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Abstract. We present a mathematical framework for analysis and designof high-
performance structured light (SL) coding schemes. Using this framework, we
design Hamiltonian SL coding, a novel family of SL coding schemes that can
recover 3D shape with high precision, with only a small number (as few as three)
of images. We establish structural similarity between popular discrete (binary)
SL coding methods, and Hamiltonian coding, which is a continuous coding ap-
proach. Based on this similarity, and by leveraging design principles from several
different SL coding families, we propose a general recipe for designing Hamilto-
nian coding patterns with specific desirable properties, such as patterns with high
spatial frequencies for dealing with global illumination.We perform several ex-
periments to evaluate the proposed approach, and demonstrate that Hamiltonian
coding based SL approaches outperform existing methods in challenging scenar-
ios, including scenes with dark albedos, strong ambient light, and interreflections.

1 Introduction

Structured light (SL) is a widely used 3D imaging technique in several applications,
including industrial automation, augmented reality, and robot navigation. Laser scan-
ning [9] based SL systems can recover 3D shape with extreme precision (10 − 100
microns), albeit at the cost of a large acquisition time. Applications such as industrial
inspection require high precision, but with a limited acquisition time budget. While
single-shot SL approaches [33] can recover depths with onlya single image, the depths
are spatially smoothed, resulting in loss of detail. Multi-pattern SL approaches project
a series of patterns so that each projector pixel is assigneda unique temporal intensity
code. These codes are used to establishper-pixel correspondence for each camera pixel,
thereby achieving high spatial resolution. However, unfortunately, their depth precision
in demanding scenarios (small time budget, low signal-to-noise ratio) remains low, and
is often the bottleneck in widespread adoption of SL 3D imaging in key applications.

The depth precision of a multi-pattern SL system is determined by the coding
scheme, i.e., the set of patterns that the light source projects. The problem of designing
optimal patterns that achieve high depth precision was firstformulated by Horn and
Kiryati [18]. However, finding a closed form (or even a numerical) solution was consid-
ered infeasible. Instead, a family of patterns based on intuitions from digital commu-
nications literature was proposed. These patterns, designed using Hilbert space filling
curves, belonged to the class ofdiscrete coding schemes (intensities of the patterns
are from a discrete set). While these patterns perform well in high signal-to-noise ratio
(SNR) settings, their performance degrades as noise increases. In general, designing
optimal SL patterns, especially for low SNR scenarios, as well as developing formal
tools for analyzing the performance of different methods, remains an open problem.
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In this paper, we propose a theoretical framework for analysis and design of novel,
high-performance SL coding methods. We considercontinuous coding, which achieves
sub-pixel correspondence mapping, and require fewer images as compared to discrete
coding approaches [20, 18]. We analyze the geometry of SL coding (image formation)
and decoding to derive a general performance metric of SL coding schemes. While this
metric can be used to predict the performance of a given scheme, it is expensive to
compute, and thus, unsuitable as an objective function in code optimization. We take
inspiration from recent work in time-of-flight code design [15], and derive a surrogate
metric based on first order differential analysis of the image formation equation. The
surrogate is easy to compute, and lends itself to an intuitive geometric interpretation.

Based on this metric, we propose a new family of SL codes, called Hamiltonian
patterns. Hamiltonian coding achieves up to an order of magnitude higher precision as
compared to existing approaches, especially in low SNR scenarios, while requiring a
small number of images (as few as three).1 Despite being a continuous coding scheme,
the construction of Hamiltonian patterns shares structural similarities with that of the
widely used binary Gray coding [20]. Our key observation is that, due to this similarity,
the techniques developed for Gray coding can be easily adapted to design Hamiltonian
patterns. By drawing upon design principles for Gray codes [13], we develop Hamil-
tonian patterns with desired properties, for example, highfrequency patterns that are
robust to a broad range of global illumination.

Practical implications: Conceptually, Hamiltonian coding forms a bridge between
binary and continuous SL coding approaches. This provides ageneral recipe for de-
sign of high-performance SL patterns, even in challenging scenarios with low SNR and
global illumination. We evaluate the performance of the proposed coding approaches on
challenging scenes with low albedo, interreflections and scattering. Our results demon-
strate that Hamiltonian codes outperform several conventional approaches, as well as
recent coding schemes specifically designed for dealing with global illumination [14].
Due to the SNR benefits, and a single, universal, design and decoding algorithm, Hamil-
tonian patterns could become an alternatebuilding-block (instead of sinusoid functions)
in continuous SL based 3D imaging systems.

2 Related Work

Structured light coding design: Several different structured light coding strategies
have been proposed over the last three decades. These include binary Gray coded pat-
terns [20], color coding [1], ramp coding [2], sinusoid coding [35], trapezoid cod-
ing [19], and edge coding [38]. For a comprehensive survey onstructured light code
design, please see [34]. Surprisingly, there is little workon analyzing the relative perfor-
mance of different coding schemes. Horn et al. [18] considered the problem of design-
ing optimal structured light patterns for discrete coding schemes, where the intensity of
each projected column can take a discrete number of intensity values. In contrast, our
goal is to develop a theoretical framework for design and analysis of continuous coding
schemes, where the projected intensities can emit a continuous range of values.

