygons in
Figure 7. Some interesting patterns emerged: (1) Logos of the Design industry
appear to adopt less straight lines and polygons, whereas Sports logos appear
to exhibit polygons much more frequently; (2) Sports, Media, and Food/Drinks
Logos appear to showcase more circles whereas the opposite goes for Retail and
Technology logos; (3) American (both North and South) logos appear to adopt
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Fig. 7: Density Plots of Low-level Features by Category or Country

more circles and polygons than European logos, with South American logos
showcasing more edges.

2.4 Image Features and Memorability (Likability)

We did a preliminary analysis that correlats low level features with both mem-
orability and likability. To simplify interpretations, we summarize identified re-
lationships from our model-free results in Table ??, where − means negative, U
means U-shaped curve, Inverse U means inverse U-shaped curve, and NS means
Non-significant.

Relationship #Edge #Line #Circle #Polygon Hue Saturation Value

Memorability Linear + U Inverse U Inverse U −
5 NS NS

Likability Linear + U Inverse U U NS NS NS

Table 1: Low-level Features and Memorability/Likability
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3 Methods

To explore how different DCNNs perform on our design dataset in predict-
ing memorability and likability, we experiment with five network architectures,
three pre-training options and two initialization methods, which we detail in
Section 3.1. To better understand how perceptual and conceptual fluency af-
fect design memorability and likability, we propose DCNN-based measures for
both fluency constructs and regress non-linearly both memorability and lika-
bility scores on fluency measures, along with a myriad of control variables. We
detail this more economic design in Section 3.2. Compared to previous estab-
lished measures of prototypicality in perception literature, our proposed method
is better suited given the much bigger scale, and the abstract nature of our
unique dataset distinct from previous studies in perception.

3.1 Predicting Memorability and Likability

We distribute the annotated data into 5 random train and test splits. We run a
series of experiments varying three aspects:

1. The network architectures:
AlexNet ([18]), VGG16 ([24]), VGG19 ([24]), Inception-V3 ([25]), and ResNet-
50 ([9]);

2. Pre-training: ImageNet [2] pre-trained model with transfer learning (only
the last layer was re-trained), ImageNet pre-trained model followed by fine-
tuning (the last three layers were re-trained for 15 and 20 epochs for memo-
rability and likability prediction, respectively), training from scratch without
pre-training; a Euclidean loss layer is used since memorability or likability
is a single real-valued output;

3. Weight initialization: random initialization drawn from Gaussian distribu-
tions ([19]) or robust initialization proposed in [8];

3.2 Measuring and Identifying Perceptual and Conceptual Fluencies

Conceptual Fluency: Entropy and Kullback-Leibler divergence Recall
that we define conceptual fluency as if/how the underlying brand identity is
perceived, for which we propose two information-theory based measures using
DCNN prediction results: entropy and Kullback-Leibler divergence. Specifically,
we train a deep residual network [9] on our dataset in the same way as described
in Section3.1, except that the output of the last fully-connected layer in fine-
tuning is fed to a 39-way softmax layer at the end, representing the 39 different
industrial identities in our setting. Cross-entropy losses replace the Euclidean
losses since the ground-truths are one-shot vectors. Given the output distribution
of our fine-tuned ResNet for logo category classification, denoted as Q, and the
true category label, denoted as P , we define our measure regarding conceptual
fluency as the Kullback-Leibler divergence from P to Q, written as DKL(P |Q).
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The other dimension we extract for measuring conceptual fluency is the Shannon
entropy of Q, H(Q), the output distribution of the deep network as our measure:

DKL(P |Q) =
C
∑

c=1

Pc log
( Pc

Qc

)

, H(Q) = −

C
∑

c=1

Qc log(Qc) (1)

where P represents the one-hot vector representation of the true category label
and Q represents the inferred category label distribution given by the DCNN.
We plot the empirical distributions of proposed measures of conceptual fluency
in Figure 8. Intuitively, KL on conceptual fluency should reflect the deviation

0

10000

20000

0 1 2 3
Content Ambiguity Score (Shannon Entropy)

F
re

qu
en

cy

Distribution of Shannon Entropy as Content Ambiguity

0

1000

2000

3000

4000

5000

0 5 10 15 20
Content Ambiguity Score (KL Divergence)

F
re

qu
en

cy

Distribution of Kullback−Leibler Divergence as Content Ambiguity

Fig. 8: Empirical Distributions of Two Conceptual Fluency Measures (by intu-
ition, they measure two dimensions of content ambiguity of logos)

(or surprise) of the perceived distributional identity from real identity, whereas
entropy on conceptual fluency reflects only the perceived distributional identity.
Thus KL measure is susceptible to industrial norms about logos, and its “power
law” pattern indicates strong conformity within industry, whereas Entropy mea-
sure adheres to Law of Large Numbers, free of industrial constraints.

