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Abstract. We introduce count-guided weakly supervised localization
(C-WSL), an approach that uses per-class object count as a new form
of supervision to improve weakly supervised localization (WSL). C-WSL
uses a simple count-based region selection algorithm to select high-quality
regions, each of which covers a single object instance during training,
and improves existing WSL methods by training with the selected re-
gions. To demonstrate the effectiveness of C-WSL, we integrate it into
two WSL architectures and conduct extensive experiments on VOC2007
and VOC2012. Experimental results show that C-WSL leads to large
improvements in WSL and that the proposed approach significantly out-
performs the state-of-the-art methods. The results of annotation experi-
ments on VOC2007 suggest that a modest extra time is needed to obtain
per-class object counts compared to labeling only object categories in an
image. Furthermore, we reduce the annotation time by more than 2×
and 38× compared to center-click and bounding-box annotations.

Keywords: Weakly supervised localization · Count supervision.

1 Introduction

Convolutional neural networks (CNN) have achieved state-of-the-art performance
on the object detection task [29, 23, 27, 28, 32, 21, 12, 20, 37, 33, 38, 39]. However,
these detectors are trained in a strongly supervised setting, requiring a large
number of bounding box annotations and huge amounts of human labor.

To ease the burden of human annotation, weakly supervised localization
(WSL) methods train a detector using weak supervision, e.g., image-level su-
pervision, instead of tight object bounding boxes. The presence of an object
category in an image can be obtained on the Internet nearly for free, so most
existing WSL architectures require only object categories as supervision.

Existing methods [1, 3, 5, 15, 24, 36, 35, 19, 14, 40, 16, 30, 34] have proposed dif-
ferent architectures to address the WSL problem. However, there is still a large
performance gap between weakly and strongly supervised detectors [29, 28, 23]
on standard object detection benchmarks [9, 10, 22]. Often, this is due to the lim-
ited information provided by object-category supervision. One major unsolved
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Fig. 1. Given a set of object proposals and the per-class object count label, we select
high-quality positive regions (that tightly cover a single object) to train aWSL detector.
Count information significantly reduces detected bounding boxes that are loose and
contain two or more object instances, one of the most common errors produced by
weakly supervised detectors

problem of WSL is that high confidence detections tend to include multiple ob-
jects instead of one. As shown in Fig. 1 (red cross branch), since training images
containing multiple dogs are labeled just as “Dog”, detectors tend to learn the
composite appearance of multiple dogs as if they were one dog and group mul-
tiple dogs as a single instance at test time. To resolve this ambiguity, we use
per-class object count information to supervise detector training.

Object count is a type of image-level supervision which is much weaker and
cheaper than instance-level supervisions, such as center clicks [26] and bounding
boxes. Unlike center click and bounding box annotations, which require several
well-trained annotators to specify the center and tight box of each object, object
count contains no location information and can be obtained without actually
clicking on an object. Moreover, a widely studied phenomenon in psychology,
called subitizing [4] suggests that humans are able to determine the number
of objects without pointing to or fixating on each object sequentially if the
total number of objects in the image is small (typically 1-4) [2]. Thus, people
may be able to specify the object count with just a glance. To demonstrate
the inexpensiveness of count annotation, we conduct annotation experiments on
Pascal VOC2007. Experimental results show that only a small amount of extra
time is needed to obtain per-class object counts compared to labeling just object
categories in an image and the response time of the count annotation is much
less than that of object center and bounding box.

Our proposed method, Count-guided WSL (C-WSL), is illustrated in Fig. 1.
During the training process, C-WSL makes use of per-class object count super-
vision to identify the correct high-scoring object bounding boxes from a set of
object proposals. Then, a weakly supervised detector is refined with these high-
quality regions as pseudo ground-truth (GT) bounding boxes. This strategy is
similar to existing WSL methods that refine detectors using automatically iden-
tified bounding boxes [19, 14, 35]. However, since these methods do not make use
of object count supervision, they treat only the top-scoring region as the pseudo
GT box, regardless of the number of object instances present in the image. This
sometimes leads to multiple object instances being grouped into a single pseudo
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GT box, which hurts the detector’s ability to localize individual objects. With
the guidance of the object count label, C-WSL selects tight box regions that
cover individual objects as shown in Fig. 1 (the “(2, Dog)” branch).

The main contribution of C-WSL is that it uses per-class object count,
a cheap and effective form of image-level supervision, to address a common
failure case in WSL where one detected bounding box contains multiple ob-
ject instances. To implement C-WSL, we develop a simple Count-based Region
Selection (CRS) algorithm and integrate it into two existing architectures—
alternating detector refinement (ADR) and online detector refinement (ODR)—
to significantly improve WSL. Experimental results on Pascal VOC2007 [9] and
VOC2012 [10] show that C-WSL significantly improves WSL detection and out-
performs state-of-the-art methods.