1 In contrast, discrete coding approaches typically requires a large number of patterns, e.g.,
proportional to log of the number of projector columns.
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Fig. 1. Structured light (SL) 3D imaging. (a) A continuous SL coding system consists of a
projector that projects patterns with a continuous range ofintensities. A unique intensity code
is assigned to every projector column, which is used to determine correspondence with camera
pixels. (b) In sinusoid phase-shifting, the projected patterns have sinusoid intensity profiles.

Structured light in the presence of global illumination: Several SL techniques have
been proposed for mitigating errors due to interreflectionsand scattering. These can be
broadly categorized into two classes: (a) Optical approaches, such as those based on po-
larization [7] and epipolar scanning [27], which require specialized hardware, and (b)
Pattern coding approaches which involve designing patterns that are robust to global
illumination. These include discrete binary patterns [13,39], or continuous sinusoid
patterns [14, 6, 25, 8]. We propose a general family of continuous patterns that outper-
form existing coding strategies for dealing with global illumination, without requiring
additional hardware. Note that the proposed coding schemesare orthogonal to, and can
be used in a complementary manner with, the optical approaches [27].

3 Image Formation Model

A SL system consists of a projector and a camera, as shown in Figure 1 (a). The pro-
jector projects one or more intensity patterns on the scene.For each pattern, the camera
captures an image.Single-shot methods [30, 29, 33, 37] need only a single image, but
assume that scene depths are locally smooth, resulting in loss of fine geometric details.
In this paper, we considermulti-shot methods where several patterns are projected, and
depths are computed on aper-pixel basis. Most multi-shot structured light systems use
patterns which can be expressed as a 1D coding function, so that all the pixels within
each column (or row) have the same intensity. The projector can be modeled as emit-
ting several light planes, one from each column, as shown in Figure 1 (a). In order to
compute depth at a camera pixel, we need to determine its corresponding light plane
(the light plane that illuminates the scene point imaged at the pixel). This is achieved by
assigning a unique intensity code to every column; the length of the code is the number
of projected patterns. For instance, the intensity code could be binary [28] orN -ary [18,
3] where each columns could have2, orN discrete intensity values.

Binary and K-ary coding belong to the class ofdiscrete coding methods, where the
coding function takes only discrete values. These methods assume that the light source
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Fig. 2. Geometry of Structured Light Patterns.A structured light coding scheme can be mod-
eled as a mapping from (a) the space of unknowns to (b, c, d) thespace of measured intensities.
Given an intensity measurement, projector correspondenceis estimated via an inverse mapping
(decoding function) from the measurement space to the unknown space. (d) Noise in the mea-
surement space leads to uncertainty in the recovered unknowns, resulting in low depth resolution.

emits a discrete set of light planes. The number of possible depth values at a camera
pixel is bounded by the number of light planes. Thus, the depth resolution achieved
by a discrete coding method is limited.Our focus is on continuous coding methods,
where the coding functions are continuous and piece-wise differentiable functions. For
example, sinusoid phase-shifting [35], one of the most widely used structured light tech-
niques, is a continuous coding method in which the 1D coding functions are sinusoids
(Figure 1 (b)). Due to a continuum of light planes, continuous techniques are capable
of achieving significantly higher depth resolution as compared to discrete methods2.

Let the number of projected patterns (and captured images) beK. Each projected
pattern is represented by a 1D coding functionPi(c), 1 ≤ i ≤ K, wherec (1 ≤ c ≤ Nc)
is the projector column index, andNc is the total number of columns in the projector.
The functions are assumed to be normalized so that0 ≤ Pi(c) ≤ 1. Consider a scene
point S that is illuminated by column numberc and imaged at camera pixelp. The
intensities received atp are given by:

Ii(p) = α(p, c)Pi(c) +A(p) , (1)

whereα(p, c) is albedo term; it is defined as the image brightness receivedat p if
columnc emits unit intensity.A(p) is the ambient illumination term; it is the image
brightness atp due to light sources other than the projector. In general, both α(p, c)
andA(p) are unknown, along with the column correspondencec. Thus, the space of
unknowns can be represented as a 3D space, as shown in Figure 2(a).

4 Geometry of Structured Light Coding

What is the space of measured intensities for a structured light coding scheme?
A structured light coding scheme, defined by the coding functions[P1, . . . , PK ], maps
a pointPU = [α,A, c] in the unknown space to a pointPI = [I1, . . . , IK ] in the

2 Theoretically, continuous coding methods can achieve infinite depth resolution because there
are infinite light planes. However, the finite resolution anddynamic range of the camera, finite
numerical precision, and image noise place practical limits on the achievable resolution.
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K-dimensional space of measured intensities. For example, consider the 1D set of un-
known points, for fixed values ofα andA, but varying correspondencec. Sinusoid
coding scheme forK = 3 maps this set of unknown points to a 1D set of points which
form a circle in the measurement space. This is illustrated in Figure 2 (b). A 2D set of
unknowns where bothc andα are varied are mapped to a 2D set of points forming a
hollow cone (Figure 2 (c)). The entire 3D set of unknowns is mapped to a 3D volume
of points, formed by extruding the cone along a line segment,as shown in Figure 2 (d).

