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Abstract. We present a mathematical framework for analysis and desigigh-

performance structured light (SL) coding schemes. Usirig fitamework, we
design Hamiltonian SL coding, a novel family of SL coding ectes that can
recover 3D shape with high precision, with only a small nun{as few as three)
of images. We establish structural similarity between pexpdiscrete (binary)
SL coding methods, and Hamiltonian coding, which is a cartirs coding ap-
proach. Based on this similarity, and by leveraging desigrciples from several
different SL coding families, we propose a general recipelésigning Hamilto-
nian coding patterns with specific desirable propertiesh s patterns with high
spatial frequencies for dealing with global illuminatioie perform several ex-
periments to evaluate the proposed approach, and dententtad Hamiltonian
coding based SL approaches outperform existing methodsifeaging scenar-
ios, including scenes with dark albedos, strong ambieht,land interreflections.

1 Introduction

Structured light (SL) is a widely used 3D imaging techniqneséveral applications,
including industrial automation, augmented reality, aoldat navigation. Laser scan-
ning [9] based SL systems can recover 3D shape with extreewspn (0 — 100
microns), albeit at the cost of a large acquisition time. Wggtions such as industrial
inspection require high precision, but with a limited aiion time budget. While
single-shot SL approaches [33] can recover depths with@slggle image, the depths
are spatially smoothed, resulting in loss of detail. Mphittern SL approaches project
a series of patterns so that each projector pixel is assigngtque temporal intensity
code. These codes are used to estalpkstpixel correspondence for each camera pixel,
thereby achieving high spatial resolution. However, utfioately, their depth precision
in demanding scenarios (small time budget, low signaldisaratio) remains low, and
is often the bottleneck in widespread adoption of SL 3D imggn key applications.
The depth precision of a multi-pattern SL system is detegochiby the coding
scheme, i.e., the set of patterns that the light source @mj€&he problem of designing
optimal patterns that achieve high depth precision was firshulated by Horn and
Kiryati [18]. However, finding a closed form (or even a nunsat) solution was consid-
ered infeasible. Instead, a family of patterns based oritioms from digital commu-
nications literature was proposed. These patterns, degigsing Hilbert space filling
curves, belonged to the class difcrete coding schemes (intensities of the patterns
are from a discrete set). While these patterns perform wéligh signal-to-noise ratio
(SNR) settings, their performance degrades as noise s&se#n general, designing
optimal SL patterns, especially for low SNR scenarios, ab agedeveloping formal
tools for analyzing the performance of different methodsains an open problem.
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In this paper, we propose a theoretical framework for afgbpsd design of novel,
high-performance SL coding methods. We consa@etinuous coding, which achieves
sub-pixel correspondence mapping, and require fewer imageompared to discrete
coding approaches [20, 18]. We analyze the geometry of Singd@nage formation)
and decoding to derive a general performance metric of Singathemes. While this
metric can be used to predict the performance of a given sehirs expensive to
compute, and thus, unsuitable as an objective function de aptimization. We take
inspiration from recent work in time-of-flight code desidlib], and derive a surrogate
metric based on first order differential analysis of the im&@ymation equation. The
surrogate is easy to compute, and lends itself to an ineui@ometric interpretation.

Based on this metric, we propose a new family of SL codeseddHamiltonian
patterns. Hamiltonian coding achieves up to an order of nitadg higher precision as
compared to existing approaches, especially in low SNRas@@s) while requiring a
small number of images (as few as thré®espite being a continuous coding scheme,
the construction of Hamiltonian patterns shares struttinailarities with that of the
widely used binary Gray coding [20]. Our key observatiormattdue to this similarity,
the techniques developed for Gray coding can be easily adaptdesign Hamiltonian
patterns. By drawing upon design principles for Gray codé&], [we develop Hamil-
tonian patterns with desired properties, for example, liighuency patterns that are
robust to a broad range of global illumination.

Practical implications: Conceptually, Hamiltonian coding forms a bridge between
binary and continuous SL coding approaches. This providgmeral recipe for de-
sign of high-performance SL patterns, even in challeng@egarios with low SNR and
global illumination. We evaluate the performance of thegmsed coding approaches on
challenging scenes with low albedo, interreflections amadtsdng. Our results demon-
strate that Hamiltonian codes outperform several conweatiapproaches, as well as
recent coding schemes specifically designed for dealinlg g¥dbal illumination [14].
Due to the SNR benefits, and a single, universal, design asatidey algorithm, Hamil-
tonian patterns could become an alterrmiéding-block (instead of sinusoid functions)
in continuous SL based 3D imaging systems.

