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2 INRIA-CentraleSupélec, Paris, France, riza.guler@inria.fr

Abstract. In this work we integrate ideas from surface-based modeling
with neural synthesis: we propose a combination of surface-based pose es-
timation and deep generative models that allows us to perform accurate
pose transfer, i.e. synthesize a new image of a person based on a single
image of that person and the image of a pose donor. We use a dense
pose estimation system that maps pixels from both images to a common
surface-based coordinate system, allowing the two images to be brought
in correspondence with each other. We inpaint and refine the source im-
age intensities in the surface coordinate system, prior to warping them
onto the target pose. These predictions are fused with those of a convolu-
tional predictive module through a neural synthesis module allowing for
training the whole pipeline jointly end-to-end, optimizing a combination
of adversarial and perceptual losses. We show that dense pose estimation
is a substantially more powerful conditioning input than landmark-, or
mask-based alternatives, and report systematic improvements over state
of the art generators on DeepFashion and MVC datasets.

Fig. 1. Overview of our pose transfer pipeline: given an input image and a target
pose we use DensePose [1] to drive the generation process. This is achieved through
the complementary streams of (a) a data-driven predictive module, and (b) a surface-
based module that warps the texture to UV-coordinates, interpolates on the surface,
and warps back to the target image. A blending module combines the complementary
merits of these two streams in a single end-to-end trainable framework.
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1 Introduction

Deep models have recently shown remarkable success in tasks such as face [2],
human [3–5], or scene generation [6, 7], collectively known as “neural synthesis”.
This opens countless possibilities in computer graphics applications, including
cinematography, gaming and virtual reality settings. At the same time, the po-
tential malevolent use of this technology raises new research problems, includ-
ing the detection of forged images or videos [8], which in turn requires training
forgery detection algorithms with multiple realistic samples. In addition, synthet-
ically generated images have been successfully exploited for data augmentation
and training deep learning frameworks for relevant recognition tasks [9].

In most applications, the relevance of a generative model to the task directly
relates to the amount of control that one can exert on the generation process.
Recent works have shown the possibility of adjusting image synthesis by con-
trolling categorical attributes [10, 3], low-dimensional parameters [11], or layout
constraints indicated by a conditioning input [12, 6, 7, 3–5]. In this work we aspire
to obtain a stronger hold of the image synthesis process by relying on surface-
based object representations, similar to the ones used in graphics engines.

Our work is focused on the human body, where surface-based image under-
standing has been most recently unlocked [13–18, 1]. We build on the recently
introduced SMPL model [13] and the DensePose system [1], which taken together
allow us to interpret an image of a person in terms of a full-fledged surface model,
getting us closer to the goal of performing inverse graphics.

In this work we close the loop and perform image generation by rendering the
same person in a new pose through surface-based neural synthesis. The target
pose is indicated by the image of a ‘pose donor’, i.e. another person that guides
the image synthesis. The DensePose system is used to associate the new photo
with the common surface coordinates and copy the appearance predicted there.

The purely geometry-based synthesis process is on its own insufficient for re-
alistic image generation: its performance can be compromised by inaccuracies of
the DensePose system as well as by self-occlusions of the body surface in at least
one of the two images. We account for occlusions by introducing an inpainting
network that operates in the surface coordinate system and combine its predic-
tions with the outputs of a more traditional feedforward conditional synthesis
module. These predictions are obtained independently and compounded by a
refinement module that is trained so as to optimize a combination of reconstruc-
tion, perceptual and adversarial losses.

We experiment on the DeepFashion [19] and MVC [20] datasets and show that
we can obtain results that are quantitatively better than the latest state-of-the-
art. Apart from the specific problem of pose transfer, the proposed combination
of neural synthesis with surface-based representations can also be promising for
the broader problems of virtual and augmented reality: the generation process
is more transparent and easy to connect with the physical world, thanks to
the underlying surface-based representation. In the more immediate future, the
task of pose transfer can be useful for dataset augmentation, training forgery
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detectors, as well as texture transfer applications like those showcased by [1],
without however requiring the acquisition of a surface-level texture map.

2 Previous works

Deep generative models have originally been studied as a means of unsuper-
vised feature learning [21–24]; however, based on the increasing realism of neural
synthesis models [25, 2, 6, 7] such models can now be considered as components
in computer graphics applications such as content manipulation [7].