Perceptual Fluency: Perceptual Complexity and Perceptual Proto-
typicality We calculate the image entropy of each design in our dataset as the
measure for Perceptual Complexity, since perception research and algorithmic
information theory posit that a compressed image file can accurately measure
picture complexity. Such measures have been shown to correlate positively with
subjective ratings of design complexity ([3]). We measure the Perceptual Proto-
typicality in the same way as conceptual fluency except that the entropy is cal-
culated based on the predicted distribution across 1000 concrete objects for each
design (denoted as Q, the same Shannon Entropy of Q is detailed in Equation 1,
obtained from a fine-tuned ResNet-50 ([9]) based on ImageNet initializations.

We propose and measure these constructs based on previous findings that
draw on an inherent and fundamental truth about the way the visual system op-
erates: “the idea that people‘s preference for any design depends on the extent
to which its visual processing is surprisingly fluent. This processing depends on
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two uncorrelated aspects of a visual design — processing expectation ex ante
and processing efficiency ex post. Processing efficiency results whenever a de-
sign is more prototypical, with fewer neural resources recruited, and is processed
quickly. Such quick, efficient processing results in a gut-level positive affective
response [29]. Whenever people have a processing expectation of difficulty, this
gut-level affect increases perceived likability of a design. Processing expectation
hinges on visual complexity of the design. When people expect difficulty in pro-
cessing, they are unable to attribute the gut-positive affect evoked by efficient
processing to specific design characteristics, and they therefore subconciously
infer that the gut-positive reaction must imply that they like the design. On the
other hand, when the processing expectation is low because a design is visually
simple, people attribute the gut-level affective response arising from processing
efficiency to design simplicity, and they correct for an increase of affect on their
preference toward the design [30]” ([20]).

Intuitively, this metric implies the extent to which the logo visual elements
overlap with recognizable object categories as prototypes, and therefore, we re-
fer to it as an Image Prototypicality measure, based on theories in perception
research that we have detailed in Section 1. This metric might also appeal to the
concreteness (abstractness) of the design pattern, which appears to be another
open question yet to be resolved.

4 Results and Discussions

We document (1) the current results (rank correlations, following [17]) of the
experiments of prediction tasks on the computing front in Table 2; and (2)
the statistical significances of variables (our proposed measures of conceptual
and perceptual fluencies) of interest regressed against annotated memorability
and likability scores in Table 3 (where the significance matters rather than the
prediction accuracy). The rank correlations were averaged across five splits twice
— once for memorability prediction and once for likability prediction. The rank
correlation peaking at 0.64 in [17] was benchmarked against human consistency
at 0.68 in their setting of natural images. The disparity between ours and theirs
is likely due to (1) the additional ambiguity and subjectivity of visual designs
compared to natural images or photos; (2) they added an extra support vector
regression step on top of the last fully connected layers with Euclidean loss,
which we could do shortly. We follow previous literatures on most choices of
hyperparameters in the training processes. We chose the number of training
epochs based on pilot experiments during which the value of the loss function had
always plateaued after 15 epochs when predicting memorability scores and 25
epochs for likability scores. In Figure 9, we plot the evolution of the values of loss
functions over training epochs resulting from different configurations detailed in
Section 3.1.