2 Related Work

Structured light coding design: Several different structured light coding strategies
have been proposed over the last three decades. Thesedhaty Gray coded pat-
terns [20], color coding [1], ramp coding [2], sinusoid aagli[35], trapezoid cod-
ing [19], and edge coding [38]. For a comprehensive survegtarctured light code
design, please see [34]. Surprisingly, there is little wanmkanalyzing the relative perfor-
mance of different coding schemes. Horn et al. [18] considéne problem of design-
ing optimal structured light patterns for discrete codiolgesmes, where the intensity of
each projected column can take a discrete number of inyevesiies. In contrast, our
goal is to develop a theoretical framework for design andyaisof continuous coding
schemes, where the projected intensities can emit a cantsnange of values.

Y1n contrast, discrete coding approaches typically reguirdarge number of patterns, e.g.,
proportional to log of the number of projector columns.
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Fig. 1. Structured light (SL) 3D imaging. (a) A continuous SL coding system consists of a
projector that projects patterns with a continuous rangmtefhsities. A unique intensity code
is assigned to every projector column, which is used to deter correspondence with camera
pixels. (b) In sinusoid phase-shifting, the projectederais have sinusoid intensity profiles.

Structured light in the presence of global illumination: Several SL techniques have
been proposed for mitigating errors due to interreflectanms scattering. These can be
broadly categorized into two classes: (a) Optical appresctuch as those based on po-
larization [7] and epipolar scanning [27], which requireeialized hardware, and (b)
Pattern coding approaches which involve designing pattdrat are robust to global
illumination. These include discrete binary patterns B9, or continuous sinusoid
patterns [14, 6, 25, 8]. We propose a general family of caitirs patterns that outper-
form existing coding strategies for dealing with globalifiination, without requiring
additional hardware. Note that the proposed coding schamessrthogonal to, and can
be used in a complementary manner with, the optical appesd@T].

3 Image Formation Model

A SL system consists of a projector and a camera, as showmyind-iL (a). The pro-
jector projects one or more intensity patterns on the sdesreeach pattern, the camera
captures an imagé&ngle-shot methods [30, 29, 33, 37] need only a single image, but
assume that scene depths are locally smooth, resultingsmliofine geometric details.
In this paper, we considenulti-shot methods where several patterns are projected, and
depths are computed orpar-pixel basis. Most multi-shot structured light systems use
patterns which can be expressed as a 1D coding functionasaltithe pixels within
each column (or row) have the same intensity. The projeaorbe modeled as emit-
ting several light planes, one from each column, as showngar€ 1 (a). In order to
compute depth at a camera pixel, we need to determine itesmonding light plane
(the light plane that illuminates the scene point imagetdapixel). This is achieved by
assigning a unique intensity code to every column; the kenfithe code is the number
of projected patterns. For instance, the intensity cod&dmeibinary [28] orV-ary [18,
3] where each columns could hagor N discrete intensity values.

Binary and K-ary coding belong to the classdidcrete coding methods, where the
coding function takes only discrete values. These methsslsnae that the light source
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Fig. 2. Geometry of Structured Light Patterns. A structured light coding scheme can be mod-
eled as a mapping from (a) the space of unknowns to (b, ¢, dthee of measured intensities.
Given an intensity measurement, projector correspondsnestimated via an inverse mapping
(decoding function) from the measurement space to the umkrspace. (d) Noise in the mea-
surement space leads to uncertainty in the recovered umgoesulting in low depth resolution.

emits a discrete set of light planes. The number of possibfedvalues at a camera
pixel is bounded by the number of light planes. Thus, the ldegsolution achieved
by a discrete coding method is limite@ur focus is on continuous coding methods,
where the coding functions are continuous and piece-witerelntiable functions. For
example, sinusoid phase-shifting [35], one of the most lyidsed structured light tech-
niques, is a continuous coding method in which the 1D codimgfions are sinusoids
(Figure 1 (b)). Due to a continuum of light planes, continsitechniques are capable
of achieving significantly higher depth resolution as corepao discrete methoés