Loss functions used to train such networks largely determine the realism
of the resulting outputs. Standard reconstruction losses, such as ℓ1 or ℓ2 norms
typically result in blurry results, but at the same time enhance stability [12]. Re-
alism can be enforced by using an adapted discriminator loss trained in tandem
with a generator in Generative Adversarial Network (GAN) architectures [23] to
ensure that the generated and observed samples are indistinguishable. However,
this training can often be unstable, calling for more robust variants such as the
squared loss of [26], WGAN and its variants [27] or multi-scale discriminators
as in [7]. An alternative solution is the perceptual loss used in [28, 29] replacing
the optimization-based style transfer of [25] with feedforward processing. This
was recently shown in [6] to deliver substantially more accurate scene synthe-
sis results than [12], while compelling results were obtained more recently by
combining this loss with a GAN-style discriminator [7].

Person and clothing synthesis has been addressed in a growing body of
recently works [3, 5, 4, 30]. All of these works assist the image generation task
through domain, person-specific knowledge, which gives both better quality re-
sults, and a more controllable image generation pipeline.

Conditional neural synthesis of humans has been shown in [5, 4] to pro-
vide a strong handle on the output of the generative process. A controllable
surface-based model of the human body is used in [3] to drive the generation
of persons wearing clothes with controllable color combinations. The generated
images are demonstrably realistic, but the pose is determined by controlling a
surface based model, which can be limiting if one wants e.g. to render a source
human based on a target video. A different approach is taken in the pose transfer
work of [4], where a sparse set of landmarks detected in the target image are used
as a conditioning input to a generative model. The authors show that pose can
be generated with increased accuracy, but often losing texture properties of the
source images, such as cloth color or texture properties. In the work of [31] multi-
view supervision is used to train a two-stage system that can generate images
from multiple views. In more recent work [5] the authors show that introducing a
correspondence component in a GAN architecture allows for substantially more
accurate pose transfer.

Image inpainting helps estimate the body appearance on occluded body
regions. Generative models are able to fill-in information that is labelled as
occluded, either by accounting for the occlusion pattern during training [32], or
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by optimizing a score function that indicates the quality of an image, such as the
negative of a GAN discriminator loss [33]. The work of [33] inpaints arbitrarily
occluded faces by minimizing the discriminator loss of a GAN trained with fully-
observed face patches. In the realm of face analysis impressive results have been
generated recently by works that operate in the UV coordinate system of the
face surface, aiming at photorealistic face inpainting [34], and pose-invariant
identification [35]. Even though we address a similar problem, the lack of access
to full UV recordings (as in [35, 34]) poses an additional challenge.

3 Dense Pose Transfer

We develop our approach to pose transfer around the DensePose estimation
system [1] to associate every human pixel with its coordinates on a surface-
based parameterization of the human body in an efficient, bottom-up manner.
We exploit the DensePose outputs in two complementary ways, corresponding to
the predictive module and the warping module, as shown in Fig. 1. The warping
module uses DensePose surface correspondence and inpainting to generate a new
view of the person, while the predictive module is a generic, black-box, generative
model conditioned on the DensePose outputs for the input and the target.

These modules corresponding to two parallel streams have complementary
merits: the predictive module successfully exploits the dense conditioning out-
put to generate plausible images for familiar poses, delivering superior results
to those obtained from sparse, landmark-based conditioning; at the same time,
it cannot generalize to new poses, or transfer texture details. By contrast, the
warping module can preserve high-quality details and textures, allows us to per-
form inpainting in a uniform, canonical coordinate system, and generalizes for
free for a broad variety of body movements. However, its body-, rather than
clothing-centered construction does not take into account hair, hanging clothes,
and accessories. The best of both worlds is obtained by feeding the outputs of
these two blocks into a blending module trained to fuse and refine their predic-
tions using a combination of reconstruction, adversarial, and perceptual losses
in an end-to-end trainable framework.

The DensePose module is common to both streams and delivers dense corre-
spondences between an image and a surface-based model of the human body. It
does so by firstly assigning every pixel to one of 24 predetermined surface parts,
and then regressing the part-specific surface coordinates of every pixel. The re-
sults of this system are encoded in three output channels, comprising the part
label and part-specific UV surface coordinates. This system is trained discrim-
inatively and provides a simple, feed-forward module for dense correspondence
from an image to the human body surface. We omit further details, since we rely
on the system of [1] with minor implementation differences described in Sec. 4.