2 Related Works

MIL-based CNN Methods. Most existing WSL methods [1, 3, 5, 15, 24, 36, 35, 19,
14] are based on multiple instance learning (MIL) [6]. In the MIL setting, a
bag is defined as a collection of regions within an image. A bag is labeled as
positive if at least one instance in the bag is positive and labeled as negative
if all of its samples are negative. Bilen et al. [1] proposed a two-stream CNN
architecture to classify and localize simultaneously and train the network in an
end-to-end manner. Following [1], Kantorov et al. [15] added additive and con-
trastive models to improve localization on object boundaries instead of local
parts. Singh et al. [34] proposed the ‘Hide-and-Seek’ framework which hides in-
formative patches to encourage WSL to detect complete object instances. In [19],
Li et al. conducted progressive domain adaption and significantly improved the
localization ability of the baseline detector. Diba et al. [5] performed WSL in
two/three cascaded stages to find the best candidate location based on a gen-
erated class activation map. Jie et al. proposed a self-taught learning approach
in [14] which alternates between classifier training and online supportive sample
harvesting. Similarly, in [35], Tang et al. designed an online classifier refinement
pipeline to progressively locate the most discriminative region of an image. [14]
and [35] are most related to our approach since we also conduct alternating and
online detector refinement. However, instead of using the top-scoring detection
as the positive label [35] or mining confident regions by solving a complex dense
subgraph discovery problem [14], we use per-class object count, a cheap form
of supervision, to guide region selection and progressively obtain better positive
training regions.

WSL with Different Supervisions. [25] proposed a novel framework where an
annotator verifies predicted results instead of manually drawing boxes. Kolesnikov
et al. [17] assigned object or distractor labels to co-occuring objects in images
to improve WSL. Papadopoulos et al. [26] proposed click supervision and inte-
grated it into existing MIL-based methods to improve localization performance.
However, these methods either highly depend on the produced results and re-
quire frequent interactions with annotators or require annotators to search for
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Fig. 2. A common failure case of WSL methods (left) and graph representation of our
region selection formulation (right). Our goal is to select the two green boxes, each of
which tightly covers one object, as the positive training samples for WSL detectors. We
achieve this by analyzing the confidence scores and spatial constraints among regions

and click on each instance in an image. In contrast, object count is an image-
level annotation which contains no location information at all. It can be obtained
with no clicks and few interactions, thus requires much less annotation time.

3 Proposed Approach

C-WSL selects regions covering a single object with the help of per-class object
count supervision and then refines the WSL detector using these regions as the
pesudo GT bounding boxes. We first introduce a simple Count-based Region
Selection (CRS) algorithm that C-WSL relies on to select high-quality regions
from object proposals on training images. Then, we integrate CRS into two
detector refinement structures to improve weakly supervised detectors.

3.1 Count-based Region Selection (CRS)

As shown in Fig. 2 (left), without object count information, previous methods
often select the top-scoring box in training images as the positive training sample
to refine the WSL detector [35, 19, 14]. Their detection performance is degraded
because in many cases the top-scoring box contains multiple objects from the
same category, e.g., two cats. Our goal is to select distinct regions, each cov-
ering a single object as positive training samples with the help of object count
constraints so that the detector will learn the appearance of a single cat.

We formulate the problem as a region selection problem. Given a set of boxes
B = {b1, ..., bN} and the corresponding confidence scores P = {p1, ..., pN} (e.g.,
the detection score of a region in each detector refinement iteration), a subset G
is selected as the set of positive training regions where |G| = C and C indicates
the per-class object count. We identify a good subset G using a greedy algorithm
applied to a graphical representation of the set of boxes. Each box is represented
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as a node in the graph, and two nodes are connected if the spatial overlap of their
corresponding boxes is below a threshold (See solid line in Fig. 2). The greedy
algorithm provides an approximation to the following optimization problem:

G∗ = argmax
G

∑

bk∈G

pk,

s.t. |G| = C, ao(bi, bj) < T ∀bi, bj ∈ G, i 6= j.

(1)

To encourage selecting regions containing just one object, we use the asymmetric

area of overlap, i.e, ao(bi, bj) =
area(bi∩bj)
area(bj)

, which has been proposed in [7, 8] to

model spatial overlap between two boxes, where bi is a box previously selected
by the greedy algorithm and bj indicates a box considered for selection. T is
the overlap threshold. If the algorithm has previously added a large box to
the solution, thresholding on ao will discourage the selection of its subregions,
regardless of their sizes.1 So, to deliver a high total score, the algorithm prefers
C small high-scoring boxes to one large box, even though the large box may
have the highest score.

We conduct region selection after applying non-maximum suppression on a
complete set of the detection boxes, so the number of nodes is limited to a
reasonable number, and the computation cost is low in practice. The algorithm
is summarized in Alg. 1.