Let the number of projected patterns (and captured images).lEach projected
patternis represented by a 1D coding functi®fr), 1 <i < K,wherec(1 < ¢ < N,)
is the projector column index, andl, is the total number of columns in the projector.
The functions are assumed to be normalized soth&tP;(c) < 1. Consider a scene
point S that is illuminated by column numberand imaged at camera pixpl The
intensities received at are given by:

Ii(p) = a(p,c)Pi(c) + A(p) , 1)

wherea(p, ¢) is albedo term; it is defined as the image brightness receavedif
columnc emits unit intensity.A(p) is the ambient illumination term; it is the image
brightness ap due to light sources other than the projector. In generah bép, )
and A(p) are unknown, along with the column correspondencghus, the space of
unknowns can be represented as a 3D space, as shown in Fi@re 2

4 Geometry of Structured Light Coding

What is the space of measured intensities for a structured djht coding scheme?
A structured light coding scheme, defined by the coding fions{ P, . . ., Px|, maps
a point Py = [a, A, ¢ in the unknown space to a poift; = [I4,...,Ik] in the

2 Theoretically, continuous coding methods can achieveitefitepth resolution because there
are infinite light planes. However, the finite resolution agdamic range of the camera, finite
numerical precision, and image noise place practical $imit the achievable resolution.
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K-dimensional space of measured intensities. For exampiesider the 1D set of un-
known points, for fixed values ok and A, but varying correspondencee Sinusoid
coding scheme foK = 3 maps this set of unknown points to a 1D set of points which
form a circle in the measurement space. This is illustrateeigure 2 (b). A 2D set of
unknowns where both and« are varied are mapped to a 2D set of points forming a
hollow cone (Figure 2 (c)). The entire 3D set of unknowns ipped to a 3D volume
of points, formed by extruding the cone along a line segnanshown in Figure 2 (d).
Given a camera pixel, let; be the true intensity measurement for patt&nThe
actual measured intensity, including noise, is given as:

E:Ii+yia (2)

wherey; is the noise in the intensity measureméntincluding both read noise and
photon noise [17]. Note that the poify, = [I7,..., I} ] representing the vector of
actual measured intensitig®gy lie outside the space of possible true intensities.

4.1 Decoding and Effect of Noise

Given the actual intensitieB;, = [I7,..., I} | measured at a camera pixel, projec-
tor correspondence is computed by a decoding function,wisian inverse mapping
from the measurement space to the unknown space. Due tontiemaess associated
with the measurements;/, the decoded unknown point is a random variable, whose
distribution is denoted with anncertainty region, as shown in Figure 2 (&) Due to
this uncertainty, the decoding algorithm may compute aodngate correspondence
This uncertainty places fundamental limits on the achivdbpth resolution.

Let the error in the computed correspondencete= |¢’ — ¢|. Given a coding
scheme and a decoding function, the expected correspoaéerE(/A\c), averaged
over the entire space of unknowns, is given as:

E(Ac) o / /|c' —c|p(Pp) dPp dPy (3)
Py Py

U

wherec’ andc are the estimated and true projector correspondence Valuegasured
intensitiesP;.. p (Prr) ~ N (Pr,Y) is the Gaussian probability distribution function
(illustrated as noise ellipsoid in Figure 2 (d)) Bf, with the true intensity poinf;

as the mean, and noise covariadce The double integral is taken over the unknown
space and the measurement space.

4.2 Optimizing Structured Light Coding

Since depth error is proportional to correspondence ettierpptimal structured light
coding scheme can be defined as the one that minimizes thetegpmrrespondence
errorE(Ac), as derived in Eq. 3. Unfortunateli( Ac) is difficult to optimize analyti-
cally, and expensive to even compute numerically. The dpétion must be performed
in the high-dimensional space of coding functions, makirigrther intractable.

In order to perform the optimization, we propose a surrogdiective function
based on a first order differential analysis of the image &ifom equation (Eq. 1).

% The shape of the uncertainty region depends on the codingegmtling functions.
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Fig. 3. Coding curves of various structured light coding mehods.(a) Coding functions (1 out
of 3) for different SL coding schemes. (b) Coding curves amde& lengths for’ = 3.

