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Abstract. We propose an end-to-end deep learning architecture that produces a

3D shape in triangular mesh from a single color image. Limited by the nature

of deep neural network, previous methods usually represent a 3D shape in vol-

ume or point cloud, and it is non-trivial to convert them to the more ready-to-use

mesh model. Unlike the existing methods, our network represents 3D mesh in a

graph-based convolutional neural network and produces correct geometry by pro-

gressively deforming an ellipsoid, leveraging perceptual features extracted from

the input image. We adopt a coarse-to-fine strategy to make the whole deforma-

tion procedure stable, and define various of mesh related losses to capture prop-

erties of different levels to guarantee visually appealing and physically accurate

3D geometry. Extensive experiments show that our method not only qualitatively

produces mesh model with better details, but also achieves higher 3D shape esti-

mation accuracy compared to the state-of-the-art.

Keywords: 3D shape generation · Graph convolutional neural network · Mesh

reconstruction · Coarse-to-fine · End-to-end framework

1 Introduction

Inferring 3D shape from a single perspective is a fundamental human vision function-

ality but is extremely challenging for computer vision. Recently, great success has been

achieved for 3d shape generation from a single color image using deep learning tech-

niques [6, 9]. Taking advantage of convolutional layers on regular grids or multi-layer

perception, the estimated 3D shape, as the output of the neural network, is represented

as either a volume [6] or point cloud [9]. However, both representations lose important

surface details, and is non-trivial to reconstruct a surface model (Fig. 1), i.e. a mesh,

which is more desirable for many real applications since it is lightweight, capable of

modelling shape details, easy to deform for animation, to name a few.

In this paper, we push along the direction of single image reconstruction, and pro-

pose an algorithm to extract a 3D triangular mesh from a single color image. Rather

⋆ indicates equal contributions.
† indicates corresponding author.
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Input Image Volume from [Choy et al.]

Convert using [Lorensen et al.]

Pixel2Mesh (Ours)Point cloud from [Fan et al.]

Convert using [Bernardini et al.]

Fig. 1. Given a single color image and an initial mesh, our method can produce a high-quality

mesh that contains details from the example.

than directly synthesizing, our model learns to deform a mesh from a mean shape to

the target geometry. This benefits us from several aspects. First, deep network is better

at predicting residual, e.g. a spatial deformation, rather than structured output, e.g. a

graph. Second, a series of deformations can be added up together, which allows shape

to be gradually refined in detail. It also enables the control of the trade-off between the

complexity of the deep learning model and the quality of the result. Lastly, it provides

the chance to encode any prior knowledge to the initial mesh, e.g. topology. As a pio-

neer study, in this work, we specifically work on objects that can be approximated using

3D mesh with genus 0 by deforming an ellipsoid with a fixed size. In practice, we found

most of the commonly seen categories can be handled well under this setting, e.g. car,

plane, table, etc. To achieve this goal, there are several inherent challenges.

The first challenge is how to represent a mesh model, which is essentially an irregu-

lar graph, in a neural network and still be capable of extracting shape details effectively

from a given color image represented in a 2D regular grid. It requires the integration

of the knowledge learned from two data modalities. On the 3D geometry side, we di-

rectly build a graph based fully convolutional network (GCN) [3, 8, 18] on the mesh

model, where the vertices and edges in the mesh are directly represented as nodes and

connections in a graph. Network feature encoding information for 3D shape is saved

on each vertex. Through forward propagation, the convolutional layers enable feature

exchanging across neighboring nodes, and eventually regress the 3D location for each

vertex. On the 2D image side, we use a VGG-16 like architecture to extract features

as it has been demonstrated to be successful for many tasks [10, 20]. To bridge these

two, we design a perceptual feature pooling layer which allows each node in the GCN

to pool image features from its 2D projection on the image, which can be readily ob-

tained by assuming known camera intrinsic matrix. The perceptual feature pooling is

enabled once after several convolutions (i.e. a deformation block described in Sec. 3.4)

using updated 3D locations, and hence the image features from correct locations can be

effectively integrated with 3D shapes.