Having outlined the overall architecture of our system, in Sec. 3.1 and Sec. 3.3
we present in some more detail our components, and then turn in Sec. 3.4 to
the loss functions used in their training. A thorough description of architecture
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details is left to the supplemental material. We start by presenting the archi-
tecture of the predictive stream, and then turn to the surface-based stream,
corresponding to the upper and lower rows of Fig. 1, respectively.

3.1 Predictive stream

The predictive module is a conditional generative model that exploits the Dense-
Pose system results for pose transfer. Existing conditional models indicate the
target pose in the form of heat-maps from keypoint detectors [4], or part segmen-
tations [3]. Here we condition on the concatenation of the input image and Dense-
Pose results for the input and target images, resulting in an input of dimension
256×256×9. This provides conditioning that is both global (part-classification),
and point-level (continuous coordinates), allowing the remaining network to ex-
ploit a richer source of information.

The remaining architecture includes an encoder followed by a stack of resid-
ual blocks and a decoder at the end, along the lines of [28]. In more detail, this
network comprises (a) a cascade of three convolutional layers that encode the
256×256×9 input into 64×64×256 activations, (b) a set of six residual blocks
with 3×3×256×256 kernels, (c) a cascade of two deconvolutional and one con-
volutional layer that deliver an output of the same spatial resolution as the
input. All intermediate convolutional layers have 3×3 filters and are followed
by instance normalization [36] and ReLU activation. The last layer has tanh
non-linearity and no normalization.

3.2 Warping stream

Our warping module performs pose transfer by performing explicit texture map-
ping between the input and the target image on the common surface UV-system.
The core of this component is a Spatial Transformer Network (STN) [37] that
warps according to DensePose the image observations to the UV-coordinate sys-
tem of each surface part; we use a grid with 256×256 UV points for each of
the 24 surface parts, and perform scattered interpolation to handle the contin-
uous values of the regressed UV coordinates. The inverse mapping from UV to
the output image space is performed by a second STN with a bilinear kernel. As
shown in Fig. 3, a direct implementation of this module would often deliver poor
results: the part of the surface that is visible on the source image is typically
small, and can often be entirely non-overlapping with the part of the body that
is visible on the target image. This is only exacerbated by DensePose failures or
systematic errors around the part seams. These problems motivate the use of an
inpainting network within the warping module, as detailed below.

Inpainting autoencoder. This model allows us to extrapolate the body
appearance from the surface nodes populated by the STN to the remainder
of the surface. Our setup requires a different approach to the one of other deep
inpainting methods [33], because we never observe the full surface texture during
training. We handle the partially-observed nature of our training signal by using
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Fig. 2. Supervision signals for pose transfer on the warping stream: the input image on
the left is warped to intrinsic surface coordinates through a spatial transformer network
driven by DensePose. From this input, the inpainting autoencoder has to predict the
appearance of the same person from different viewpoints, when also warped to intrinsic
coordinates. The loss functions on the right penalize the reconstruction only on the
observed parts of the texture map. This form of multi-view supervision acts like a
surrogate for the (unavailable) appearance of the person on the full body surface.

a reconstruction loss that only penalizes the observed part of the UV map, and
lets the network freely guess the remaining domain of the signal. In particular,
we use a masked ℓ1 loss on the difference between the autoencoder predictions
and the target signals, where the masks indicate the visibility of the target signal.

We observed that by its own this does not urge the network to inpaint suc-
cessfully; results substantially improve when we accompany every input with
multiple supervision signals, as shown in Fig. 2, corresponding to UV-wrapped
shots of the same person at different poses. This fills up a larger portion of the
UV-space and forces the inpainting network to predict over the whole texture do-
main. As shown in Fig. 3, the inpainting process allows us to obtain a uniformly
observed surface, which captures the appearance of skin and tight clothes, but
does not account for hair, skirts, or apparel, since these are not accommodated
by DensePose’s surface model.

Our inpainting network is comprised of N autoencoders, corresponding to the
decomposition of the body surface into N parts used in the original DensePose
system [1]. This is based on the observation that appearance properties are non-
stationary over the body surface. Propagation of the context-based information
from visible to invisible parts that are entirely occluded at the present view
is achieved through a fusion mechanism that operates at the level of latent
representations delivered by the individual encoders, and injects global pose
context in the individual encoding through a concatenation operation.