This metric is inspired by recent work in coding design fongtof-flight (ToF) imag-
ing [15], where a similar analysis was performed in the terapdomain. The surrogate
metric is defined in terms of thending curve, which is ageometric representation of a
structured light coding scheme. Specifically, consideracsitred light coding scheme
represented by patterd3, 1 < 7 < K. The coding curve for this scheme is the set of
points[P;(c), ..., Pk (c)] in the K-dimensional space, as the projector column inelex
is varied. For example, the coding curve of sinusoid codsragdircle inK -dimensional
space, as shown in Figure 3 (b). Given a coding schemd, lhet the length of the cor-
responding coding curve. Then, the surrogate métii given as:

S
T - amean A ’ (4)
whereg is the standard deviation of measurement noise capd,,, is the mear over
the space of unknowns. See supplementary technical repatderivation.

Intuitively, a longer coding curve spreads the measurerpeints further apart in
the measurement space, resulting in lower decoding ert@r$adnoise. A similar intu-
ition, inspired by design of communication codes, was us¢tid] for design of discrete
structured light patterns. Eq. 4 formalizes this intuitiand provides an approximate,
but analytical expression for the performance of a SL codiclgeme in terms of its
coding curve length. Given a structured light coding scheitsecoding curve length
A is an intuitive and fast to compute geometric property. fremnore, given system
dependent constantand a mean scene albedg..., T is, in general, approximately
proportional to the expected correspondence éfdxc) (an exception is if the coding
curve is not distance preserving, as discussed in the netibsg This suggests that
the coding curve lengtll can be used as an approximate metric for designing high-
performance structured light coding methods: larger thtergpcurve length, lower the
expected correspondence error, and hence, higher thetegmhspth resolution.
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Fig. 4. Examples of long but low-performance coding curveg@a) A self-intersecting coding
curve does not define a uniqgue mapping from projector coorefgnces to intensities, and does
not represent a valid coding scheme. (b-c) A helix, and adtiitbpace filling curve. These curves
are notdistance preserving, and may result in large errors even for small noise.

The coding curves of some of the commonly used structuréd ¢éigding schemes
(ramp [2], sinusoid [35], triangle [5]) are shown in FigureFdr example, the coding
curve of theramp coding scheme [2] (the three projected patterns are a aurista
constant), and an intensity ramp) is a line segment of lengthwhereas the coding

curve of the widely used sinusoid coding [35] is a circle dim%, whereK > 3

is the number of phase-shifts (number of measurements)sFor3, the coding curve
length of sinusoid coding isc 3.84 times that of ramp coding. Thus, given the same
scene and imaging system, sinusoid coding should achig®xipately3.84 times
high precision (lower error) as compared to ramp codinghasa later in Section 7.

5 Hamiltonian Coded Structured Light

As described in the previous section, structured lightregdichemes with long coding
curves can achieve high depth resolution. Can we use thigrdpsinciple to design
high performance structured light coding schemes? Figsteodvs three potential cod-
ing curves. The first curve is long, but self-intersectingefefore, it does not define a
uniqgue mapping from projector correspondences to captatensities, and thus, does
not represent a valid coding scheme. The second and thivés(at helix, and a Hilbert-
space filling curve [18]), are long, and non self-intersegtHowever, these curves are
not distance preserving, i.e., there are points on the curve that are distant aloag th
curve, but close in the Euclidean distance sense. Whilengagtthemes based on these
curves can achieve high performance in low noise settihgs, performance can dete-
riorate rapidly for moderate to high amounts of noise, rasgiin large decoding errors.

Thus, we aim to design coding curves that, in addition to gpddng, are non
self-intersecting and distance preserving. One familywfes with these properties
is Hamiltonian cycles on hypercube graphs, formed by the vertices and edges of the
K-dimensional unit hypercube [15]. A Hamiltonian cycle oe thypercube graph is a
path that visits all the vertices of the cube exactly once.

5.1 Designing Hamiltonian SL Patterns

The coding curve is a geometric representation of the Slepest there is a one-to-
one correspondence between a set of SL coding functionsa aoding curve. Given
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a coding curve inK dimensions, we can create the corresponding sé&f &L coding
functions, and vice versa. Consider a Hamiltonian cycle A -dimensional unit
cube as the coding curve. Then, tf& coding functionP; for the Hamiltonian coding
scheme is defined as the set of value ofitfiecoordinate of points on the Hamiltonian
cycle. The resulting Hamiltonian coding functions are @éamdal-shaped, as shown
in Figure 3, top-right. FoX = 3, the three trapezoidal functions are evenly shifted
copies of each other. Incidentally, three phase-shiftegezoidal functions have been
proposed in previous work [19, 38], and can be considere@eiapcase of the family
of Hamiltonian coding schemes. In contrast, higher ordenttanian coding functions
(K > 3) are not necessarily shifted versions of each other, astrilted in Figure 5.