Given a camera pixel, letIi be the true intensity measurement for patternPi. The
actual measured intensityI ′

i
, including noise, is given as:

Îi = Ii + νi , (2)

whereνi is the noise in the intensity measurementIi, including both read noise and
photon noise [17]. Note that the pointPI′ = [I ′

1
, . . . , I ′

K
] representing the vector of

actual measured intensitiesmay lie outside the space of possible true intensities.

4.1 Decoding and Effect of Noise
Given the actual intensitiesPI′ = [I ′

1
, . . . , I ′

K
] measured at a camera pixel, projec-

tor correspondence is computed by a decoding function, which is an inverse mapping
from the measurement space to the unknown space. Due to the randomness associated
with the measurementsPI′ , the decoded unknown point is a random variable, whose
distribution is denoted with anuncertainty region, as shown in Figure 2 (a)3. Due to
this uncertainty, the decoding algorithm may compute an inaccurate correspondencec′.
This uncertainty places fundamental limits on the achievable depth resolution.

Let the error in the computed correspondence be△c = |c′ − c|. Given a coding
scheme and a decoding function, the expected correspondence errorE(△c), averaged
over the entire space of unknowns, is given as:

E(△c) ∝

∫

PU

∫

PI

|c′ − c| p (PI′) dPI′ dPU , (3)

wherec′ andc are the estimated and true projector correspondence valuesfor measured
intensitiesPI′ . p (PI′) ∼ N (PI , Σ) is the Gaussian probability distribution function
(illustrated as noise ellipsoid in Figure 2 (d)) ofPI′ , with the true intensity pointPI

as the mean, and noise covarianceΣI . The double integral is taken over the unknown
space and the measurement space.

4.2 Optimizing Structured Light Coding
Since depth error is proportional to correspondence error,the optimal structured light
coding scheme can be defined as the one that minimizes the expected correspondence
errorE(△c), as derived in Eq. 3. Unfortunately,E(△c) is difficult to optimize analyti-
cally, and expensive to even compute numerically. The optimization must be performed
in the high-dimensional space of coding functions, making it further intractable.

In order to perform the optimization, we propose a surrogateobjective function
based on a first order differential analysis of the image formation equation (Eq. 1).

3 The shape of the uncertainty region depends on the coding anddecoding functions.
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(a) Projected patterns (1D function profiles) for various structured light coding methods
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Fig. 3. Coding curves of various structured light coding methods.(a) Coding functions (1 out
of 3) for different SL coding schemes. (b) Coding curves and curve lengths forK = 3.

This metric is inspired by recent work in coding design for time-of-flight (ToF) imag-
ing [15], where a similar analysis was performed in the temporal domain. The surrogate
metric is defined in terms of thecoding curve, which is ageometric representation of a
structured light coding scheme. Specifically, consider a structured light coding scheme
represented by patternsPi, 1 ≤ i ≤ K. The coding curve for this scheme is the set of
points[P1(c), . . . , PK(c)] in theK-dimensional space, as the projector column indexc

is varied. For example, the coding curve of sinusoid coding is a circle inK-dimensional
space, as shown in Figure 3 (b). Given a coding scheme, letΛ be the length of the cor-
responding coding curve. Then, the surrogate metricΥ is given as:

Υ ∝ ς

αmean Λ
, (4)

whereς is the standard deviation of measurement noise, andαmean is the meanα over
the space of unknowns. See supplementary technical report for a derivation.

Intuitively, a longer coding curve spreads the measurementpoints further apart in
the measurement space, resulting in lower decoding errors due to noise. A similar intu-
ition, inspired by design of communication codes, was used in [18] for design of discrete
structured light patterns. Eq. 4 formalizes this intuition, and provides an approximate,
but analytical expression for the performance of a SL codingscheme in terms of its
coding curve length. Given a structured light coding scheme, its coding curve length
Λ is an intuitive and fast to compute geometric property. Furthermore, given system
dependent constantς , and a mean scene albedoαmean, Υ is, in general, approximately
proportional to the expected correspondence errorE(△c) (an exception is if the coding
curve is not distance preserving, as discussed in the next section). This suggests that
the coding curve lengthΛ can be used as an approximate metric for designing high-
performance structured light coding methods: larger the coding curve length, lower the
expected correspondence error, and hence, higher the expected depth resolution.
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Fig. 4. Examples of long but low-performance coding curves.(a) A self-intersecting coding
curve does not define a unique mapping from projector correspondences to intensities, and does
not represent a valid coding scheme. (b-c) A helix, and a Hilbert-space filling curve. These curves
are notdistance preserving, and may result in large errors even for small noise.

The coding curves of some of the commonly used structured light coding schemes
(ramp [2], sinusoid [35], triangle [5]) are shown in Figure 3. For example, the coding
curve of theramp coding scheme [2] (the three projected patterns are a constant 1, a
constant0, and an intensity ramp) is a line segment of length1, whereas the coding
curve of the widely used sinusoid coding [35] is a circle of radius

√
K

2
√
2
, whereK ≥ 3

is the number of phase-shifts (number of measurements). ForK = 3, the coding curve
length of sinusoid coding is≈ 3.84 times that of ramp coding. Thus, given the same
scene and imaging system, sinusoid coding should achieve approximately3.84 times
high precision (lower error) as compared to ramp coding, as shown later in Section 7.