In particular, we denote by Ei the individual encoding delivered by the en-
coder for the i-th part. The fusion layer concatenates these obtained encodings
into a single vector which is then down-projected to a 256-dimensional global
pose embedding through a linear layer. We pass the resulting embedding through
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Fig. 3. Warping module results. For each sample, the top row shows interpolated tex-
tures obtained from DensePose predictions and projected on the surface of the 3D body
model. The bottom row shows the same textures after inpainting in the UV space.

a cascade of ReLU and Instance-Norm units and transform it again into an em-
bedding denoted by G.

Then the i-th part decoder receives as an input the concatenation of G with Ei,
which combines information particular to part i, and global context, delivered
by G. This is processed by a stack of deconvolution operations, which delivers in
the end the prediction for the texture of part i.

3.3 Blending module

The blending module’s objective is to combine the complementary strengths of
the two streams to deliver a single fused result, that will be ‘polished’ as measured
by the losses used for training. As such it no longer involves an encoder or decoder
unit, but rather only contains two convolutional and three residual blocks that
aim at combining the predictions and refining their results.

In our framework, both predictive and warping modules are first pretrained
separately and then finetuned jointly during blending. The final refined output
is obtained by learning a residual term added to the output of the predictive
stream. The blending module takes an input consisting of the outputs of the
predictive and the warping modules combined with the target dense pose.
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3.4 Loss Functions

As shown in Fig. 1, the training set for our network comes in the form of pairs
of input and target images, x, y respectively, both of which are of the same
person-clothing, but in different poses. Denoting by ŷ = G(x) the network’s
prediction, the difference between ŷ,y can be measured through a multitude of
loss terms, that penalize different forms of deviation. We present them below for
completeness and ablate their impact in practice in Sec. 4.

Reconstruction loss. To penalize reconstruction errors we use the com-
mon ℓ1 distance between the two signals: ‖ŷ − y‖1. On its own, this delivers
blurry results but is important for retaining the overall intensity levels.

Perceptual loss. As in Chen and Koltun [6], we use a VGG19 network
pretrained for classification [38] as a feature extractor for both ŷ,y and penalize
the ℓ2 distance of the respective intermediate feature activations Φv at 5 different
network layers v = 1, . . . , N :

Lp(y, ŷ) =

N∑

v=1

‖Φv(y)− Φv(ŷ)‖2. (1)

This loss penalizes differences in low- mid- and high-level feature statistics, cap-
tured by the respective network filters.

Style loss. As in [28], we use the Gram matrix criterion of [25] as an objective
for training a feedforward network. We first compute the Gram matrix of neuron
activations delivered by the VGG network Φ at layer v for an image x:

Gv(x)c,c′ =
∑

h,w

Φv
c (x)[h,w]Φ

v
c′(x)[h,w] (2)

where h and w are horizontal and vertical pixel coordinates and c and c′ are
feature maps of layer v. The style loss is given by the sum of Frobenius norms
for the difference between the per-layer Gram matrices Gv of the two inputs:

Lstyle(y, ŷ) =

B∑

v=1

‖Gv(y)− Gv(ŷ)‖F . (3)

Adversarial loss. We use adversarial training to penalize any detectable
differences between the generated and real samples. Since global structural prop-
erties are largely settled thanks to DensePose conditioning, we opt for the patch-
GAN [12] discriminator, which operates locally and picks up differences between
texture patterns. The discriminator [12, 7] takes as an input z, a combination of
the source image and the DensePose results on the target image, and either the
target image y (real) or the generated output (fake) ŷ. We want fake samples to
be indistinguishable from real ones – as such we optimize the following objective:

LGAN =
1

2
Ez [l(D(z,y)− 1)] +

1

2
Ez [l(D(z, ŷ))]

︸ ︷︷ ︸

Discriminator

+
1

2
Ez [l(D(G(z)− 1))]

︸ ︷︷ ︸

Generator

, (4)

where we use l(x) = x2 as in the Least Squares GAN (LSGAN) work of [26].
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4 Experiments

We perform our experiments on the DeepFashion dataset (In-shop Clothes Re-
trieval Benchmark) [19] that contains 52,712 images of fashion models demon-
strating 13,029 clothing items in different poses. All images are provided at a
resolution of 256×256 and contain people captured over a uniform background.
Following [5] we select 12,029 clothes for training and the remaining 1,000 for
testing. For the sake of direct comparison with state-of-the-art keypoint-based
methods, we also remove all images where the keypoint detector of [39] does not
detect any body joints. This results in 140,110 training and 8,670 test pairs.