Given the graph representation, the next challenge is how to update the vertex lo-

cation effectively towards ground truth. In practice, we observe that network trained to

directly predict mesh with a large number of vertices is likely to make mistake in the

beginning and hard to fix later. One reason is that a vertex cannot effectively retrieve

features from other vertices with a number of edges away, i.e. the limited receptive field.
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To solve this problem, we design a graph unpooling layer, which allows the network to

initiate with a smaller number of vertices and increase during the forward propagation.

With fewer vertices at the beginning stages, the network learns to distribute the vertices

around to the most representative location, and then add local details as the number

of vertices increases later. Besides the graph unpooling layer, we use a deep GCN en-

hanced by shortcut connections [13] as the backbone of our architecture, which enables

large receptive fields for global context and more steps of movements.

Representing the shape in graph also benefits the learning procedure. The known

connectivity allows us to define higher order loss functions across neighboring nodes,

which are important to regularize 3D shapes. Specifically, we define a surface normal

loss to favor smooth surface; an edge loss to encourage uniform distribution of mesh

vertices for high recall; and a laplacian loss to prevent mesh faces from intersecting

each other. All of these losses are essential to generate quality appealing mesh model,

and none of them can be trivially defined without the graph representation.

The contributions of this paper are mainly in three aspects. First, we propose a

novel end-to-end neural network architecture that generates a 3D mesh model from a

single RGB image. Second, we design a projection layer which incorporates perceptual

image features into the 3D geometry represented by GCN. Third, our network predict

3D geometry in a coarse to fine fashion, which is more reliable and easy to learn.

2 Related Work

3D reconstruction has been well studied based on the multi-view geometry (MVG) [12]

in the literature. The major research directions include structure from motion (SfM) [27]

for large-scale high-quality reconstruction and simultaneous localization and mapping

(SLAM) [4] for navigation. Though they are very successful in these scenarios, they

are restricted by 1) the coverage that the multiple views can give and 2) the appearance

of the object that wants to reconstruct. The former restriction means MVG cannot re-

construct unseen parts of the object, and thus it usually takes a long time to get enough

views for a good reconstruction; the latter restriction means MVG cannot reconstruct

non-lambertian (e.g. reflective or transparent) or textureless objects. These restrictions

lead to the trend of resorting to learning based approaches.

Learning based approaches usually consider single or few images, as it largely relies

on the shape priors that it can learn from data. Early works can be traced back to Hoiem

et al.[14] and Saxena et al.[25]. Most recently, with the success of deep learning archi-

tectures and the release of large-scale 3D shape datasets such as ShapeNet [5], learning

based approaches have achieved great progress. Huang et al.[15] and Su et al.[29] re-

trieve shape components from a large dataset, assemble them and deform the assembled

shape to fit the observed image. However, shape retrieval from images itself is an ill-

posed problem. To avoid this problem, Kar et al.[16] learns a 3D deformable model for

each object category and capture the shape variations in different images. However, the

reconstruction is limited to the popular categories and its reconstruction result is usu-

ally lack of details. Another line of research is to directly learn 3D shapes from single

images. Restricted by the prevalent grid-based deep learning architectures, most works

[6, 11] outputs 3D voxels, which are usually with low resolutions due to the memory
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constraint on a modern GPU. Most recently, Tatarchenko et al.[30] have proposed an

octree representation, which allows to reconstructing higher resolution outputs with a

limited memory budget. However, a 3D voxel is still not a popular shape representation

in game and movie industries. To avoid drawbacks of the voxel representation, Fan et

al.[9] propose to generate point clouds from single images. The point cloud representa-

tion has no local connections between points, and thus the point positions have a very

large degree of freedom. Consequently, the generated point cloud is usually not close

to a surface and cannot be used to recover a 3D mesh directly. Besides these typical 3D

representations, there is an interesting work [28] which uses a so-called “geometry im-

age” to represent a 3D shape. Thus, their network is a 2D convolutional neural network

which conducts an image to image mapping. Our works are mostly related to the two

recent works [17] and [24]. However, the former adopts simple silhouette supervision,

and hence does not perform well for complicated objects such as car, lamp, etc; the

latter needs a large model repository to generate a combined model.