Algorithm 1: Count-based Region Selection (CRS)

Input : B = {b1, ..., bN}, P = {p1, ..., pN}, T , C;
B is a list of candidate boxes;
P is the corresponding scores;
T is the overlap threshold;
C indicates the object count;

Initialization: Sort (descend) B based on P;
G∗ ← ∅; smax ← 0;
Output: G∗

for i ∈ {1, ..., N} do
G← bi; s← pi;
for j ∈ {i+ 1, ..., N} do

if ao(bk, bj) < T (∀bk ∈ G) then
G← G ∪ {bj}; s← s+ pj
if |G| == C or j == N then

if s > smax then
smax ← s; G∗ ← G

break;

1 The commonly used symmetric intersection-over-union measure would select suffi-
ciently small regions even if they were fully overlapped by an existing large box.



6 M. Gao, A. Li, R. Yu, V. I. Morariu and L. S. Davis

GT	Candidates	Generation

WSL	Detector

Pseudo	GTs

Train	detector Generate	Pseudo	GTs

Count	based

Region	Selection

CRS

CRS

MIDN

Detector	Refine,	1-st	time

Detector	Refine,	k-th time

Conv	layers

Proposal	scores

Image	scores

Predicted	boxes

Pseudo	GT	boxes

Cls	loss

Bbox	loss

Cls	loss

Bbox	loss

Img	loss

FC	layers

Image	labels

(a) Alternating detector refinement (b) Online detector refinement w/ CRS

Fig. 3. (a): Count-based Region Selection (CRS) is applied to select high-quality pos-
itive training regions from the ground-truth (GT) candidate boxes generated by a
WSL detector. The WSL detector is then refined using these regions. (b): The Mul-
tiple Instance Detection Network(MIDN ) [1, 35] and multiple detector networks share
the same feature representation to refine the detector at all stages together. Cls loss

indicates the classification loss and Bbox loss indicates bounding box regression loss

3.2 Detector Refinement Structures with CRS

Alternating Detector Refinement (ADR). We first integrate CRS into
an alternating WSL refinement architecture, where a poor weakly supervised
detector can be refined iteratively. The architecture is shown in Fig. 3, where
a WSL detector alternates between generating high-quality regions as pseudo
ground-truth (GT) boxes and refining itself using these GT boxes. Some WSL
methods are based on a strategy like this [3, 14]. The major difference is that we
use CRS to select multiple high-quality regions as the GT boxes.

Initialization phase. We first generate a set of box candidates from the train-
ing data using a pre-trained WSL detector. This set of box candidates is treated
as the initialized pseudo GTs and will be refined iteratively afterwards.

Alternating training phase. We use Fast R-CNN [13] as our WSL network.
Starting from the initialized pseudo GT boxes, Fast R-CNN alternates between
improving itself via retraining with the pseudo GT boxes generated by CRS and
generating a refined set of GT candidate boxes on the training images.

Online Detector Refinement (ODR). As argued in [35], the alternating
strategy has two potential limitations: 1) it is time consuming to alternate be-
tween training on the fixed labels and generating labels by the trained model; 2)
separating refinements into different iterations might harm performance since it
hinders the procedure from sharing image representations across iterations.

Based on [35], we propose an online detector refinement framework integrated
with CRS. An illustration of the proposed method is shown in Fig. 3. A Multi-
ple Instance Detection Network (MIDN) and several detector refinement stages
share the same feature representation extracted from a backbone structure. The
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MIDN utilizes an object-category label to supervise its training as in [35, 1].
Each detector refinement network outputs the classification score and predicted
bounding box for each region proposal. The predicted boxes with scores at each
stage will be used to select pseudo GTs for the next stage refinement. Compared
to [35], we have two major differences: 1) we use CRS to generate high-quality
regions as pseudo GTs rather than just choosing the top-scoring region; 2) we
use both classification loss and bounding box regression loss for detector refine-
ment, just as RCNNs do. Note that the inputs to CRS produced by MIDN are
the proposals with scores before the summation over proposals.

4 Experiments

We compare with the existing WSL methods which are trained by object class
labels to show the advantage of per-class count supervision. It may seem an ‘un-
fair’ comparison, since the per-class count provides more information compared
to object class. However, we demonstrate via our annotation experiment that
the cost of the additional information is very low, which makes it reasonable to
determine how much improvement can be gained by adding this information.

4.1 Experimental Setup

Datasets and Evaluate Metrics. Comparisons with state-of-the-art methods are
conducted on VOC2007 [9] and VOC2012 [10] which contain 20 object categories.
For VOC2007, all the models are trained on the trainval set which contains 5,011
images and evaluated on test set which includes 4,952 images. For VOC2012,
models are trained on 5,717 images of the train set and evaluated on 5,823 images
in the val set. We use two widely used metrics for localization evaluation: Correct
localization (CorLoc) [24] and Average Precision (AP) [11]. CorLoc evaluates
localization accuracy by measuring if the maximum response point of a detection
is inside the ground truth bounding box. AP evaluates models by comparing IoU
between output and ground truth bounding boxes.