In the supplementary material we provide results on the large scale MVC
dataset [20] that consists of 161,260 images of resolution 1920×2240 crawled
from several online shopping websites and showing front, back, left, and right
views for each clothing item.

4.1 Implementation details

DensePose estimator. We use a fully convolutional network (FCN) similar
to the one used as a teacher network in [1]. The FCN is a ResNet-101 trained
on cropped person instances from the COCO-DensePose dataset. The output
consists of 2D fields representing body segments (I) and {U, V } coordinates in
coordinate spaces aligned with each of the semantic parts of the 3D model.

Training parameters. We train the network and its submodules with Adam
optimizer with initial learning rate 2·10−4 and β1=0.5, β2=0.999 (no weight de-
cay). For speed, we pretrain the predictive module and the inpainting module
separately and then train the blending network while finetuning the whole com-
bined architecture end-to-end; DensePose network parameters remain fixed. In
all experiments, the batch size is set to 8 and training proceeds for 40 epochs.
The balancing weights λ between different losses in the blending step (described
in Sec. 3.4) are set empirically to λℓ1=1, λp=0.5, λstyle=5·105, λGAN=0.1.

4.2 Evaluation metrics

As of today, there exists no general criterion allowing for adequate evaluation of
the generated image quality from the perspective of both structural fidelity and
photorealism. We therefore adopt a number of separate structural and perceptual
metrics widely used in the community and report our joint performance on them.

Structure. The geometry of the generations is evaluated using the perception-
correlated Structural Similarity metric (SSIM) [40]. We also exploit its multi-
scale variant MS-SSIM [44] to estimate the geometry of our predictions at a
number of levels, from body structure to fine clothing textures.

Image realism. Following previous works, we provide the values of Inception
scores (IS) [41]. However, as repeatedly noted in the literature, this metric is of
limited relevance to the problem of within-class object generation, and we do
not wish to draw strong conclusions from it. We have empirically observed its
instability and high variance with respect to the perceived quality of generations
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Table 1. Quantitative comparison with the state-of-the-art methods on the DeepFash-
ion dataset [19] according to the Structural Similarity (SSIM) [40], Inception Score (IS)
[41] and detection score (DS) [5] metrics. Our best structure model corresponds to the
ℓ1 loss, the highest realism model corresponds to the style loss training (see the text
and Table 4). Our balanced model is trained using the full combination of losses.

Model SSIM IS DS

Disentangled [42] 0.614 3.29 –
VariGAN [43] 0.620 3.03 –
G1+G2+D [4] 0.762 3.09 –
DSC [5] 0.761 3.39 0.966

Ours (best structure) 0.796 3.17 0.971
Ours (highest realism) 0.777 3.67 0.969
Ours (balanced) 0.785 3.61 0.971

and structural similarity. We also note that the ground truth images from the
DeepFashion dataset have an average IS of 3.9, which indicates low degree of
realism of this data according to the IS metric (for comparison, IS of CIFAR-10
is 11.2 [41] with best image generation methods achieving IS of 8.8 [2]).

In addition, we perform additional evaluation using detection scores (DS) [5]
reflecting the similarity of the generations to the person class. Detection scores
correspond to the maximum of confidence of the PASCAL-trained SSD detec-
tor [45] in the person class taken over all detected bounding boxes.

4.3 Comparison with the state-of-the-art

We first compare the performance of our framework to a number of recent meth-
ods proposed for the task of keypoint guided image generation or multi-view syn-
thesis. Table 1 shows a significant advantage of our pipeline in terms of structural
fidelity of obtained predictions. This holds for the whole range of tested network
configurations and training setups (see Table 4). In terms of perceptional qual-
ity expressed through IS, the output generations of our models are of higher
quality or directly comparable with the existing works. Some qualitative results
of our method (corresponding to the balanced model in Table 1) and the best
performing state-of-the-art approach [5] are shown in Fig. 4.