5 Hamiltonian Coded Structured Light
As described in the previous section, structured light coding schemes with long coding
curves can achieve high depth resolution. Can we use this design principle to design
high performance structured light coding schemes? Figure 4shows three potential cod-
ing curves. The first curve is long, but self-intersecting. Therefore, it does not define a
unique mapping from projector correspondences to capturedintensities, and thus, does
not represent a valid coding scheme. The second and third curves (a helix, and a Hilbert-
space filling curve [18]), are long, and non self-intersecting. However, these curves are
not distance preserving, i.e., there are points on the curve that are distant along the
curve, but close in the Euclidean distance sense. While coding schemes based on these
curves can achieve high performance in low noise settings, their performance can dete-
riorate rapidly for moderate to high amounts of noise, resulting in large decoding errors.

Thus, we aim to design coding curves that, in addition to being long, are non
self-intersecting and distance preserving. One family of curves with these properties
is Hamiltonian cycles on hypercube graphs, formed by the vertices and edges of the
K-dimensional unit hypercube [15]. A Hamiltonian cycle on the hypercube graph is a
path that visits all the vertices of the cube exactly once.

5.1 Designing Hamiltonian SL Patterns

The coding curve is a geometric representation of the SL patterns; there is a one-to-
one correspondence between a set of SL coding functions, anda coding curve. Given
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a coding curve inK dimensions, we can create the corresponding set ofK SL coding
functions, and vice versa. Consider a Hamiltonian cycle on the K-dimensional unit
cube as the coding curve. Then, theith coding functionPi for the Hamiltonian coding
scheme is defined as the set of value of theith coordinate of points on the Hamiltonian
cycle. The resulting Hamiltonian coding functions are trapezoidal-shaped, as shown
in Figure 3, top-right. ForK = 3, the three trapezoidal functions are evenly shifted
copies of each other. Incidentally, three phase-shifted trapezoidal functions have been
proposed in previous work [19, 38], and can be considered a special case of the family
of Hamiltonian coding schemes. In contrast, higher order Hamiltonian coding functions
(K > 3) are not necessarily shifted versions of each other, as illustrated in Figure 5.

Coding curve length:While constructing the Hamiltonian cycle, we exclude the origin
and the diagonally opposite vertex. This is done so that for every projector columnc, at
least one (out ofK) projected value is0, and at least one projected value is1. Finding
a Hamiltonian cycle on this reduced set of vertices is an NP-complete problem, with no
known polynomial time algorithms. Fortunately, for relatively smallK, it is possible to
find cycles using search-based algorithms. The length of thecycle is2K−2, if K is odd,
and2K−4, if K is even [15]. Since the length of the curve increasesexponentially with
K, it can be more than an order of magnitude longer than the curve of sinusoid coding,
whose length increases only as

√
K (Figure 3). Furthermore, Hamiltonian cycles have

good locality preserving properties [10], i.e., given any two points on the curve, the
ratio between their Euclidean distance and distance along the curve is bounded.

5.2 Depth Recovery Algorithm for Hamiltonian Coding

The coding functionsPi (1 ≤ i ≤ K) for Hamiltonian SL coding can be sub-divided
into 2K − 2 (or 2K − 4) sub-intervals. In each sub-interval, one (out ofK) function
increases (or decreases) linearly from0 to 1 (1 to 0). The remainingK − 1 functions
are constant0 or 1. Let the sub-intervals be indexed byλ, 1 ≤ λ ≤ K − 2 (or K − 4).
Given a set of measured intensitiesI = [I1, I2, . . . , IK ], the decoding algorithm, i.e.,
finding the projector correspondencec, involves two steps:

1. Estimating the indexλ of the sub-interval that c lies in: The key observation is that
for each sub-interval, the identities (indices) and valuesof theK − 1 coding functions
that are constant within the sub-interval, are unique. Therefore,λ can be computed by
identifying the indices and values of the measured intensities that correspond to theK−
1 constant functions. This is achieved by clustering theK measured intensities (at every
pixel) into three clusters: one cluster corresponds to the coding functions being0 (low
intensities), one cluster corresponds to the coding functions being1 (high intensities),
and the third cluster corresponds to the linearly increasing (or decreasing) function
(median intensity).4 These clusters give the identities and the values of the intensity
measurements corresponding to theK − 1 constant functions.

2. Estimating the correspondencec within the sub-interval: The second step is to de-
termine the location of the correspondencec within the sub-intervalλ. Consider the set
of projected intensitiesP(c) = [P1(c), P2(c), . . . , PK(c)] for the projector columnc.
As discussed above, the correspondencec lies in a sub-interval of the coding functions,

4 We enforce the constraint that the third cluster have only one member.
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Fig. 5. Higher order Hamiltonian patterns (K > 3) are not shifted versions of each other. In
contrast, Hamiltonian patterns forK = 3 (Figure 3) are shifted versions of each other.

which corresponds to an edge of the Hamiltonian cycle. Suppose the edge is between
cube verticesPleft andPright. Then, the coding curve pointPc is given as a linear
combination ofPleft andPright: P(c) = κPleft + (1 − κ)Pright, where0 ≤ κ ≤ 1
is the location of the correspondencec within the sub-intervalλ.