Implementation Details. We fix T = 0.1 for all models at all the iterations
on both datasets. Note that our experiments show that the method is robust
to T , e.g., varying T from 0.1 to 1 with step 0.1, we achieved (Mean, Std) =
(47.2%, 0.42%) mAP. Following [14, 35], we set the total iteration number to
3 and use VGG16 [31] as the backbone structure for both ADR and ODR.
For fair comparison, the existing works also use VGG16 except for [3] which
utilizes AlexNet. In ADR, we strictly follow the steps of training Fast-RCNN at
each iteration and use all the released default training parameters except that we
use the generated pseudo GT boxes instead of the bounding box labels. In ODR,
we follow the basic MIDN structure and training process from [35], and use the
parameters released by the author. Note that we use the same classification and
bounding box regression loss in ODR as in [13].

Variants of Our Approach. C-WSL:WSLPDA/OICR+ADR indicates ADR
initialized with a pre-trained WSLPDA [19] (or OICR [35]) model where CRS is
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used to select confident GT boxes in each iteration. Then, a Fast-RCNN is alter-
natively refined as we mentioned in Sec. 3.2. C-WSL:ODR indicates the structure
shown in Fig. 3(b). C-WSL:ODR+FRCNN denotes a Fast RCNN trained with
the top-scoring region generated by C-WSL:ODR to improve results (inspired
by [19, 35]). C-WSL* indicates models trained by our annotated counts.

4.2 Annotation Time vs. Detection Accuracy

Object counting is very straightforward. The user interface includes an image
and 15 buttons indicating the count numbers. We cap object count with 15 since
it is very rare to have a count of the same class bigger than 15. Similar to the click
experiments [21], an annotator was given a category and was asked to click the
count corresponding to that category. Following [26], given an object category,
we measure the response time of counting the object instances from the moment
the image appears until the count is determined.

Annotation evaluations are conducted on the full trainval set with 20 cat-
egories of VOC2007 [9]. The average response time of counting a single object
per class per image is 0.90s. Average response time per image of annotating a
single image class is from 1.5s to 1.9s [18] and that of annotating count given
object class is 1.48s, so obtaining per-class object count from an image only
needs 1.48/1.9 = 78% to 1.48/1.5 = 99% more time compared to annotating
just the object class.

Annotation time of object counts per image increases as the number of objects
increases. However, it might not always be helpful to count all the objects,
especially for images with many objects, since these images are more likely to
depict complex scenes, e.g., significant occlusions and small object instances, and
for such images the generated GT candidates might not include all the objects
in the first place. Thus, we evaluate the detection accuracy of our model using at
most K per-class objects annotation, where K is the upper bound of per-class
object instances that are counted for each image. Obviously, K has positive
correlation with annotation time, since annotators may not be able to subitize
for high values of K and will need to spend an amount of time proportional
to K in order to produce an accurate count. Analysis of mAP and average
CorLoc vs. K is shown in Fig. 4. The results suggest that the detection accuracy
reaches the highest point when at most 3 per-class objects are counted per image.
Average annotation time per image for images with at most 3 per-class objects
is 1.20s which is 63% ∼ 80% overhead compared to object category annotations.
We compare our models trained by our annotated counts and those obtained

Table 1. Accuracy vs. cost among bounding box, clicks and count supervisions on
VOC2007. We use [29] as a reference of fully supervised detector

Method Faster-RCNN [29] Two-clicks [26] One-click [26] C-WSL*:ODR+FRCNN

mAP(%) 69.9 49.1(AlexNet)/57.5(VGG16) 45.9(AlexNet) 48.2(VGG16)

Annotation cost
34.5s/img+anno. train
+re-draw rejected boxes

3.74s/img+anno. train
+re-click rejected clicks

1.87s/img+anno. train
+re-click rejected clicks

0.90s/img
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Fig. 4. Detection accuracy analysis when at most K per-class objects are counted in
an image. Average annotation time (in seconds) per image under each K is shown in
the parentheses. Detection accuracy becomes stable when K=3

from the VOC2007 annotations in Tab. 2 and 3. The results demonstrate that
models trained by the two sets of annotations have comparable performance,
which suggests that our annotation is as useful as the VOC2007 annotations.
Thus, in the following analysis, we just use (C-WSL) VOC2007 annotations.

Accuracy and cost comparisons among box, clicks and count supervisions are
shown in Tab. 1. Although the accuracy of our approach does not outperform
supervised and two-click methods, we have achieved a significant reduction in
annotation cost. We are 38× and 4× faster regarding to response time for la-
beling a single image. In addition, box and clicks annotations require additional
repeated annotator training to accurately locate objects and lengthy quality
control processes. Our annotation does not require knowing the location of an
object so it avoids the sensitivity to location noise. Consequently, we do not need
annotator training and quality control in our experiments.