Coding curve length: While constructing the Hamiltonian cycle, we exclude thigior
and the diagonally opposite vertex. This is done so thatfeneprojector columm, at
least one (out of() projected value i§, and at least one projected valud is=inding
a Hamiltonian cycle on this reduced set of vertices is an Nifglete problem, with no
known polynomial time algorithms. Fortunately, for relally small i, it is possible to
find cycles using search-based algorithms. The length afitble is2” —2, if K is odd,
and2X — 4, if K is even [15]. Since the length of the curve increasgsnentially with
K, it can be more than an order of magnitude longer than theeafrsinusoid coding,
whose length increases only @9¢ (Figure 3). Furthermore, Hamiltonian cycles have
good locality preserving properties [10], i.e., given amg tpoints on the curve, the
ratio between their Euclidean distance and distance almagurve is bounded.

5.2 Depth Recovery Algorithm for Hamiltonian Coding

The coding function®; (1 < < K) for Hamiltonian SL coding can be sub-divided
into 2% — 2 (or 2K — 4) sub-intervals. In each sub-interval, one (outfof function
increases (or decreases) linearly frorto 1 (1 to 0). The remainingk’ — 1 functions
are constan or 1. Let the sub-intervals be indexed By 1 < A < K —2 (or K —4).
Given a set of measured intensities= [I1, I, .. ., k], the decoding algorithm, i.e.,
finding the projector correspondengeanvolves two steps:

1. Estimating the index\ of the sub-interval that ¢ lies in: The key observation is that
for each sub-interval, the identities (indices) and vahfgbe K — 1 coding functions
that are constant within the sub-interval, are unique. &foee,\ can be computed by
identifying the indices and values of the measured intesdihat correspond to the€ —

1 constant functions. This is achieved by clusteringkhmeasured intensities (at every
pixel) into three clusters: one cluster corresponds to tuéng functions bein® (low
intensities), one cluster corresponds to the coding fanstbeingl (high intensities),
and the third cluster corresponds to the linearly increagor decreasing) function
(median intensity}. These clusters give the identities and the values of thasitie
measurements corresponding to fkie- 1 constant functions.

2. Estimating the correspondence within the sub-interval: The second step is to de-
termine the location of the correspondenathin the sub-intervah. Consider the set
of projected intensitie® (c) = [P1(c), P2(¢), ..., Px(c)] for the projector columm.
As discussed above, the corresponderis in a sub-interval of the coding functions,

4 We enforce the constraint that the third cluster have ong/raember.



A Geometric Perspective on Structured Light Coding 9

[ERRNAVARY

projector column index (c) projector column index (c) projector column index (c) projector column index (c)

(a) Example Hamiltonian codes féf = 4

P, P, P3 Py Ps

LT UL TV Il

projector column index (c)  projector column index (c)  projector column index (¢)  projector column index (c)  projector column index (c)

(b)Example Hamiltonian codes féf = 5

Fig. 5. Higher order Hamiltonian patterng<( > 3) are not shifted versions of each other. In
contrast, Hamiltonian patterns féf = 3 (Figure 3) are shifted versions of each other.

which corresponds to an edge of the Hamiltonian cycle. Ssipjploe edge is between
cube vertice® gy andPrignt. Then, the coding curve poilR. is given as a linear
combination ofPies; anNdPright: P(¢) = kPlest + (1 — K)Prignt, Whered < x <1

is the location of the correspondencwithin the sub-interval.

Let I;ow be the set of intensities in the cluster corresponding toifdensities, as
discussed above in Step 1. Let the mean of these intenséiés;h = mean(Liow)-
Similarly, let the mean of the intensities in the high intéas cluster bel,,., =
mean(Inign). Then, the sub-interval locatiom is given as: % wherel =
[I1, I, ..., k] is the set of measured intensities. Then, the sub-intenahi\ and
the Iocatlon within the sub-intervalcan be used to determine the correspondence