Our base network is a graph neural network [26]; this architecture has been adopted

for shape analysis [31]. In the meanwhile, there are charting-based methods which di-

rectly apply convolutions on surface manifolds [2, 22, 23] for shape analysis. As far as

we know, these architectures have never been adopted for 3D reconstruction from sin-

gle images, though graph and surface manifold are natural representations for meshed

objects. For a comprehensive understanding of the graph neural network, the charting-

based methods and their applications, please refer to this survey [3].

3 Method

3.1 Preliminary: Graph-based Convolution

We first provide some background about graph based convolution; more detailed in-

troduction can be found in [3]. A 3D mesh is a collection of vertices, edges and faces

that defines the shape of a 3D object; it can be represented by a graph M = (V, E ,F),
where V = {vi}

N
i=1 is the set of N vertices in the mesh, E = {ei}

E
i=1 is the set of

E edges with each connecting two vertices, and F = {fi}
N
i=1 are the feature vectors

attached on vertices. A graph based convolutional layer is defined on irregular graph as:

f l+1
p = w0f

l
p +

∑

q∈N (p)

w1f
l
q (1)

where f l
p ∈ R

dl , f l+1
p ∈ R

dl+1 are the feature vectors on vertex p before and after the

convolution, and N (p) is the neighboring vertices of p; w0 and w1 are the learnable

parameter matrices of dl × dl+1 that are applied to all vertices. Note that w1 is shared

for all edges, and thus (1) works on nodes with different vertex degrees. In our case, the

attached feature vector fp is the concatenation of the 3D vertex coordinate, feature en-

coding 3D shape, and feature learned from the input color image (if they exist). Running

convolutions updates the features, which is equivalent as applying a deformation.
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Perceptual Feature Pooling Perceptual Feature PoolingInput Image

EllipsoidMesh 156 vertices 628 vertices 2466 vertices

Fig. 2. The cascaded mesh deformation network. Our full model contains three mesh deformation

blocks in a row. Each block increases mesh resolution and estimates vertex locations, which are

then used to extract perceptual image features from the 2D CNN for the next block.

3.2 System Overview

Our model is an end-to-end deep learning framework that takes a single color image as

input and produces a 3D mesh model in camera coordinate. The overview of our frame-

work is illustrated in Fig. 2. The whole network consists an image feature network and

a cascaded mesh deformation network. The image feature network is a 2D CNN that

extract perceptual feature from the input image, which is leveraged by the mesh defor-

mation network to progressively deform an ellipsoid mesh into the desired 3D model.

The cascaded mesh deformation network is a graph-based convolution network (GCN),

which contains three deformation blocks intersected by two graph unpooling layers.

Each deformation block takes an input graph representing the current mesh model with

the 3D shape feature attached on vertices, and produces new vertices locations and fea-

tures. Whereas the graph unpooling layers increase the number of vertices to increase

the capacity of handling details, while still maintain the triangular mesh topology. Start-

ing from a smaller number of vertices, our model learns to gradually deform and add

details to the mesh model in a coarse-to-fine fashion. In order to train the network to

produce stable deformation and generate an accurate mesh, we extend the Chamfer

Distance loss used by Fan et al.[9] with three other mesh specific loss – Surface normal

loss, Laplacian regularization loss, and Edge length loss. The remaining part of this

section describes details of these components.

3.3 Initial ellipsoid

Our model does not require any prior knowledge of the 3D shape, and always deform

from an initial ellipsoid with average size placed at the common location in the camera

coordinate. The ellipsoid is centered at 0.8m in front of the camera with 0.2m, 0.2m,

0.4m as the radius of three axis. The mesh model is generated by implicit surface algo-

rithm in Meshlab [7] and contains 156 vertices. We use this ellipsoid to initialize our

input graph, where the initial feature contains only the 3D coordinate of each vertex.