4.3 Comparison with State-of-the-art (SOTA) Approaches

Comparison in terms of mAP on the VOC2007 test set and CorLoc on the
VOC2007 trainval set are shown in Tab. 2 and 3, respectively. Overall, the
proposed C-WSL:ODR+FRCNN outperforms all the existing SOTA methods
using both CorLoc and mAP measurements.

Tab. 4 and 5 compare our variants with the two baseline detectors, i.e.,
WSLPDA [19] and OICR [35]. The results suggest that even the simple ADR
strategy can significantly improve the results. Moreover, if we use object count
information, we can largely improve WSLPDA by 6.2% mAP (9.5% average
CorLoc) and OICR by 5.2% mAP (4.0% average CorLoc). C-WSL improves the
results of WSLPDA+ADR on 17 (15) out of 20 categories and the results of
OICR+ADR on 10 (10) out of 20 categories in terms of mAP on the VOC2007
test set (in terms of CorLoc on the VOC2007 trainval set).

2 The numbers are reproduced by using the code released by the author.
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Table 2. Comparison with the state-of-the-art in terms of mAP on the VOC2007 test

set. Our number is marked in red if it is the best in the column

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

Cinbis et al. [3] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2
Wang et al. [36] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
Jie et al. [14] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7
WSDDN [1] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
WSDDN+Context [15] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
WSDDN-Ens. [1] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3
WCCN-3stage [5] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
WSLPDA [19] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
OICR [35] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
OICR-Ens.+FRCNN2 [35] 64.5 64.4 44.1 25.9 16.9 67.8 68.4 33.2 9.0 57.5 46.4 21.7 57.8 64.3 10.0 23.7 50.6 60.9 64.7 58.0 45.5

C-WSL:ODR 62.7 63.7 40.0 25.5 17.7 70.1 68.3 38.9 25.4 54.5 41.6 29.9 37.9 64.2 11.3 27.4 49.3 54.7 61.4 67.4 45.6
C-WSL*:ODR 62.9 64.8 39.8 28.1 16.4 69.5 68.2 47.0 27.9 55.8 43.7 31.2 43.8 65.0 10.9 26.1 52.7 55.3 60.2 66.6 46.8
C-WSL:ODR+FRCNN 61.9 61.9 48.6 28.7 23.3 71.1 71.3 38.7 28.5 60.6 45.4 26.3 49.7 65.5 7.2 27.3 54.7 61.6 63.2 59.5 47.8
C-WSL*:ODR+FRCNN 62.9 68.3 52.9 25.8 16.5 71.1 69.5 48.2 26.0 58.6 44.5 28.2 49.6 66.4 10.2 26.4 55.3 59.9 61.6 62.2 48.2

Table 3. Comparison with the state-of-the-art in terms of CorLoc (%) on the VOC2007
trainval set. Our number is marked in red if it is the best in the column

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.

Cinbis et al. [3] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0
Wang et al. [36] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
Jie et al. [14] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
WSDDN [1] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
WSDDN+Context [15] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
WSDDN-Ens. [1] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0
WCCN-3stage [5] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7
SP-VGGNet [40] 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6
WSLPDA [19] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
OICR [35] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
OICR-Ens.+FRCNN2 [35] 88.3 78.8 62.8 48.9 38.9 83.2 85.4 50.0 21.9 77.4 45.6 41.9 79.3 91.6 12.6 60.8 86.6 70.2 80.2 79.9 64.2

C-WSL:ODR 86.3 80.4 58.3 50.0 36.6 85.8 86.2 47.1 42.7 81.5 42.2 42.6 50.7 90.0 14.3 61.9 85.6 64.2 77.2 82.4 63.3
C-WSL*:ODR 85.8 81.2 64.9 50.5 32.1 84.3 85.9 54.7 43.4 80.1 42.2 42.6 60.5 90.4 13.7 57.5 82.5 61.8 74.1 82.4 63.5
C-WSL:ODR+FRCNN 85.8 78.0 61.6 52.1 44.7 81.7 88.4 49.1 50.0 82.9 44.1 44.4 63.9 92.4 14.3 60.4 86.6 68.3 80.6 82.8 65.6
C-WSL*:ODR+FRCNN 87.5 81.6 65.5 52.1 37.4 83.8 87.9 57.6 50.3 80.8 44.9 44.4 65.6 92.8 14.9 61.2 83.5 68.5 77.6 83.5 66.1

Table 4. Comparison with baselines in terms of mAP on the VOC2007 test set. The
table contains two comparison groups separated by double solid lines. Each group shows
how much ADR and C-WSL improve each baseline. Underline is used if the C-WSL
variant outperforms its baselines

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

WSLPDA [19] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
WSLPDA+ADR 57.9 68.3 47.8 20.3 12.2 52.9 67.6 68.8 24.6 50.0 24.9 49.8 54.8 63.5 14.1 27.4 41.2 19.5 57.1 30.7 42.7
C-WSL:WSLPDA+ADR 60.5 70.1 52.5 24.7 24.4 63.6 71.8 58.1 26.0 66.4 26.5 34.7 55.0 65.8 8.8 31.9 51.6 20.4 60.0 41.8 45.7