We have also performed a user study on Amazon Mechanical Turk, following
the protocol of [5]: we show 55 real and 55 generated images in a random order
to 30 users for one second. As the experiment of [5] was done with the help of
fellow researchers and not AMT users, we perform an additional evaluation of
images generated by [5] for consistency, using the official public implementation.
We perform three evaluations, shown in Table ??: Realism asks users if the
image is real or fake. Anatomy asks if a real, or generated image is anatomically
plausible. Pose shows a pair of a target and a generated image and asks if they
are in the same pose. The results (correctness, in %) indicate that generations
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<latexit sha1_base64="OozL3wpBbP2uhoo//S/1Tl5BL8I=">AAACCnicbVC9TsMwGHT4LeGvwMhitUJiqpIuwFbBwlgkQis1UeU4X1qrjhPZDlIVdWfhVVgYALHyBGy8DW4bJGg5ydLp7jvb34UZZ0o7zpe1srq2vrFZ2bK3d3b39qsHh3cqzSUFj6Y8ld2QKOBMgKeZ5tDNJJAk5NAJR1dTv3MPUrFU3OpxBkFCBoLFjBJtpH615ocwYKKgIDTIiT2/2PZBRD9av1p3Gs4MeJm4JamjEu1+9dOPUponJk45UarnOpkOCiI1oxwmtp8ryAgdkQH0DBUkARUUs10m+MQoEY5TaY7QeKb+ThQkUWqchGYyIXqoFr2p+J/Xy3V8HhRMZLkGQecPxTnHOsXTYnDEJFDNx4YQKpn5K6ZDIgk1HSjblOAurrxMvGbjouHeNOuty7KNCjpGNXSKXHSGWugatZGHKHpAT+gFvVqP1rP1Zr3PR1esMnOE/sD6+AY2Vptc</latexit><latexit sha1_base64="OozL3wpBbP2uhoo//S/1Tl5BL8I=">AAACCnicbVC9TsMwGHT4LeGvwMhitUJiqpIuwFbBwlgkQis1UeU4X1qrjhPZDlIVdWfhVVgYALHyBGy8DW4bJGg5ydLp7jvb34UZZ0o7zpe1srq2vrFZ2bK3d3b39qsHh3cqzSUFj6Y8ld2QKOBMgKeZ5tDNJJAk5NAJR1dTv3MPUrFU3OpxBkFCBoLFjBJtpH615ocwYKKgIDTIiT2/2PZBRD9av1p3Gs4MeJm4JamjEu1+9dOPUponJk45UarnOpkOCiI1oxwmtp8ryAgdkQH0DBUkARUUs10m+MQoEY5TaY7QeKb+ThQkUWqchGYyIXqoFr2p+J/Xy3V8HhRMZLkGQecPxTnHOsXTYnDEJFDNx4YQKpn5K6ZDIgk1HSjblOAurrxMvGbjouHeNOuty7KNCjpGNXSKXHSGWugatZGHKHpAT+gFvVqP1rP1Zr3PR1esMnOE/sD6+AY2Vptc</latexit><latexit sha1_base64="OozL3wpBbP2uhoo//S/1Tl5BL8I=">AAACCnicbVC9TsMwGHT4LeGvwMhitUJiqpIuwFbBwlgkQis1UeU4X1qrjhPZDlIVdWfhVVgYALHyBGy8DW4bJGg5ydLp7jvb34UZZ0o7zpe1srq2vrFZ2bK3d3b39qsHh3cqzSUFj6Y8ld2QKOBMgKeZ5tDNJJAk5NAJR1dTv3MPUrFU3OpxBkFCBoLFjBJtpH615ocwYKKgIDTIiT2/2PZBRD9av1p3Gs4MeJm4JamjEu1+9dOPUponJk45UarnOpkOCiI1oxwmtp8ryAgdkQH0DBUkARUUs10m+MQoEY5TaY7QeKb+ThQkUWqchGYyIXqoFr2p+J/Xy3V8HhRMZLkGQecPxTnHOsXTYnDEJFDNx4YQKpn5K6ZDIgk1HSjblOAurrxMvGbjouHeNOuty7KNCjpGNXSKXHSGWugatZGHKHpAT+gFvVqP1rP1Zr3PR1esMnOE/sD6+AY2Vptc</latexit><latexit sha1_base64="OozL3wpBbP2uhoo//S/1Tl5BL8I=">AAACCnicbVC9TsMwGHT4LeGvwMhitUJiqpIuwFbBwlgkQis1UeU4X1qrjhPZDlIVdWfhVVgYALHyBGy8DW4bJGg5ydLp7jvb34UZZ0o7zpe1srq2vrFZ2bK3d3b39qsHh3cqzSUFj6Y8ld2QKOBMgKeZ5tDNJJAk5NAJR1dTv3MPUrFU3OpxBkFCBoLFjBJtpH615ocwYKKgIDTIiT2/2PZBRD9av1p3Gs4MeJm4JamjEu1+9dOPUponJk45UarnOpkOCiI1oxwmtp8ryAgdkQH0DBUkARUUs10m+MQoEY5TaY7QeKb+ThQkUWqchGYyIXqoFr2p+J/Xy3V8HhRMZLkGQecPxTnHOsXTYnDEJFDNx4YQKpn5K6ZDIgk1HSjblOAurrxMvGbjouHeNOuty7KNCjpGNXSKXHSGWugatZGHKHpAT+gFvVqP1rP1Zr3PR1esMnOE/sD6+AY2Vptc</latexit>