We next proceed to interpret the results of the regression model from a
perspective of economics and econometrics.
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Rank Correlations Transfer Finetune

Weight Initialization Random ImageNet Random ImageNet

AlexNet 0.37 0.41 0.40 0.39

VGG16 0.40 0.38 0.44 0.40

VGG19 0.36 0.38 0.38 0.41

InceptionV3 0.50 0.51 0.54 0.55

ResNet50 0.50 0.50 0.58 0.58
Table 2: Rank correlation results from test sets, averaged across five splits

Dependent Variables:

mem mem like like

Perceptual Complexity (PC hereafter) 0.290∗∗∗ 0.278∗∗∗ −0.027∗∗∗ −0.012∗∗∗

(0.004) (0.004) (0.004) (0.004)
Perceptual Prototypicality (Inverse) (PPI) −0.010∗∗∗ −0.011∗∗∗ 0.003∗∗ 0.005∗∗

(0.002) (0.002) (0.001) (0.001)
Category −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000)
Country 0.000 0.000 0.000

(0.000) (0.000) (0.000)
Conceptual Entropy (More Ambiguous) −0.018∗∗∗ −0.088∗∗∗ −0.037∗∗∗ −0.035∗∗∗

(0.002) (0.004) (0.002) (0.004)
Conceptual KL Divergence 0.006∗∗∗ 0.013∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.001) (0.002) (0.001) (0.002)
Perceptual Complexity2

−0.074∗∗∗ −0.071∗∗∗ 0.011∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)
Conceptual Entropy2

−0.002∗∗ 0.002∗∗ 0.009∗∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001)

PP(I)2 0.002∗∗∗ 0.002∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Conceptual KL Divergence2 −0.000∗∗∗ −0.000∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)
PC× Conceptual Entropy −0.001 0.011

(0.003) (0.003)
Perceptual Complexity×KL Divergence 0.000 −0.002

(0.001) (0.001)
PPI× Conceptual Entropy 0.001 0.006∗∗∗

(0.001) (0.001)
PPI×KL Divergence −0.000 −0.001∗∗∗

(0.000) (0.000)
Constant 0.918∗∗∗ 1.010∗∗∗ 0.328∗∗∗ 0.299∗∗∗

(0.008) (0.008) (0.007) (0.008)

Observations 123,928 123,928 123,928 123,928

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Regression Table on the Effects of Perceptual and Conceptual Fluency
on Memorability and Likability
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Fig. 9: Evolution of Euclidean Loss During Training

The consistently positively significant linear effect of perceptual complexity
shown in Table 3 supports the visual processing expectation theory that when
consumers experience cognitive difficulty processing certain design pattern, they
mis-attribute greater perceived visual processing fluency due to adjusted higher
expectation to greater liking for that design.

The consistent quadratic causal relationship that is significant between con-
tent ambiguity (conceptual entropy) and design likability in column 3 and col-
umn 4 provides evidence for our hypothesis that logos that are distinct in mean-
ing are likely to pop out and be liked more but if the meaning is very ambiguous
they will be liked less.

The other conceptual fluency measure — the KL Divergence between pre-
diction and truth — yields qualitatively the same effect on design likability and
memorability. Logos that are perceived with little bias in meaning are neither
easily remembered or very much liked and neither do logos that are mostly
mistakenly perceived in meaning.

The effects of perceptual fluency on design memorability and likability are
flipped as posited: a moderate level of prototypicality increases memory but de-
creases affection, and the same with Perceptual Complexity. The more visually
complex a design is, the greater visual processing expectation the perceiver will
(mis-)attribute to the design, and the more positive propensities towards the de-
sign pattern. When the design pattern looks very generic or highly prototypical,
it will draw less attention but increase affection since it is cognitively quick and
easy to process. Conversely, low prototypicality in turn causes a visual overload
and hamper visual encoding, resulting in less memorability yet greater positive
affects since it encourages cognitive elaboration.

This likely suggests an interesting story about the interplay between the ex-
tent to which a logo design is ambiguous in terms of its content against its indus-
trial content and its perceived memorability. When a logo conveys the industrial
characteristics of the company in a most clear way — too conceptually proto-

typical, it is less likely to be remembered by consumers. Possible explanations
include (1) visual processing expectation gets adjusted much lower, lowering the
overall image processing fluency and therefore positive propensities towards the
design pattern; (2) the pattern turns out generic within the category, making it
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difficult for perceivers to associate the design pattern with the identity of the
focal company or brand. When a logo looks extremely ambiguous in terms of its
industrial content, it too gets forgot about more often by consumers, possibly
due to the extra cognitive processing difficulty involved that interferes processing
fluency and exceeds the adjusted processing expectation gap.