OICR [35] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
OICR+ADR 58.1 61.2 43.3 24.4 19.4 65.5 67.1 34.3 3.6 56.5 45.5 26.4 61.9 60.7 10.4 23.6 49.2 62.1 61.4 64.2 44.9
C-WSL:OICR+ADR 61.7 66.8 45.6 21.1 23.5 67.2 73.8 32.5 10.6 54.6 42.9 16.6 59.2 63.3 11.0 25.4 55.3 61.3 67.4 67.8 46.4

Table 5. Comparison with the baseline detectors in terms of CorLoc (%) on the
VOC2007 trainval set. The table contains two comparison groups separated by double
solid lines. Each group shows how much ADR and C-WSL improve each baseline.
Underline is used if the C-WSL variant outperforms its baselines

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.

WSLPDA [19] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
WSLPDA+ADR 84.6 76.9 69.7 41.0 21.8 68.5 83.2 77.6 34.4 76.7 19.8 73.7 75.2 84.7 26.3 53.8 70.1 22.3 73.8 50.9 59.2
C-WSL:WSLPDA+ADR 83.3 80.0 70.9 51.6 41.2 73.6 85.3 67.7 40.7 79.5 20.9 54.7 79.6 87.1 24.5 56.8 83.5 20.7 76.0 60.2 61.9

OICR [35] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
OICR+ADR 85.8 76.9 65.8 49.5 38.5 83.2 84.8 49.7 14.0 79.5 46.8 41.2 80.3 89.2 15.0 60.1 84.5 66.4 78.3 80.6 63.5
C-WSL:OICR+ADR 85.4 78.0 65.5 49.5 43.5 84.3 87.5 48.0 23.6 80.8 43.3 38.8 79.9 92.8 15.8 60.1 87.6 66.4 81.0 80.3 64.6
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Fig. 5. Image number of multiple-objects over image number of non-zero objects. Note
that “pson” means ”person”, “plt” means ”plant” and “shp” denotes “sheep”. C-WSL
works better on most classes with high multiple-objects percentage. See Sec. 4.3

As stated in Sec. 1, the object count information is helpful to avoid a detector
localizing on multiple objects. To demonstrate this point, we first calculate the
percentage of images that have more than one per-class object (multi-objects
percentage) in VOC2007. As shown in Fig. 5, “bottle”, “car”, “chair”, “cow”,
“person”, “plant” and “sheep” have a high percentage of images which include
more than one object in the corresponding category. As shown in Tab. 2 and 3,
C-WSL:ODR+FRCNN outperforms SOTA methods for 5 out of these 7 cate-
gories. When looking into the effect of object count supervision on WSLPDA
and OICR, we see significant improvement on these categories as shown in Tab. 4
and 5. Consider the “sheep” category for example. C-WSL:WSLPDA+ADR im-
proves WSLPDA+ADR by 13.4% CorLoc and 10.4% AP. C-WSL:OICR+ADR
improves OICR+ADR by 3.1% CorLoc and 6.1% AP. Fig. 6 shows some ex-
amples of training regions selected by OICR+CRS and OICR. OICR tends
to select regions containing multiple instances, while object count helps to ob-
tain regions including a single instance. Qualitative comparison between our
C-WSL:ODR+FRCNN and OICR-Ens.+FRCNN on the VOC2007 test set is
shown in Fig. 8, demonstrating that our approach achieves more precise localiza-
tion when multiple per-class objects appear in an image. We will further analyze
our approach on images with different numbers of objects in Sec. 4.4.

Tab. 6 and 7 show the comparison of C-WSL with the SOTA on VOC2012.
Note that results of WSLPDA and OICR models are reproduced by running the
pretrained model and the code released by the authors. The results suggest that
our method outperforms the SOTA method (OICR-Ens.+FRCNN ) by 2.6% in
mAP on the VOC2012 val set and by 2.8% in CorLoc on the VOC2012 train set.
C-WSL improves the results of WSLPDA+ADR on 12 (10) out of 20 categories
and the results of OICR+ADR on 10 (12) out of 20 categories in terms of mAP
on the VOC2012 val set (in terms of CorLoc on the VOC2012 train set).