3.4 Mesh deformation block

The architecture of mesh deformation block is shown in Fig. 3 (a). In order to generate

3D mesh model that is consistent with the object shown in the input image, the defor-

mation block need to pool feature (P) from the input image. This is done in conjunction
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(a) Mesh Deformation Block (b) Perceptual Feature Pooling

Fig. 3. (a) The vertex locations Ci are used to extract image features, which are then combined

with vertex features Fi and fed into G-ResNet.
⊕

means a concatenation of the features. (b) The

3D vertices are projected to the image plane using camera intrinsics, and perceptual feature is

pooled from the 2D-CNN layers using bilinear interpolation.

with the image feature network and a perceptual feature pooling layer given the location

of vertex (Ci−1) in the current mesh model. The pooled perceptual feature is then con-

catenated with the 3D shape feature attached on the vertex from the input graph (Fi−1)

and fed into a series of graph based ResNet (G-ResNet). The G-ResNet produces, also

as the output of the mesh deformation block, the new coordinates (Ci) and 3d shape

feature (Fi) for each vertex.

Perceptual feature pooling layer We use a VGG-16 architecture up to layer conv5 3

as the image feature network as it has been widely used. Given the 3D coordinate of a

vertex, we calculate its 2D projection on input image plane using camera intrinsics, and

then pool the feature from four nearby pixels using bilinear interpolation. In particular,

we concatenate feature extracted from layer ‘conv3 3’, ‘conv4 3’, and ‘conv5 3’, which

results in a total dimension of 1280. This perceptual feature is then concatenated with

the 128-dim 3D feature from the input mesh, which results in a total dimension of

1408. This is illustrated in Fig. 3 (b). Note that in the first block, the perceptual feature

is concatenated with the 3-dim feature (coordinate) since there is no learnt shape feature

at the beginning.

G-ResNet After obtaining 1408-dim feature for each vertex representing both 3D shape

and 2D image information, we design a graph based convolutional neural network to

predict new location and 3D shape feature for each vertex. This requires efficient ex-

change of the information between vertices. However, as defined in (1), each convolu-

tion only enables the feature exchanging between neighboring pixels, which severely

impairs the efficiency of information exchanging. This is equivalent as the small recep-

tive field issue on 2D CNN.

To solve this issue, we make a very deep network with shortcut connections [13]

and denote it as G-ResNet (Fig. 3 (a)). In this work, the G-ResNet in all blocks has

the same structure, which consists of 14 graph residual convolutional layers with 128

channels. The serial of G-ResNet block produces a new 128-dim 3D feature. In addition
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(a) Graph Unpooling (b) Comparison between face-based and edge-based unpooling

Initial Mesh Face-based Edge-based

Fig. 4. (a) Black vertices and dashed edges are added in the unpooling layer. (b) The face based

unpooling leads to imbalanced vertex degrees, while the edge-based unpooling remains regular.

to the feature output, there is a branch which applies an extra graph convolutional layer

to the last layer features and outputs the 3D coordinates of the vertex.

3.5 Graph unpooling layer

The goal of unpooling layer is to increase the number of vertex in the GCNN. It allows

us to start from a mesh with fewer vertices and add more only when necessary, which

reduces memory costs and produces better results. A straightforward approach is to

add one vertex in the center of each triangle and connect it with the three vertices of

the triangle (Fig. 4 (b) Face-based). However, this causes imbalanced vertex degrees,

i.e. number of edges on vertex. Inspired by the vertex adding strategy of the mesh

subdivision algorithm prevalent in computer graphics, we add a vertex at the center of

each edge and connect it with the two end-point of this edge (Fig. 4 (a)). The 3D feature

for newly added vertex is set as the average of its two neighbors. We also connect

three vertices if they are added on the same triangle (dashed line.) Consequently, we

create 4 new triangles for each triangle in the original mesh, and the number of vertex

is increased by the number of edges in the original mesh. This edge-based unpooling

uniformly upsamples the vertices as shown in Fig. 4 (b) Edge-based.