The Kullback-Leibler Divergence measure of conceptual fluency with respect
to the true identities of the focal companies shows a significantly positive effect on
consumer memorability. It supports the reverse relative conceptual fluency effect
that visual processing expectations are raised as the perceived conceptual fluency
relative to the true company or brand identity is increased and therefore stronger
preferences towards the design pattern thanks to consumers’ mis-attribution of
relative processing fluency given high expectations to liking.

The negatively significant interaction effect on design likability between im-
age prototypicality and conceptual fluency measures suggests opposing moder-
ator effects between the two pairs of constructs. When a logo design is highly
ambiguous in meaning, or when the perceived industrial identity of a company
represented by its logo is distinct from its true identity, the positive effect of a
lower level of perceptual prototypicality on its likability within a certain range
is moderated. Such moderation effects could be explained by the extra cognitive
processing cost incurred by perceivers when the design pattern is very ambiguous
in meaning. On the other hand, when a logo is complex in its visual style, the
positive effect of content ambiguity relative to its true categorical content on lika-
bility is moderated whereas the first-order negative effect of a content-ambiguous
design pattern on its likability is exacerbated, consistent with what we posit in
Section 1 based on cognitive elaboration and processing fluency theories.

5 Robustness Analysis

For robustness checks, we considered alternative architectures, alternative datasets
and alternative approaches.

– For extraction of perceptual fluency detailed in Section 3.2, we train VGG-
16, GoogleNet, ResNet-101, ResNet-152, in addition to ResNet-50 [9], and
calcualte the metrics in the same way as described. When used as regressors
in our model specification, most of the resulting coefficients remain qualita-

tively unchanged except for third-order terms that become not significant.
For extraction of conceptual fluency detailed in Section 3.2, we fine-tune
ResNet-50 and GoogleNet to train the industrial category classifier as ro-
bustness checks. The resulting two measures of conceptual fluency based on
Shannon entropy and Kullback-Leibler divergence yield coefficient estimates
that remain qualitatively unchanged from previous model structures.

– We test the same idea on a random subsample of another design dataset we
collected from Goodreads, which consists of 5, 575, 892 book cover images
supplemented with rich meta data. Book genres were labeled as categories.
Out of a total of 1, 005 genres, we randomly sampled 39 and within each
genre, we randomly sampled 1, 000 books, forming a subsample of 39, 000

goodreads.com
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book cover design images. We collected both memorability and likability
scores for a random subsample of size 11, 041. The regression coefficients re-
main qualitatively the same when memorability is specified as the dependent
variable. When the dependent variable is likability, the coefficients of style
entropy squared and image entropy dispersion are not significant, whereas
other first-order and second-order results remain qualitatively the same.

– We follow the approaches in [17] and train DCNNs on our datasets to predict
annotated scores directly. We visualize the activated neurons at each layer
for both prediction tasks of memorability and likability.

6 Conclusion

Logos are visual representations of companies and brands. The effective design of
brand logos is a careful blend of art and science. While logos should be aesthet-
ically appealing to target consumers, companies do spend a great deal of time
and money crafting logo designs that reveal central messages about the brand.
These efforts are not unwarranted since studies show that consumers attribute
their inferences from logo designs to the associated companies and brands, or
even the broader environment ([6,23,13]). Therefore it remains relevant for both
multi-national corporations and young entrepreneurs to better understand what
makes a logo design memorable and likable. As one of the first steps towards
this goal, we gather two large-scale visual design image datasets (one of busi-
ness logos, the other of cover designs) with rich meta-data that will hopefully
prove valuable to the business and vision research communities. We experiment
and compare how different DCNN architectures perform in predicting design
memorability and likability. We propose and provide estimation methods based
on training DCNNs to extract and evaluate two independent constructs for de-
signs: perceptual distinctiveness (“perceptual fluency” metrics) and ambiguity
in meaning (“conceptual fluency” metrics) of each logo. We provide evidences of
causal inference that both constructs significantly affect memory for a logo de-
sign, consistent with cognitive elaboration theory. The effect on liking, however,
is interactive, consistent with processing fluency (e.g., [22,20]).

Potential intriguing extensions that leverage our datasets or results include:

– Developing generative adversarial networks for logo generation and slogan
generation given the brand image and market position;

– Automatic storytelling or generating signature stories given the logos and
business identities;

– Exploring what makes a logo-slogan combination memorable and/or likable,
which appears to echo the emerging efforts that bridge language and vision.
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