We also evaluated our methods and baselines (pre-trained on the VOC2007
trainval set) on the common 20 classes in MS COCO [22] 35k-val2014 set using
COCO mAP@0.5 metric. Although not fine-tuned on COCO, our approaches
still outperform the baseline methods. The results are that C-WSL:WSLPDA
improves WSLPDA [19] from 17.9% to 19.6%. C-WSL:OICR+ADR improves
OICR [35] from 18.7% to 20.1% and C-WSL:ODR+FRCNN improves OICR-
Ens.+FRCNN [35] from 19.0% to 20.0%.
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Table 6. Comparison with the state-of-the-art in terms of mAP on the VOC2012 val

set. Our number is marked in red if it is the best in the column. Underline is used if
the C-WSL variant outperforms its baselines

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

Jie et al. [14] 60.9 53.3 31.0 16.4 18.2 58.2 50.5 55.6 9.1 42.1 12.1 43.4 45.3 64.6 7.4 19.3 44.8 39.3 51.4 57.2 39.0
OICR-Ens.+FRCNN [35] 71.0 68.2 52.7 20.1 27.2 57.3 57.1 19.0 8.0 50.6 30.2 34.5 63.3 69.5 1.2 20.5 48.5 55.2 41.1 60.4 42.8

WSLPDA [19] 42.2 27.8 32.7 4.2 13.7 52.1 35.8 48.3 11.8 31.7 4.9 30.4 45.3 51.8 11.5 13.4 33.5 7.2 45.6 38.4 29.1
WSLPDA+ADR 70.0 65.6 46.3 14.4 22.8 57.5 54.2 67.5 16.1 45.0 4.4 40.0 51.7 71.8 5.8 27.7 38.3 11.7 55.2 34.1 40.0
C-WSL:WSLPDA+ADR 69.8 62.8 52.7 16.7 28.3 61.1 56.6 58.0 18.5 47.8 5.1 36.3 53.3 66.8 6.8 24.2 47.1 11.0 60.1 43.4 41.3

OICR [35] 71.0 59.1 42.3 27.4 20.2 58.7 46.4 18.6 18.1 45.7 21.7 20.5 53.1 68.5 1.8 15.7 42.7 40.0 41.0 61.5 38.7
OICR+ADR 67.0 63.1 50.8 12.8 23.8 55.3 55.1 16.1 5.2 47.2 23.4 28.2 55.9 69.2 1.9 21.5 46.5 49.9 35.9 63.8 39.6
C-WSL:OICR+ADR 71.3 68.3 50.9 17.1 24.8 60.9 56.4 13.9 14.5 54.6 22.2 25.7 57.7 70.4 1.6 20.0 55.8 46.0 35.7 62.9 41.5

C-WSL:ODR 74.0 67.3 45.6 29.2 26.8 62.5 54.8 21.5 22.6 50.6 24.7 25.6 57.4 71.0 2.4 22.8 44.5 44.2 45.2 66.9 43.0
C-WSL:ODR+FRCNN 75.3 71.6 52.6 32.5 29.9 62.9 56.9 16.9 24.5 59.0 28.9 27.6 65.4 72.6 1.4 23.0 49.4 52.3 42.4 62.2 45.4

Table 7. Comparison with the state-of-the-art in terms of CorLoc on the VOC2012
train set. Our number is marked in red if it is the best in the column. Underline is
used if the C-WSL variant outperforms its baselines

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.

OICR-Ens.+FRCNN [35] 85.4 81.5 70.4 44.7 46.6 83.6 78.4 33.9 29.3 83.2 51.6 50.5 86.1 88.0 11.0 56.7 82.5 69.1 65.1 83.6 64.1

WSLPDA [19] 80.5 63.7 64.4 34.1 29.3 76.7 71.5 62.8 30.3 76.1 23.0 55.3 75.2 77.7 18.7 56.4 66.7 25.1 66.5 54.8 55.4
WSLPDA+ADR 87.2 79.7 72.4 38.6 40.9 82.6 75.2 79.8 35.1 81.3 18.9 62.1 82.4 83.9 21.6 60.9 75.4 29.5 74.5 55.5 61.9
C-WSL:WSLPDA+ADR 85.7 77.2 73.4 38.6 46.4 84.9 75.8 69.1 43.0 76.8 20.1 58.6 79.8 79.6 20.3 57.8 79.5 35.4 76.4 61.9 62.0

OICR [35] 86.6 80.4 65.2 57.6 42.1 85.4 72.5 28.0 45.7 79.4 46.2 34.0 78.2 87.2 7.5 55.0 83.6 58.5 62.2 84.3 62.0
OICR+ADR 84.5 79.0 72.4 39.0 47.1 83.6 79.9 31.9 25.0 84.5 48.7 48.3 87.8 88.7 13.3 55.0 82.5 67.4 65.1 83.9 63.4
C-WSL:OICR+ADR 86.6 80.8 73.9 43.2 44.4 87.7 76.2 32.2 34.0 87.1 49.1 46.2 88.2 91.2 12.1 57.1 78.4 65.5 65.1 85.3 64.2

C-WSL:ODR 90.9 81.1 64.9 57.6 50.6 84.9 78.1 29.8 49.7 83.9 50.9 42.6 78.6 87.6 10.4 58.1 85.4 61.0 64.7 86.6 64.9
C-WSL:ODR+FRCNN 92.1 84.3 69.9 58.3 53.9 86.8 80.4 30.6 52.6 83.9 54.7 45.8 83.2 90.1 12.7 56.4 86.0 64.9 66.5 84.3 66.9