Let Ilow be the set of intensities in the cluster corresponding to lowintensities, as
discussed above in Step 1. Let the mean of these intensities be Imin = mean(Ilow).
Similarly, let the mean of the intensities in the high intensities cluster beImax =
mean(Ihigh). Then, the sub-interval locationκ is given as: I−Imin

Imax−Imin

, whereI =

[I1, I2, . . . , IK ] is the set of measured intensities. Then, the sub-interval indexλ and
the location within the sub-intervalκ can be used to determine the correspondencec.

6 Dealing with Global Illumination and Defocus

The image formation model considered in Eq. 1 assumes that scene points are illumi-
nated only directly by the projector, so that each camera pixel receives light only from
a single projector column. But, in general, scene points mayreceive light from other
scene points as well, due to interreflections and scattering. Such effects, collectively
called indirect or global illumination, can lead to significant errors in the recovered
shape [26, 14]. One strategy to achieve robustness to globalillumination is to design
coding methods which use patterns withonly high spatial frequencies [14, 6, 25, 8, 13].
However, the Hamiltonian patterns designed in the previoussection have a combina-
tion of high and low frequencies, as shown in Figure 5. Can we design Hamiltonian
patterns with only high spatial frequencies? We propose twoapproaches for developing
high frequency Hamiltonian patterns, based on design principles used in discrete Gray
coding and continuous sinusoid coding.

6.1 Designing High-Frequency Hamiltonian Patterns using Gray Codes

A Hamiltonian cycle corresponds to the order in which the hypercube vertices are vis-
ited. Our key observation is that forK > 3, the Hamiltonian cycle on a hypercube
graph is not unique (modulo isomorphic cycles). ForK > 3, there exists multiple (ex-
ponential inK) orderings of the vertices of the hypercubes, corresponding to different
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Hamiltonian cycles. Each cycle corresponds to a different set of pattern coding func-
tions. For example, Figure 6 (top two rows) shows two different sets of Hamiltonian
patterns forK = 8. The second key observation is that different coding functions have
different properties in terms of the set of constituent spatial frequencies. For instance,
in the first set (top row), different patterns have a broad range of spatial frequencies
(from low to high). On the other hand, in the second set of patterns (second row), all
the patterns have relatively high, and similar frequencies.

Relationship between Hamiltonian functions and Gray codes: Gray codes [11] are
a sequence of binary codes so that consecutive codes differ only in 1 bit. A K-bit Gray
code sequence can be constructed by traversing the verticesof aK-D hypercube along
a Hamiltonian cycle. Each cube vertex is assigned a binary code, given by its coor-
dinates. For example, origin is assigned a binary code[0, . . . , 0]. The Gray code se-
quence is then given by the sequence in which the cube vertices are visited. Therefore,
a Hamiltonian cycle on a hypercube graph induces both a Gray codes sequence, as
well as a set of Hamiltonian functions:the Hamiltonian functions can be considered
as the continuous versions of the binary Gray codes. Different Hamiltonian cycles in-
duce Gray codes and Hamiltonian functions with different characteristics. For instance,
the Hamiltonian patterns shown in Figure 6 (a) are designed based on conventional, re-
flected Gray codes [31, 20]. These codes have a broad range of frequencies (including
low frequencies) and are unsuitable for dealing with globalillumination.

In order to scan scenes with global illumination, Gray codeswith only high spatial
frequencies have been proposed [13]. We leverage the one-to-one relationship between
a Gray code sequence and Hamiltonian functions to design Hamiltonian patterns with
high frequencies. Figure 6 (middle row) shows Hamiltonian patterns using a sequence
of antipodal Gray codes [4, 21, 22], which have the property that the binary comple-
ment of a string appears a fixed distance from it in the ordering. Antipodal Gray codes,
and the corresponding Hamiltonian functions have a narrow set of high frequencies,
thus resulting in robustness to global illumination effects. Note that the Hamiltonian
patterns may appear binary at first glance; please zoom in to the images to observe the
continuous intensity gradations near the edges.

6.2 Micro Hamiltonian Coding

In addition to binary coding, continuous coding schemes based on sinusoid patterns [14,
6, 25] have been proposed for dealing with global illumination. For example, the micro
phase shifting approach [14] uses sinusoid patterns with frequencies within a narrow,
high-frequency band. Phase unwrapping is performed by combining phase information
from several high-frequencies. We leverage this principleto design a family of high-
frequency Hamiltonian coding schemes. The key idea is to usemultiple sets of Hamil-
tonian functions, with small, co-prime periods (high frequencies). We call this approach
micro Hamiltonian coding, due to the use of small (micro) periods for every pattern. For
example, Figure 6 (c) shows a micro Hamiltonian coding scheme withK = 8 patterns
created by combining two sets of Hamiltonian patterns:K3 andK5 Hamiltonian codes
(Figures 3 (right), and 5 (b)), with periods203 pixels and97 pixels, respectively. The
number of projector columns isNc = 1920. While each set recovers the correspon-
dence modulo its respective period, the ambiguous correspondences can be combined
via phase-unwrapping techniques [16, 14] to recover unambiguous depths.
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(a) Patterns for reflected Hamiltonian coding (4 out of 8)