6 Dealing with Global lllumination and Defocus

The image formation model considered in Eq. 1 assumes teakgmoints are illumi-
nated only directly by the projector, so that each cameral peceives light only from
a single projector column. But, in general, scene points reagive light from other
scene points as well, due to interreflections and scatteB8agh effects, collectively
called indirect or global illumination, can lead to signdit errors in the recovered
shape [26, 14]. One strategy to achieve robustness to gilhlaination is to design
coding methods which use patterns waitily high spatial frequencies [14, 6, 25, 8, 13].
However, the Hamiltonian patterns designed in the prevemesion have a combina-
tion of high and low frequencies, as shown in Figure 5. Can e&gh Hamiltonian
patterns with only high spatial frequencies? We proposeswmoaches for developing
high frequency Hamiltonian patterns, based on design iplesused in discrete Gray
coding and continuous sinusoid coding.

6.1 Designing High-Frequency Hamiltonian Patterns using Gy Codes

A Hamiltonian cycle corresponds to the order in which thedrgpbe vertices are vis-
ited. Our key observation is that fdf > 3, the Hamiltonian cycle on a hypercube
graph is not unique (modulo isomorphic cycles). For> 3, there exists multiple (ex-
ponential inK’) orderings of the vertices of the hypercubes, correspaniirdifferent



10 M. Gupta and N. Nakhate

Hamiltonian cycles. Each cycle corresponds to a differenhb$ pattern coding func-
tions. For example, Figure 6 (top two rows) shows two diffiereets of Hamiltonian
patterns fork’ = 8. The second key observation is that different coding fumstihave
different properties in terms of the set of constituentigptequencies. For instance,
in the first set (top row), different patterns have a broadjeaof spatial frequencies
(from low to high). On the other hand, in the second set ofgpast (second row), all
the patterns have relatively high, and similar frequencies

Relationship between Hamiltonian functions and Gray codesGray codes [11] are
a sequence of binary codes so that consecutive codes diffeinol bit. A K-bit Gray
code sequence can be constructed by traversing the vesfiads-D hypercube along
a Hamiltonian cycle. Each cube vertex is assigned a binagg,cgiven by its coor-
dinates. For example, origin is assigned a binary déde ., 0]. The Gray code se-
quence is then given by the sequence in which the cube vedieevisited. Therefore,
a Hamiltonian cycle on a hypercube graph induces both a Codgssequence, as
well as a set of Hamiltonian functionthe Hamiltonian functions can be considered
as the continuous versions of the binary Gray codes. Different Hamiltonian cycles in-
duce Gray codes and Hamiltonian functions with differemtrelsteristics. For instance,
the Hamiltonian patterns shown in Figure 6 (a) are desigmasddbon conventional, re-
flected Gray codes [31, 20]. These codes have a broad rangegokihcies (including
low frequencies) and are unsuitable for dealing with glalhahination.

In order to scan scenes with global illumination, Gray coditls only high spatial
frequencies have been proposed [13]. We leverage the eoreteelationship between
a Gray code sequence and Hamiltonian functions to desigriltdamn patterns with
high frequencies. Figure 6 (middle row) shows Hamiltoniattgrns using a sequence
of antipodal Gray codes [4,21, 22], which have the propérat the binary comple-
ment of a string appears a fixed distance from it in the ordevmtipodal Gray codes,
and the corresponding Hamiltonian functions have a naretwoghigh frequencies,
thus resulting in robustness to global illumination eféedtiote that the Hamiltonian
patterns may appear binary at first glance; please zoom hetartages to observe the
continuous intensity gradations near the edges.

6.2 Micro Hamiltonian Coding

In addition to binary coding, continuous coding schemesthas sinusoid patterns [14,
6, 25] have been proposed for dealing with global illumioatiFor example, the micro
phase shifting approach [14] uses sinusoid patterns wétipuencies within a narrow,
high-frequency band. Phase unwrapping is performed by aonghphase information
from several high-frequencies. We leverage this principldesign a family of high-
frequency Hamiltonian coding schemes. The key idea is tonudéple sets of Hamil-
tonian functions, with small, co-prime periods (high frequaies). We call this approach
micro Hamiltonian coding, due to the use of small (micro) periods for every pattern. Fo
example, Figure 6 (c) shows a micro Hamiltonian coding saheiith ' = 8 patterns
created by combining two sets of Hamiltonian patterki8:and '5 Hamiltonian codes
(Figures 3 (right), and 5 (b)), with perio@83 pixels and97 pixels, respectively. The
number of projector columns &, = 1920. While each set recovers the correspon-
dence modulo its respective period, the ambiguous cornelggees can be combined
via phase-unwrapping techniques [16, 14] to recover unguais depths.
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(a) Patterns for reflected Hamiltonian coding (4 out of 8)