Fig. 6. Examples of the training regions selected by OICR+CRS (red) and OICR

(yellow). The regions selected by OICR contain multiple object instances. Object count
information helps to select regions, each covering a single instance

0 1 2 3

Iteration number

39

40

41

42

43

44

45

46

47

m
A

p

WSLPDA+ADR

C-WSL:WSLDPA+ADR

OICR+ADR

C-WSL:OICR+ADR

0 2 4 6orMore
Per-class Object Count number

10

15

20

25

30

35

40

45

50

55

m
A

p

WSLPDA+ADR

C-WSL:WSLDPA+ADR

0 2 4 6orMore
Per-class Object Count number

10

15

20

25

30

35

40

45

50

55

m
A

p

OICR+ADR

C-WSL:OICR+ADR

(a) (b)

Fig. 7. (a): model improvement as the number of ADR iterations increases on the
VOC2007 test set. C-WSL approaches improve faster than others. (b): Evaluation on
images with different per-class object counts on VOC2007. Our approach outperforms
the WSL detectors in the presence of multiple instances in a test image
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4.4 Ablation Analysis

Two major components contribute to the success of our approach. One is the
iterative training process (alternating/online) and the other one is the per-class
object count supervision. In Tab. 4 and 5, we can see the improvement by adding
ADR and object count into the system. For WSLPDA [19], iterative training
(ADR) improves mAP by 3.2% and the count information (CRS) increases it by
3%. For OICR [35], ADR helps by increasing 3.7% mAP and CRS contributes
1.5%. In the following, we analyze each component in detail.

Number of iterations. ADR performances as a function of the number of
iterations using the WSLDPA and OICR models is shown in Fig. 7(a). Generally,
models improve as the number of iterations increases. When adding object count
supervision into the framework, the results of both WSLDPA and OICR models
improve faster, which demonstrates the advantage of count information in WSL.

Number of object instances per image. Adding the object count constraint
helps a detector focus on a single object rather than multiple objects. To demon-
strate this, we partition images in the VOC2007 test set based on their per-class
object count and re-evaluate our approaches on each subset.

The results are shown in Fig. 7(b). For both WSLPDA and OICR, the per-
formance is much better under C-WSL. Generally, the gaps between curves of
with and without C-WSL are bigger as the object count number increases.

Fig. 8. Qualitative comparison between our CWSL:ODR+FRCNN (red boxes) and
OICR+FRCNN (yellow boxes) on the VOC2007 test set over the 20 classes. Our
detector detects much tighter bounding boxes, yields much fewer boxes with multiple
objects in them, and finds instances more accurately
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Fig. 9. Some examples of the common failure cases of our approach (C-
WSL:ODR+FRCNN ) on the “person” category of the VOC2007 test set

4.5 Error Analysis

The results shown in Tab. 2, 3, 6 and 7 suggest that most existing WSL detectors
perform poorly on the “person” category: strongly supervised detectors achieve
more than 76% AP on the VOC2007 test set (e.g., 76.6% [23] and 76.3% [29]),
while the best WSL detection result on “person” is 20.3% (see Tab. 2). This
result is likely due to the large appearance variations of persons in the dataset.
Without constraints provided by tight bounding boxes, rigid parts are easier
to learn and mostly sufficient to differentiate the object from others. So, WSL
detectors focus on local parts instead of the whole object as shown in Fig. 9.

Intuitively, this can be overcome if we can roughly estimate the size of object
instances. We conducted a preliminary experiment as follows. Suppose that we
know the size of the smallest instance of an object category in an image and
assume all the object parts are smaller than the smallest object. This assumption
is not generally true and we use it just as a proof-of-concept. We preprocess the
region candidates by removing all boxes whose size is smaller than the smallest
object and then conduct C-WSL:WSLPDA+ADR on VOC2007. The AP on
“person” improves to 40.0% and the mAP over all the classes improves to 52.7%.

5 Conclusions

We proposed a Count-guided Weakly Supervised Localization (C-WSL) frame-
work where a cheap and effective form of image-level supervision, i.e., per-class
object count, is used to select training regions each of which tightly covers a
single object instance for detector refinement. As a part of C-WSL, we proposed
a Count-based Region Selection (CRS) algorithm to perform high-quality re-
gion selection. We integrated CRS into two detector refinement architectures to
improve WSL detectors. Experimental results demonstrate the effectiveness of
C-WSL. To prove the inexpensiveness of the per-class object count annotation,
we conduct annotation experiments on VOC2007. The results show that only a
small amount of time is needed to obtain the count information in an image and
that we reduce the annotation time of center click and bounding box by more
than 2× and 38× respectively.
Acknowledgement. The research was supported by the Office of Naval Re-
search under Grant N000141612713: Visual Common Sense Reasoning for Multi-
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