(a) Patterns for antipodal Hamiltonian coding (4 out of 8)

(a) Patterns for micro Hamiltonian coding (4 out of 8)

Fig. 6. Hamiltonian patterns for dealing with global illumi nation and defocus.(a) Hamilto-
nian patterns forK = 8 based on the reflected Gray codes. These patterns have a broadrange of
frequencies (including low frequencies) and are unsuitable for dealing with global illumination.
(b) Hamiltonian patterns based on antipodal Gray codes. (c)Micro Hamiltonian coding created
by combiningK3 andK5 Hamiltonian patterns, with small periods. Patterns in (b) and (c) have
high frequencies, and are robust to a range of global illumination effects.

Design space of micro Hamiltonian coding:Micro Hamiltonian coding offers a rich
design space, and enables a fine control of the properties (e.g., spatial frequencies) of
the projected patterns. Several base Hamiltonian pattern sets, with different periods,
can be combined into a single micro Hamiltonian coding scheme. For instance, a micro
Hamiltonian scheme withK = 8 patterns can be designed by combiningK3 andK5
base Hamiltonian sets, or twoK4 base Hamiltonian sets with different periods. Given
the rich design space, a natural question to ask is: Which base patterns should be com-
bined, and how should the individual periods be determined?Given system parameters
(e.g., the number of projector columns, number of projectedpatterns), and scene charac-
teristics (e.g., amount and nature of global illumination), we use a simple, search-based
procedure to compute the best combination of base patterns and periods (from a set of
available combinations) of a micro Hamiltonian coding scheme. Our algorithm is simi-
lar in spirit to frequency selection algorithms used for optimizing sinusoid coding [14].
Patterns shown in Figure 6 (c) were designed using this optimization procedure.

Antipodal Hamiltonian coding vs. Micro Hamiltonian coding : Both micro Hamil-
tonian coding and Gray code based Hamiltonian coding (e.g.,antipodal Hamiltonian
patterns) are designed to achieve robustness to global illumination. Gray code based
Hamiltonian schemes have a restricted design space, and allow limited control over the
spatial frequencies of the projected patterns. In contrast, micro Hamiltonian coding pro-
vides greater control over the spatial frequencies. On the other hand, micro Hamiltonian
codes require phase unwrapping for decoding, and thus, may suffer from errors in low
SNR scenarios due to incorrect unwrapping. In contrast, antipodal Hamiltonian codes
achieve high precision even in low SNR, as shown in Figures 9 and 10.
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Fig. 7. Comparison of various coding schemes for a planar scene.Hamiltonian coding outper-
forms existing schemes over a broad range of SNR scenarios. At high SNR (high source strength,
low ambient light), multi-frequency sinusoid scheme achieve similar performance as Hamiltonian
coding. However, at low SNR, multi-frequency sinusoid schemes suffer from large depth errors.
In contrast, the performance of Hamiltonian coding degrades gracefully as the SNR decreases.

7 Experiments and Results

For our experiments, we used a structured light system consisting of a Canon T5i DSLR
camera, and an Epson 3LCD projector. First, we evaluate the proposed Hamiltonian
coding schemes under different signal-to-noise ratio (SNR) settings. The scene was a
diffuse, white planar surface, with known ground truth depths, approximately in the
range[1100, 1600] millimeters. A broad range of SNR scenarios were emulated by
using different brightness values of the source projector (that projected the structured
light patterns), and another projector that acted as an ambient illumination source.

Figure 7 shows the depth errors for several coding schemes, at different source
and ambient light strengths, and different number of patterns (K). We kept the capture
time and the unambiguous depth range the same for all coding schemes. To achieve
the latter, the period of the coding functions for all the schemes was fixed to1920
columns. ForK = 3, ramp coding [2] results in large errors, due to a small coding
curve length (Figure 3). ForK = 4, 5, Hamiltonian coding significantly outperforms
existing approaches such as sinusoid coding. The coding curves for edge patterns [38]
and Hilbert patterns [18] are not distance preserving, which results in large depth errors
at low SNR (low source brightness, high ambient brightness)settings.

For K = 5, we compare Hamiltonian coding with a multi-frequency sinusoid
scheme, which uses sinusoid patterns of multiple frequencies, for example, one high
frequency and one low (unit) frequency [36]. Specifically, we used3 patterns with a
period of1920 columns (unit frequency), and2 patterns (separated byπ

2
shifts) with a

period of160 pixels (high frequency). The high frequency phase providesaccurate but
ambiguous projector correspondence. The low frequency phase is then used to resolve
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Scene Sinusoid Coding Multi-Frequency Sinusoid Hamiltonian Coding

Fig. 8. Comparison forK = 5. Multi-frequency sinusoid coding can recover the fine geometric
details in high SNR conditions. However, its performance degrades considerably in low SNR
settings, resulting in large errors for the black lava rock.In contrast, Hamiltonian coding can
recover fine details such as the pores on the rock, despite extremely low albedo.