target
<latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit><latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit><latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit><latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit>

target
<latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit><latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit><latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit><latexit sha1_base64="EpG/MV2pxUiLKyd+Qz1RqwE5dHY=">AAACCnicbVBNS8NAFNz4WeNX1KOX0CJ4Kkkv6q3oxWMFYwtNKJvNS7p0swm7G6GE3r34V7x4UPHqL/Dmv3HbRtDWgYVh5g1v34Q5o1I5zpexsrq2vrFZ2zK3d3b39q2DwzuZFYKARzKWiV6IJTDKwVNUMejlAnAaMuiGo6up370HIWnGb9U4hyDFCacxJVhpaWDV/RASyksCXIGYmAqLBJTpA49+tIHVcJrODPYycSvSQBU6A+vTjzJSpDpOGJay7zq5CkosFCUMJqZfSMgxGeEE+ppynIIMytktE/tEK5EdZ0I/ruyZ+jtR4lTKcRrqyRSroVz0puJ/Xr9Q8XlQUp4XCjiZL4oLZqvMnhZjR1QAUWysCSaC6r/aZIgFJroDaeoS3MWTl4nXal403ZtWo31ZtVFDx6iOTpGLzlAbXaMO8hBBD+gJvaBX49F4Nt6M9/noilFljtAfGB/fJmabUg==</latexit>

DSC [4]
<latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit><latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit><latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit><latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit>

DSC [4]
<latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit><latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit><latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit><latexit sha1_base64="1Aj2C+LYfxHUQVPOxvyScd3LoO4=">AAACC3icbVDLSsNAFJ3UV42vqks3g0VwVZIiqLtiXbisaGyhCWUyvW2HTiZhZiKU0A9w46+4caHi1h9w5984bSNo64GBwznncueeMOFMacf5sgpLyyura8V1e2Nza3untLt3p+JUUvBozGPZCokCzgR4mmkOrUQCiUIOzXBYn/jNe5CKxeJWjxIIItIXrMco0UbqlMp+CH0mMgpCgxzblzd13D4JbB9E90c0KafiTIEXiZuTMsrR6JQ+/W5M08iMU06UartOooOMSM0oh7HtpwoSQoekD21DBYlABdn0mDE+MkoX92JpntB4qv6eyEik1CgKTTIieqDmvYn4n9dOde8syJhIUg2Czhb1Uo51jCfN4C6TQDUfGUKoZOavmA6IJNR0oGxTgjt/8iLxqpXzintdLdcu8jaK6AAdomPkolNUQ1eogTxE0QN6Qi/o1Xq0nq03630WLVj5zD76A+vjG1Urmrs=</latexit>

ours
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Fig. 4. Qualitative comparison with the state-of-the-art Deformable GAN (DSC)
method of [5]. Each group shows the input, the target image, DSC predictions [5], pre-
dictions obtained with our full model. We observe that even though our cloth texture
is occasionally not as sharp, we better retain face, gender, and skin color information.

of [5] have higher degree of perceived realism, but our generations show improved
pose fidelity and higher probability of overall anatomical plausibility.

4.4 Effectiveness of different body representations

In order to clearly measure the effectiveness of the DensePose-based conditioning,
we first compare to the performance of the ‘black box’, predictive module when
used in combination with more traditional body representations, such as back-
ground/foreground masks, body part segmentation maps or body landmarks.
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Fig. 5. Typical failures of keypoint-based pose transfer (top) in comparison with Dense-
Pose conditioning (bottom) indicate disappearance of limbs, discontinuities, collapse
of 3D geometry of the body into a single plane and confusion in ordering in depth.