3.6 Losses

We define four kinds of losses to constrain the property of the output shape and the

deformation procedure to guarantee appealing results. We adopt the Chamfer loss [9] to

constrain the location of mesh vertices, a normal loss to enforce the consistency of sur-

face normal, a laplacian regularization to maintain relative location between neighbor-

ing vertices during deformation, and an edge length regularization to prevent outliers.

These losses are applied with equal weight on both the intermediate and final mesh.

Unless otherwise stated, we use p for a vertex in the predicted mesh, q for a vertex in

the ground truth mesh, N (p) for the neighboring pixel of p, till the end of this section.

Chamfer loss The Chamfer distance measures the distance of each point to the other

set: lc =
∑

p minq ‖p− q‖22 +
∑

q minp ‖p− q‖22. It is reasonably good to regress the

vertices close to its correct position, however is not sufficient to produce nice 3D mesh

(see the result of Fan et al. [9] in Fig. 1).
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Normal loss We further define loss on surface normal to characterize high order prop-

erties: ln =
∑

p

∑
q=argminq(‖p−q‖2

2)
‖〈p − k,nq〉‖

2
2, s.t. k ∈ N (p) where q is the

closest vertex for p that is found when calculating the chamfer loss, k is the neighbor-

ing pixel of p, 〈·, ·〉 is the inner product of two vectors, and nq is the observed surface

normal from ground truth.

Essentially, this loss requires the edge between a vertex with its neighbors to per-

pendicular to the observation from the ground truth. One may find that this loss does

not equal to zero unless on a planar surface. However, optimizing this loss is equivalent

as forcing the normal of a locally fitted tangent plane to be consistent with the obser-

vation, which works practically well in our experiment. Moreover, this normal loss is

fully differentiable and easy to optimize.

Regularization Even with the Chamfer loss and Normal loss, the optimization is easily

stucked in some local minimum. More specifically, the network may generate some

super large deformation to favor some local consistency, which is especially harmful at

the beginning when the estimation is far from ground truth, and causes flying vertices

(Fig. 5).

Laplacian regularization To handle these problem, we first propose a Laplacian term

to prevent the vertices from moving too freely, which potentially avoids mesh self-

intersection. The laplaician term serves as a local detail preserving operator, that en-

courages neighboring vertices to have the same movement. In the first deformation

block, it acts like a surface smoothness term since the input to this block is a smooth-

everywhere ellipsoid; starting from the second block, it prevents the 3D mesh model

from deforming too much, so that only fine-grained details are added to the mesh

model. To calculate this loss, we first define a laplacian coordinate for each vertex p

as δp = p −
∑

k∈N (p)
1

‖N (p)‖k, and the laplacian regularization is defined as: llap =∑
p ‖δ

′
p−δp‖

2
2, where δ′p and δp are the laplacian coordinate of a vertex after and before

a deformation block.

Edge length regularization. To penalize flying vertices, which ususally cause long edge,

we add an edge length regularization loss: lloc =
∑

p

∑
k∈N (p) ‖p− k‖22.

The overall loss is a weighted sum of all four losses, lall = lc+λ1ln+λ2llap+λ3lloc,

where λ1 = 1.6e − 4, λ2 = 0.3 and λ3 = 0.1 are the hyperparameters which balance

the losses and fixed for all the experiments.

4 Experiment

In this section, we perform an extensive evaluation on our model. In addition to compar-

ing with previous 3D shape generation works for evaluating the reconstruction accuracy,

we also analyse the importance of each component in our model. Qualitative results on

both synthetic and real-world images further show that our model produces triangular

meshes with smooth surfaces and still maintains details depicted in the input images.
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4.1 Experimental setup

Data. We use the dataset provided by Choy et al. [6]. The dataset contains rendering

images of 50k models belonging to 13 object categories from ShapeNet [5], which is a

collection of 3D CAD models that are organized according to the WordNet hierarchy. A

model is rendered from various camera viewpoints, and camera intrinsic and extrinsic

matrices are recorded. For fair comparison, we use the same training/testing split as in

Choy et. al. [6].