Scene Micro Phase Shifting Micro Hamiltonian Coding Antipodal Hamiltonian Coding

Fig. 9. Scene with interreflections.All three coding schemes have high frequencies, and are
relatively robust to global illumination. Micro PS performs reliably in moderate to high SNR
scenarios (base of the bowl). However, its performance degrades at low SNR (at the edges of the
bowl) due to low signal strength, resulting in large depth errors.Please zoom in for details.

the ambiguities (phase unwrapping). At high SNR, multi-frequency sinusoid scheme
achieves similar performance as Hamiltonian coding. However, at low SNR, it suffers
from inaccurate unwrapping, and thus, large depth errors. In contrast, the performance
of Hamiltonian coding degrades gracefully as the SNR decreases.
Visual comparisons: Figure 8 shows visual comparisons between different coding
schemes. Single-frequency sinusoid, in general, achievesa low depth resolution, result-
ing in loss of surface detail. With the same source power and capture time, Hamiltonian
coding recovers subtle details such as the facial features of the statue (Figure 8). Multi-
frequency sinusoid coding can recover fine geometric details in high SNR conditions.
However, its performance degrades considerably in low SNR,resulting in large errors
for the black lava rock (Figure 8). In contrast, Hamiltoniancoding can recover fine
details such as the pores on the rock, despite the scene having extremely low albedo.
Please see the supplementary technical report for more results, including compar-
isons for a 3D time lapse sequence captured under varying ambient light .
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Scene Micro Phase Shifting Antipodal Hamiltonian

Fig. 10. Scenes with scattering and defocus.Hamiltonian coding outperforms MPS at low SNR,
while mitigating errors due to scattering and defocus.

Scenes with global illumination and defocus:Figures 9 and 10 show depth recovery
results for scenes with global illumination and defocus. The bowl is made of white,
glossy material, resulting in strong interreflections. Thecandle has subsurface scatter-
ing. The depth-range for the forks scene is large, resultingin projector defocus. We used
the antipodal Hamiltonian coding and micro Hamiltonian coding, as shown in Figure 6
(b,c). We compared these schemes with micro phase shifting [14] (MPS) withK = 8
patterns. While MPS performs reliably in moderate to high SNR scenarios, its perfor-
mance degrades at low SNR due to unwrapping errors, resulting in large depth errors.
Micro Hamiltonian coding also suffers from depth errors in low SNR due to incorrect
unwrapping. However, it outperforms MPS by virtue of using high frequency Hamilto-
nian patterns, instead of sinusoids. Antipodal Hamiltonian method performs well even
at low SNR, while mitigating errors due to global illumination effects.

8 Limitations and Future Outlook
Optimality of coding schemes:The coding schemes designed in this paper, although
substantially better than current state-of-the-art, are not provably optimal. It may be
possible to design schemes with further improved performance by using advanced op-
timization algorithms [24], based on the geometric concepts proposed in the paper. An-
other interesting future research direction is to design coding schemes that incorporate
imaging system characteristics [24] and scene priors [23, 32].

Dealing with extreme global and ambient illumination: The Hamiltonian patterns
designed for dealing with global illumination can only handle relatively low frequency
interreflections. For scenes with strong, specular interreflections (e.g., mirrors), the pro-
posed techniques can be used in conjunction with optical approaches for mitigating
errors due to high-frequency interreflections [27]. Similarly, for scenes with strong am-
bient illumination, the proposed coding approaches can be used in a complementary
manner with optical methods for suppressing ambient illumination [27, 12].

Acknowledgement.This research was supported in parts by the ONR grant number
N00014-16-1-2995, and the DARPA REVEAL program.



A Geometric Perspective on Structured Light Coding 15

References

1. Boyer, K.L., Kak, A.C.: Color-encoded structured light for rapid active ranging. IEEE Trans-
actions on Pattern Analysis and Machine IntelligencePAMI-9 (1), 14–28 (1987)

2. Carrihill, B., Hummel, R.: Experiments with the intensity ratio depth sensor. Computer Vi-
sion, Graphics, and Image Processing32(3), 337 – 358 (1985)

3. Caspi, D., Kiryati, N., Shamir, J.: Range imaging with adaptive color structured light. IEEE
Trans. Pattern Anal. Mach. Intell.20(5), 470–480 (1998)

4. Chang, G.J., Eu, S.P., Yeh, C.H.: On the (n,t)-Antipodal Gray Codes. Theoretical Computer
Science374(1-3) (2007)

5. Chazan, G., Kiryati, N.: Pyramidal intensity ratio depthsensor. Technical Report No. 121,
Department of Electrical Engineering, Technion, Haifa (1995)

6. Chen, T., Seidel, H.P., Lensch, H.: Modulated phase-shifting for 3D scanning. In: Proc. IEEE
CVPR (2008)

7. Chen, T., Lensch, H.P.A., Fuchs, C., peter Seidel, H.: Polarization and phase-shifting for 3D
scanning of translucent objects. In: IEEE Proc. CVPR (2007)

8. Couture, V., Martin, N., Roy, S.: Unstructured light scanning to overcome interreflections.
In: Proc. IEEE ICCV (2011)

9. Curless, B., Levoy, M.: Better optical triangulation through spacetime analysis. In: Proceed-
ings of IEEE International Conference on Computer Vision (1995)