Table 2. On effectiveness of different body representations as a ground for pose trans-
fer. The DensePose representation results in the highest structural quality.

Model SSIM MS-SSIM IS

Foreground mask 0.747 0.710 3.04
Body part segmentation 0.776 0.791 3.22
Body keypoints 0.762 0.774 3.09
DensePose {I, U, V } 0.792 0.821 3.09
DensePose {one-hot I, U, V } 0.782 0.799 3.32

As a segmentation map we take the index component of DensePose and use
it to form a one-hot encoding of each pixel into a set of class specific binary
masks. Accordingly, as a background/foreground mask, we simply take all pixels
with positive DensePose segmentation indices. Finally, following [5] we use [39]
to obtain body keypoints and one-hot encode them.

In each case, we train the predictive module by concatenating the source
image with a corresponding representation of the source and the target poses
which results in 4 input planes for the mask, 27 for segmentation maps and 21
for the keypoints.

The corresponding results shown in Table 2 demonstrate a clear advantage
of fine-grained dense conditioning over the sparse, keypoint-based, or coarse,
segmentation-based, representations.

Complementing these quantitative results, typical failure cases of keypoint-
based frameworks are demonstrated in Figure 5. We observe that these short-
comings are largely fixed by switching to the DensePose-based conditioning.

4.5 Ablation study on architectural choices

Table 3 shows the contribution of each of the predictive module, warping mod-
ule, and inpainting autoencoding blocks in the final model performance. For



Dense Pose Transfer 13

Table 3. Contribution of each of the functional blocks of the framework

Model SSIM MS-SSIM IS

predictive module only 0.792 0.821 3.09
predictive + blending (=self-refinement) 0.793 0.821 3.10
predictive + warping + blending 0.789 0.814 3.12
predictive + warping + inpainting + blending (full) 0.796 0.823 3.17

Fig. 6. Effects of training with different loss terms and their weighted combinations.

these experiments, we use only the reconstruction loss Lℓ1 , factoring out fluc-
tuations in the performance due to instabilities of GAN training. As expected,
including the warping branch in the generation pipeline results in better perfor-
mance, which is further improved by including the inpainting in the UV space.
Qualitatively, exploiting the inpainted representation has two advantages over
the direct warping of the partially observed texture from the source pose to the
target pose: first, it serves as an additional prior for the fusion pipeline, and, sec-
ond, it also prevents the blending network from generating clearly visible sharp
artifacts that otherwise appear on the boarders of partially observed segments
of textures.

4.6 Ablation study on supervision objectives

In Table 4 we analyze the role of each of the considered terms in the composite
loss function used at the final stage of the training, while providing indicative
results in Fig. 6.

The perceptual loss Lp is most correlated with the image structure and least
correlated with the perceived realism, probably due to introduced textural ar-
tifacts. At the same time, the style loss Lstyle produces sharp and correctly
textured patterns while hallucinating edges over uniform regions. Finally, ad-
versarial training with the loss LGAN tends to prioritize visual plausibility but
often disregarding structural information in the input. This justifies the use of
all these complimentary supervision criteria in conjunction, as indicated in the
last entry of Table 4.
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Table 4. Comparison of different loss terms used at the final stage of the training. The
perceptual loss is best correlated with the structure, and the style loss with IS. The
combined model provides an optimal balance between the extreme solutions.

Model SSIM MS-SSIM IS

{Lℓ1} 0.796 0.823 3.17
{Lℓ1 , Lp} 0.791 0.822 3.26
{Lℓ1 , Lstyle} 0.777 0.815 3.67

{Lℓ1 , Lp, Lstyle} 0.784 0.820 3.41
{Lℓ1 , LGAN} 0.771 0.807 3.39
{Lℓ1 , Lp, LGAN} 0.789 0.820 3.33
{Lℓ1 , Lstyle, LGAN} 0.787 0.820 3.32
{Lℓ1 , Lp, Lstyle, LGAN} 0.785 0.807 3.61

5 Conclusion

In this work we have introduced a two-stream architecture for pose transfer that
exploits the power of dense human pose estimation. We have shown that dense
pose estimation is a clearly superior conditioning signal for data-driven human
pose estimation, and also facilitates the formulation of the pose transfer problem
in its natural, body-surface parameterization through inpainting. In future work
we intend to further pursue the potential of this method for photorealistic image
synthesis [2, 6] as well as the treatment of more categories.
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