Evaluation Metric. We adopt the standard 3D reconstruction metric. We first uni-

formly sample points from our result and ground truth. We calculate precision and re-

call by checking the percentage of points in prediction or ground truth that can find a

nearest neighbor from the other within certain threshold τ . A F-score [19] as the har-

monic mean of precision and recall is then calculated. Following Fan et. al. [9], we also

report the Chamfer Distance (CD) and Earth Mover’s Distance (EMD). For F-Score,

larger is better. For CD and EMD, smaller is better.

On the other hand, we realize that the commonly used evaluation metrics for shape

generation may not thoroughly reflect the shape quality. They often capture occupancy

or point-wise distance rather than surface properties, such as continuity, smoothness,

high-order details, for which a standard evaluation metric is barely missing in literature.

Thus, we recommend to pay attention on qualitative results for better understanding of

these aspects.

Baselines. We compare the presented approach to the most recent single image re-

construction approaches. Specifically, we compare with two state-of-the-art methods -

Choy et. al. [6] (3D-R2N2) producing 3D volume, and Fan et. al. [9] (PSG) producing

point cloud. Since the metrics are defined on point cloud, we can evaluate PSG directly

on its output, our method by uniformly sampling point on surface, and 3D-R2N2 by

uniformly sampling point from mesh created using the Marching Cube [21] method.

We also compare to Neural 3D Mesh Renderer (N3MR) [17] which is so far the

only deep learning based mesh generation model with code public available. For fair

comparison, the models are trained with the same data using the same amount of time.

Training and Runtime. Our network receives input images of size 224 × 224, and

initial ellipsoid with 156 vertices and 462 edges. The network is implemented in Ten-

sorflow and optimized using Adam with weight decay 1e-5. The batch size is 1; the

total number of training epoch is 50; the learning rate is initialized as 3e-5 and drops to

1e-5 after 40 epochs. The total training time is 72 hours on a Nvidia Titan X. During

testing, our model takes 15.58ms to generate a mesh with 2466 vertices.

4.2 Comparison to state of the art

Tab. 1 shows the F-score with different thresholds of different methods. Our approach

outperforms the other methods in all categories except watercraft. Notably, our results

are significantly better than the others in all categories under a smaller threshold τ ,
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Threshold τ 2τ

Category 3D-R2N2 PSG N3MR Ours 3D-R2N2 PSG N3MR Ours

plane 41.46 68.20 62.10 71.12 63.23 81.22 77.15 81.38

bench 34.09 49.29 35.84 57.57 48.89 69.17 49.58 71.86

cabinet 49.88 39.93 21.04 60.39 64.83 67.03 35.16 77.19

car 37.80 50.70 36.66 67.86 54.84 77.79 53.93 84.15

chair 40.22 41.60 30.25 54.38 55.20 63.70 44.59 70.42

monitor 34.38 40.53 28.77 51.39 48.23 63.64 42.76 67.01

lamp 32.35 41.40 27.97 48.15 44.37 58.84 39.41 61.50

speaker 45.30 32.61 19.46 48.84 57.86 56.79 32.20 65.61

firearm 28.34 69.96 52.22 73.20 46.87 82.65 63.28 83.47

couch 40.01 36.59 25.04 51.90 53.42 62.95 39.90 69.83

table 43.79 53.44 28.40 66.30 59.49 73.10 41.73 79.20

cellphone 42.31 55.95 27.96 70.24 60.88 79.63 41.83 82.86

watercraft 37.10 51.28 43.71 55.12 52.19 70.63 58.85 69.99

mean 39.01 48.58 33.80 59.72 54.62 69.78 47.72 74.19

Table 1. F-score (%) on the ShapeNet test set at different thresholds, where τ = 10
−4. Larger is

better. Best results under each threshold are bolded.

showing at least 10% F-score improvement. N3MR does not perform well, and its result

is about 50% worse than ours, probably because their model only learns from limited

silhouette signal in images and lacks of explicit handling of the 3D mesh.