O R O

(a) Patterns for antipodal Hamiltonian coding (4 out of 8)

(a) Patterns for micro Hamiltonian coding (4 out of 8)

Fig. 6. Hamiltonian patterns for dealing with global illumi nation and defocus.(a) Hamilto-
nian patterns foi = 8 based on the reflected Gray codes. These patterns have arangadof
frequencies (including low frequencies) and are unsuwgtédal dealing with global illumination.
(b) Hamiltonian patterns based on antipodal Gray codesVi{@o Hamiltonian coding created
by combining K3 and K'5 Hamiltonian patterns, with small periods. Patterns in (i &) have
high frequencies, and are robust to a range of global illation effects.

Design space of micro Hamiltonian codingMicro Hamiltonian coding offers a rich
design space, and enables a fine control of the propertigs $patial frequencies) of
the projected patterns. Several base Hamiltonian patts) with different periods,
can be combined into a single micro Hamiltonian coding sahd¥or instance, a micro
Hamiltonian scheme witli’' = 8 patterns can be designed by combinigg and K5
base Hamiltonian sets, or tw§4 base Hamiltonian sets with different periods. Given
the rich design space, a natural question to ask is: Which patterns should be com-
bined, and how should the individual periods be determir&g@n system parameters
(e.g., the number of projector columns, number of projeptgterns), and scene charac-
teristics (e.g., amount and nature of global illuminatjomg use a simple, search-based
procedure to compute the best combination of base pattathpexiods (from a set of
available combinations) of a micro Hamiltonian coding sokeOur algorithm is simi-
lar in spirit to frequency selection algorithms used foriming sinusoid coding [14].
Patterns shown in Figure 6 (c) were designed using this d@tion procedure.

Antipodal Hamiltonian coding vs. Micro Hamiltonian coding: Both micro Hamil-
tonian coding and Gray code based Hamiltonian coding (argipodal Hamiltonian
patterns) are designed to achieve robustness to globalifiation. Gray code based
Hamiltonian schemes have a restricted design space, andlatfiited control over the
spatial frequencies of the projected patterns. In contngisto Hamiltonian coding pro-
vides greater control over the spatial frequencies. Onttierdvand, micro Hamiltonian
codes require phase unwrapping for decoding, and thus, afer §om errors in low
SNR scenarios due to incorrect unwrapping. In contrasipaaial Hamiltonian codes
achieve high precision even in low SNR, as shown in Figurasdi1#.
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Fig. 7. Comparison of various coding schemes for a planar sne. Hamiltonian coding outper-
forms existing schemes over a broad range of SNR scenaritsgiASNR (high source strength,
low ambient light), multi-frequency sinusoid scheme aehisimilar performance as Hamiltonian
coding. However, at low SNR, multi-frequency sinusoid suke suffer from large depth errors.
In contrast, the performance of Hamiltonian coding degsagtacefully as the SNR decreases.

7 Experiments and Results

For our experiments, we used a structured light system stimgiof a Canon T5i DSLR
camera, and an Epson 3LCD projector. First, we evaluate thgoged Hamiltonian
coding schemes under different signal-to-noise ratio (Bd#®ings. The scene was a
diffuse, white planar surface, with known ground truth deptapproximately in the
range[1100, 1600] millimeters. A broad range of SNR scenarios were emulated by
using different brightness values of the source projecdtat(projected the structured
light patterns), and another projector that acted as anerhitiumination source.

Figure 7 shows the depth errors for several coding schemekfferent source
and ambient light strengths, and different number of past€'). We kept the capture
time and the unambiguous depth range the same for all codimgnses. To achieve
the latter, the period of the coding functions for all the estles was fixed td920
columns. ForK = 3, ramp coding [2] results in large errors, due to a small cgdin
curve length (Figure 3). FoK = 4, 5, Hamiltonian coding significantly outperforms
existing approaches such as sinusoid coding. The codingstior edge patterns [38]
and Hilbert patterns [18] are not distance preserving, lvhésults in large depth errors
at low SNR (low source brightness, high ambient brightnsst)ngs.