10. Gotsman, C., Lindenbaum, M.: On the metric properties ofdiscrete space-filling curves.
IEEE TIP5(5) (1996)

11. Gray, F.: Pulse code communication. US Patent 2,632,058(1953)
12. Gupta, M., Yin, Q., Nayar, S.K.: Structured light in sunlight. In: IEEE International Confer-

ence on Computer Vision (2013)
13. Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan,S.G.: A practical approach to 3d

scanning in the presence of interreflections, subsurface scattering and defocus. International
Journal of Computer Vision102(1), 33–55 (2013)

14. Gupta, M., Nayar, S.K.: Micro phase shifting. In: Proc. IEEE CVPR (2012)
15. Gupta, M., Velten, A., Nayar, S., Breitbach, E.: What AreOptimal Coding Functions for

Time-of-Flight Imaging? ACM Transactions on Graphics37(2) (2018)
16. Gushov, V.I., Solodkin, Y.N.: Automatic processing of fringe patterns in integer interferom-

eters. Optics Lasers Engineering14 (1991)
17. Hasinoff, S.W., Durand, F., Freeman, W.T.: Noise-optimal capture for high dynamic range

photography. In: Proc. IEEE CVPR (2010)
18. Horn, E., Kiryati, N.: Toward optimal structured light patterns. In: International Conference

on Recent Advances in 3D Digital Imaging and Modeling (1997)
19. Huang, P.S., Zhang, S., Chiang, F.P.: Trapezoidal phase-shifting method for threedimensional

shape measurement. Optical Engineering44(12) (2005)
20. Inokuchi, S., Sato, K., Matsuda, F.: Range imaging system for 3-d object recognition. In:

International Conference Pattern Recognition. pp. 806–808 (1984)
21. Kilian, C.E., Savage, C.D.: Antipodal Gray Codes. Discrete Mathematics281(1-3) (2004)
22. Kim, D., Ryu, M., Lee, S.: Antipodal gray codes for structured light. In: IEEE Internal Con-

ference on Robotics and Automation (ICRA) (2008)
23. Koninckx, T., Van Gool, L.: Real-time range acquisitionby adaptive structured light. IEEE

Transactions on Pattern Analysis and Machine Intelligence28(3), 432–445 (2006)
24. Mirdehghan, P., Chen, W., Kutulakos, K.N.: Optimal structured light la carte. In: Proc.

CVPR (2018)
25. Moreno, D., Son, K., Taubin, G.: Embedded phase shifting: Robust phase shifting with em-

bedded signals. In: Proc. IEEE CVPR (2015)
26. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.:Fast separation of direct and global

components of a scene using high frequency illumination. ACM Trans. Graph.25(3) (2006)



16 M. Gupta and N. Nakhate

27. O’Toole, M., Mather, J., Kutulakos, K.N.: 3d shape and indirect appearance by structured
light transport. In: Proc. IEEE CVPR (2014)

28. Posdamer, J.L., Altschuler, M.D.: Surface measurementby space-encoded projected beam
systems. Computer Graphics and Image Processing18(1), 1 – 17 (1982)

29. Proesmans, M., Van Gool, L.J., Oosterlinck, A.J.: Active acquisition of 3d shape for moving
objects. In: Proceedings of the International Conference on Image Processing. vol. 3, pp.
647–650 vol.3 (1996)

30. Proesmans, M., Van Gool, L.J., Oosterlinck, A.J.: One-shot active 3d shape acquisition. In:
Proceedings of the International Conference on Pattern Recognition. vol. 3, pp. 336–340
vol.3 (1996)

31. Ragland, E.A., Harry B. Schultheis, J.: Direction-sensitive binary code position control sys-
tem. US Patent 2,823,345 (1953)

32. Rosman, G., Rus, D., Fisher, J.W.: Information-driven adaptive structured-light scanners. In:
IEEE Conference on Computer Vision and Pattern Recognition(2016)

33. Sagawa, R., Ota, Y., Yagi, Y., Furukawa, R., Asada, N., Kawasaki, H.: Dense 3d recon-
struction method using a single pattern for fast moving object. In: Proc. IEEE ICCV. pp.
1779–1786 (2009)

34. Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns
for surface profilometry. Pattern Recognition43(8) (2010)

35. Srinivasan, V., Liu, H.C., Halioua, M.: Automated phase-measuring profilometry: a phase
mapping approach. Appl. Opt.24(2), 185–188 (1985)

36. Towers, C.E., Towers, D.P., Jones, J.D.C.: Absolute fringe order calculation using optimised
multi-frequency selection in full-field profilometry. Optics and Lasers in Engineering43(7),
788 – 800 (2005)

37. Ulusoy, A.O., Calakli, F., Taubin, G.: One-shot scanning using de bruijn spaced grids. In:
IEEE ICCV Workshops. pp. 1786–1792 (2009)

38. Wang, Y., Liu, K., Lau, D.L., Hao, Q., Hassebrook, L.G.: Maximum snr pattern strategy for
phase shifting methods in structured light illumination. J. Opt. Soc. Am. A27(9) (2010)

39. Xu, Y., Aliaga, D.: An adaptive correspondence algorithm for modeling scenes with strong
interreflections. IEEE Transactions on Visualization and Computer Graphics (2009)