We also show the CD and EMD for all categories in Tab. 2. Our approach out-

performs the other methods in most categories and achieves the best mean score. The

major competitor is PSG, which produces a point cloud and has the most freedom; this

freedom leads to smaller CD and EMD, however does not necessarily leads to a better

mesh model without proper regularization. To demonstrate this, we show the qualitative

results to analyze why our approach outperforms the others. Fig. 8 shows the visual re-

sults. To compare the quality of mesh model, we convert volumetric and point cloud to

mesh using standard approaches [21, 1]. As we can see, the 3D volume results produced

by 3D-R2N2 lack of details due to the low resolution, e.g., the legs are missing in the

chair example as shown in the 4-th row of Fig. 8. We tried octree based solution [30]

to increase the volume resolution, but found it still hard to recover surface level details

as much as our model. PSG produces sparse 3D point clouds, and it is non-trivial to

recover meshes from them. This is due to the applied Chamfer loss acting like a regres-

sion loss which gives too much degree of freedom to the point cloud. N3MR produces

very rough shape, which might be sufficient for some rendering tasks, however cannot

recover complicated objects such as chairs and tables. In contrast, our model does not

suffer from these issues by leveraging a mesh representation, integration of perceptual

feature, and carefully defined losses during the training. Our result is not restricted by

the resolution due to the limited memory budget and contains both smooth continuous

surface and local details.
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Category
CD EMD

3D-R2N2 PSG N3MR Ours 3D-R2N2 PSG N3MR Ours

plane 0.895 0.430 0.450 0.477 0.606 0.396 7.498 0.579

bench 1.891 0.629 2.268 0.624 1.136 1.113 11.766 0.965

cabinet 0.735 0.439 2.555 0.381 2.520 2.986 17.062 2.563

car 0.845 0.333 2.298 0.268 1.670 1.747 11.641 1.297

chair 1.432 0.645 2.084 0.610 1.466 1.946 11.809 1.399

monitor 1.707 0.722 3.111 0.755 1.667 1.891 14.097 1.536

lamp 4.009 1.193 3.013 1.295 1.424 1.222 14.741 1.314

speaker 1.507 0.756 3.343 0.739 2.732 3.490 16.720 2.951

firearm 0.993 0.423 2.641 0.453 0.688 0.397 11.889 0.667

couch 1.135 0.549 3.512 0.490 2.114 2.207 14.876 1.642

table 1.116 0.517 2.383 0.498 1.641 2.121 12.842 1.480

cellphone 1.137 0.438 4.366 0.421 0.912 1.019 17.649 0.724

watercraft 1.215 0.633 2.154 0.670 0.935 0.945 11.425 0.814

mean 1.445 0.593 2.629 0.591 1.501 1.653 13.386 1.380

Table 2. CD and EMD on the ShapeNet test set. Smaller is better. Best results under each thresh-

old are bolded.

Category -ResNet -Laplacian -Unpooling -Normal -Edge length Full model

F (τ )↑ 55.308 60.801 60.222 58.668 60.101 59.728

F (2τ )↑ 71.567 75.202 76.231 74.276 76.053 74.191

CD↓ 0.644 0.596 0.561 0.598 0.552 0.591

EMD↓ 1.583 1.350 1.656 1.445 1.479 1.380

Table 3. Ablation study that evaluates the contribution of different ideas to the performance of

the presented model. The table reports all 4 measurements. For F-score, larger is better. For CD

and EMD, small is better.

4.3 Ablation Study

Now we conduct controlled experiments to analyse the importance of each component

in our model. Tab. 3 reports the performance of each model by removing one component

from the full model. Again, we argue that these commonly used evaluation metrics does

not necessarily reflect the quality of the recovered 3D geometry. For example, the model

with no edge length regularization achieves the best performance across all, however, in

fact produces the worst mesh (Fig. 5, the last 2nd column). As such, we use qualitative

result Fig. 5 to show the contribution of each component in our system.