For K = 5, we compare Hamiltonian coding with a multi-frequency sioid
scheme, which uses sinusoid patterns of multiple freqaesnéor example, one high
frequency and one low (unit) frequency [36]. Specificallg used3 patterns with a
period 0f1920 columns (unit frequency), artipatterns (separated By shifts) with a
period of160 pixels (high frequency). The high frequency phase provitesirate but
ambiguous projector correspondence. The low frequencyepisathen used to resolve
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Multi-Frequency Sinusoid Hamiltonian Coding

Sinusoid Coding

Fig. 8. Comparison for K = 5. Multi-frequency sinusoid coding can recover the fine geoimet
details in high SNR conditions. However, its performancgrddes considerably in low SNR
settings, resulting in large errors for the black lava rdekcontrast, Hamiltonian coding can
recover fine details such as the pores on the rock, despreneady low albedo.

Scene Micro Phase Shifting Micro Hamiltonian Coding  Antipodal Hamiltonian Coding

Fig.9. Scene with interreflections All three coding schemes have high frequencies, and are
relatively robust to global illumination. Micro PS perfosnneliably in moderate to high SNR
scenarios (base of the bowl). However, its performanceadiegrat low SNR (at the edges of the
bowl) due to low signal strength, resulting in large deptioes. Please zoom in for details.

the ambiguities (phase unwrapping). At high SNR, multgfrency sinusoid scheme
achieves similar performance as Hamiltonian coding. H@reat low SNR, it suffers
from inaccurate unwrapping, and thus, large depth errarsontrast, the performance
of Hamiltonian coding degrades gracefully as the SNR dee®a

Visual comparisons: Figure 8 shows visual comparisons between different coding
schemes. Single-frequency sinusoid, in general, ach&l®s depth resolution, result-
ing in loss of surface detail. With the same source power aptlce time, Hamiltonian
coding recovers subtle details such as the facial featdntbe statue (Figure 8). Multi-
frequency sinusoid coding can recover fine geometric deftaihigh SNR conditions.
However, its performance degrades considerably in low S®E&lting in large errors
for the black lava rock (Figure 8). In contrast, Hamiltoniemding can recover fine
details such as the pores on the rock, despite the sceneghaxtiremely low albedo.
Please see the supplementary technical report for more refig, including compar-
isons for a 3D time lapse sequence captured under varying anent light.
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Scene Micro Phase Shifting

X

Antipodal Hamiltonian

Fig. 10. Scenes with scattering and defocuslamiltonian coding outperforms MPS at low SNR,
while mitigating errors due to scattering and defocus.

Scenes with global illumination and defocusFigures 9 and 10 show depth recovery
results for scenes with global illumination and defocuse Bowl is made of white,
glossy material, resulting in strong interreflections. Thadle has subsurface scatter-
ing. The depth-range for the forks scene is large, resultipgojector defocus. We used
the antipodal Hamiltonian coding and micro Hamiltonianiogglas shown in Figure 6
(b,c). We compared these schemes with micro phase shiftiblg(MPS) with K’ = 8
patterns. While MPS performs reliably in moderate to highiRS3¢enarios, its perfor-
mance degrades at low SNR due to unwrapping errors, regutitarge depth errors.
Micro Hamiltonian coding also suffers from depth errorsowISNR due to incorrect
unwrapping. However, it outperforms MPS by virtue of usingfhfrequency Hamilto-
nian patterns, instead of sinusoids. Antipodal Hamiltonieethod performs well even
at low SNR, while mitigating errors due to global illuminati effects.

8 Limitations and Future Outlook

Optimality of coding schemes:The coding schemes designed in this paper, although
substantially better than current state-of-the-art, arepmovably optimal. It may be
possible to design schemes with further improved perfooeday using advanced op-
timization algorithms [24], based on the geometric coneppdposed in the paper. An-
other interesting future research direction is to desiglir@pschemes that incorporate
imaging system characteristics [24] and scene priors [2]3, 3

Dealing with extreme global and ambient illumination: The Hamiltonian patterns
designed for dealing with global illumination can only héncelatively low frequency

interreflections. For scenes with strong, specular infieatons (e.g., mirrors), the pro-
posed techniques can be used in conjunction with opticalcgghes for mitigating

errors due to high-frequency interreflections [27]. Simylafor scenes with strong am-
bient illumination, the proposed coding approaches candeel in a complementary
manner with optical methods for suppressing ambient ilhation [27, 12].
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