Graph Unpooling We first remove the graph unpooling layers, and thus each block

has the same number of vertices as in the last block of our full model. It is observed
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Input image - Edge Length- Laplacian- Normal- Unpooling - ResNet Full model

Fig. 5. Qualitative results for ablation study. This figure truly reflects the contribution of each

components especially for the regularization ones.

that the deformation makes mistake easier at beginning, which cannot be fixed later on.

Consequently, there are some obvious artifacts in some parts of the objects.

G-ResNet We then remove the shortcut connections in G-ResNet, and make it regular

GCN. As can be seen from Tab. 3, there is a huge performance gap in all four mea-

surement metrics, which means the failure of optimizing Chamfer distance. The main

reason is the degradation problem observed in the very deep 2D convolutional neural

network. Such problem leads to a higher training error (and thus higher testing error)

when adding more layers to a suitably deep model [13]. Essetially, our network has 42

graph convolutional layers. Thus, this phenomenon has also been observed in our very

deep graph neural network experiment.

Loss terms We evaluate the function of each additional terms besides the Chamfer loss.

As can be seen in Fig. 5, removing normal loss severely impairs the surface smoothness

and local details, e.g. seat back; removing Laplacian term causes intersecting geometry

because the local topology changes, e.g. the hand held of the chair; removing edge

length term causes flying vertices and surfaces, which completely ruins the surface

characteristics. These results demonstrate that all the components presented in this work

contribute to the final performance.

Number of Deformation Blocks We now analyze the effects of the number of blocks.

Figure Fig. 6 (left) shows the mean F-score(τ ) and CD with regard to the number of

blocks. The results indicate that increasing the number of blocks helps, but the benefit

is getting saturated with more blocks, e.g. from 3 to 4. In our experiment, we found

that 4 blocks results in too many vertices and edges, which slow down our approach

dramatically even though it provides better accuracy on evaluation metrics. Therefore,

we use 3 blocks in all our experiment for the best balance of performance and efficiency.

Fig. 6 (right) shows the output of our model after each deformation block. Notice how

mesh is densified with more vertices and new details are added.
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Fig. 6. Left: Effect of number of blocks. Each curve shows the mean F-score (τ ) and CD for

different number of blocks. Right: Sample examples showing the output after each block.

Fig. 7. Qualitative results of real-world images from the Online Products dataset and Internet.

4.4 Reconstructing Real-World images

Following Choy et. al. [6], we test our network on the Online Products dataset and

Internet images for qualitative evaluation on real images. We use the model trained

from ShapeNet dataset and directly run on real images without finetuning, and show

results in Fig. 7. As can be seen, our model trained on synthetic data generalizes well

to the real-world images across various categories.

5 Conclusion

We have presented an approach to extract 3D triangular meshes from singe images.

We exploit the key advantages the mesh presentation can bring to us, and the key is-

sues required to solve for success. The former includes surface normal constraints and

information propagation along edges; the latter includes perceptual features extracted

from images as a guidance. We carefully design our network structure and propose a

very deep cascaded graph convolutional neural network with “shortcut” connections.

Meshes are progressively refined by our network trained end-to-end with the chamfer
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(a) (b) (c) (d) (e) (f)

Fig. 8. Qualitative results. (a) Input image; (b) Volume from 3D-R2N2 [6], converted using

Marching Cube [21]; (c) Point cloud from PSG [9], converted using ball pivoting [1]; (d)

N3MR[17]; (e) Ours; (f) Ground truth.

loss and normal loss. Our results are significantly better than the previous state-of-the-

art using other shape representations such as 3D volume or 3D point cloud. Thus, we

believe mesh representation is the next big thing in this direction, and we hope that the

key components discovered in our work can support follow-up works that will further

advance direct 3D mesh reconstruction from single images.

Future work Our method only produces meshes with the same topology as the initial

mesh. In the future, we will extend our approach to more general cases, such as scene

level reconstruction, and learn from multiple images for multi-view reconstruction.
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