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Abstract. We present FusedGAN, a deep network for conditional image
synthesis with controllable sampling of diverse images. Fidelity, diversity
and controllable sampling are the main quality measures of a good im-
age generation model. Most existing models are insufficient in all three
aspects. The FusedGAN can perform controllable sampling of diverse im-
ages with very high fidelity. We argue that controllability can be achieved
by disentangling the generation process into various stages. In contrast
to stacked GANs, where multiple stages of GANs are trained separately
with full supervision of labeled intermediate images, the FusedGAN has
a single stage pipeline with a built-in stacking of GANs. Unlike exist-
ing methods, which require full supervision with paired conditions and
images, the FusedGAN can effectively leverage more abundant images
without corresponding conditions in training, to produce more diverse
samples with high fidelity. We achieve this by fusing two generators:
one for unconditional image generation, and the other for conditional
image generation, where the two partly share a common latent space
thereby disentangling the generation. We demonstrate the efficacy of the
FusedGAN in fine grained image generation tasks such as text-to-image,
and attribute-to-face generation.

1 Introduction

Recent development of deep generative models has spurred a lot of interest
in synthesizing realistic images. Generative adversarial networks(GANs) [2] and
Variational Autoencoders(VAEs) [6] have been extensively adopted in various
applications, such as generating super-resolution images from low resolution
images, image inpainting, text-to-image synthesis, attribute to face synthesis,
sketch to face synthesis, and style transfer [4, 5, 19], etc. While synthesizing im-
ages by random sampling is interesting, conditional image generation is of more
practical value. For example, generating faces given a particular set of attributes
has a lot of practical usage in forensics applications, which makes it easy to make
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a portrait of a potential suspect. Generating a fine-grained bird image given its
description may be of interest in both education and research in biology.

CGAN [8] has been widely adopted for synthesizing an image given a con-
dition [1, 17, 18]. A good and effective image generation model needs to possess
the following three properties: 1) fidelity 2) diversity, and 3) controllability in
sampling. Controlled sampling refers to the process of sampling images by con-
trolled change of factors such as posture, style, background, and fine-grained
details, etc. By controlling one or more of these factors, diverse images can be

A) Uncontrolled conditional sampling

C) Controlled posture and varying detailsB) Interpolating between two styles with same posture D) Controlled posture with varying style

(1) Low Resolution Examples

(2) High Resolution Examples

A) Uncontrolled conditional sampling

B) Interpolating between two styles with same posture C) Controlled posture and varying details D) Controlled posture with varying style

Fig. 1. The illustration of sampling with controlled diversity for both low and high
resolution images: StackGAN can only generate random images given the correspond-
ing texts as shown in A. In addition to this, our method can generate samples with
controlled diversity such as in B, we show examples interpolated between two styles
with the same posture, in C we fix the posture and generate samples with varying
details and backgrounds. In D, we fix the posture and generate samples of birds with
varying styles as defined by the descriptions. Examples in 1 correspond to sampling of
low resolution images and 2 corresponds to high resolution images.

generated. For example, one can generate diverse images by keeping a constant
background, or generate images with diverse styles by keeping the same posture.
Controllability in sampling is directly related to the representation produced
from a certain network architecture. We argue that it is equally important to fi-
delity and diversity, since it can support more practical applications, such as the
case we discussed above in generating the portraits of criminal suspects based
on describable attributes.

Using text to birds image generation as an example, controllable factors in-
clude styles, postures, the amount of fine grained details, and background. Using
the StackGAN [18], it is possible to generate birds images with high fidelity, but
we have control only over the styles (i.e., text descriptions) in the sampling
process. To achieve more control in sampling, we need to better disentangle the
different factors in the latent space. In attribute2image [17], Yan et al. have
disentangled the foreground and background generation, and thereby achieving
controlled sampling by keeping either one of them fixed and varying the other.
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Fig. 2. Illustration of FusedGAN by fusing GAN and CGAN for a 32 × 32 image
synthesis.

We propose a way to disentangle the structures (which capture the posture
and the shape) and the styles (which capture fined-grained appearances of both
foreground and background) to perform image synthesis with high fidelity, di-
versity and controllability in sampling. Instead of trying to learn a standalone
conditional generator, we propose to derive it from an unconditional generator.

We illustrate our approach by a simple thought experiment. Consider the
task of painting a bird given a text description, such as “a yellow bird with black
wings and a red tail”. The most intuitive way of doing this is to first sketch an
outline of a bird with a specific posture and shape of the wings, crown, beak
and tail. Then, per the description, subsequently paint the wings as black, the
body as yellow, and the tail as red. Note that the initial sketch of the bird is
independent of the condition, i.e., the text description which defines the style.
It is only needed in the later stages of painting the bird.

Motivated by this intuitive process of drawing, and the success of previous
stacked deep generative models [16,18,20], we propose to disentangle the image
generation process such that we learn two cascaded generators. The first uncon-
ditional generator produces a structure prior (akin to the initial sketch of the
bird) which is independent of the condition, and the second conditional gener-
ator further adds style to it and creates an image that matches the condition
(check Section 3 for details). In other words, we fuse two generators by cascading
them, as shown in Figure 2, where the fused block acts as a structure prior.

By disentangling the generation process, an added advantage of our method
is that we can train the unconditional generator using just the images without
corresponding conditions. This enables us to exploit semi-supervised data dur-
ing training. It facilitates in learning a better structure prior (the fused block
shown in Figure 2) which in turn contributes to generating better and diverse
conditional images.

Our proposed model, referred to as FusedGAN, is unique in the sense that
it enjoys the strengths of stacking in a single stage, which can be effectively
trained with semi-supervised data. The advantages of our model over existing
methods are: 1) it helps in sampling images with controlled diversity. 2) We
can use semi-supervised data during our training. This implies that along with
usual paired data for conditional image generation such as text to image, we
can also leverage images without paired conditions. 3) Unlike FashionGAN [20]
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and S2GAN [16], we do not require additional intermediate supervision such as
segmentation maps or surface normals.

2 Related Work

We briefly summarize related works in text-to-image generation, and stacking
in deep generative models.
Text-to-image generation. Reed et al [12], were the first to propose a model
called GAN-INT for text to image generation, where they used a conditional
GAN to generate images. In their follow-up work GAWWN [11], they leveraged
additional supervision in terms of bounding boxes and keypoints to generate
birds in a more controlled setup. Zhang et al. [18] extended the idea of con-
ditional GAN to two stage conditional GAN, where two GANs are stacked to
progressively generate high resolution images from a low resolution image gen-
erated from the first stage. The StackGAN is able to produce high resolution
256 × 256 images with very good visual quality. Instead of single-shot image
generation, Gregor et al. [3] proposed DRAW, which generates images pixel by
pixel using a recurrent network.

The key problems, that both GAN-INT [12] and StackGAN [18] attempted
to address, are diversity and discontinuity of the latent space. Due to the very
high dimensionality of the latent space and limited availability of text data, the
latent space tends to be highly discontinuous which makes it difficult for the gen-
erator to synthesize meaningful images. While GAN-INT proposes a manifold
interpolation method during training, StackGAN proposed condition augmen-
tation to sample the text embeddings from a Gaussian distribution. We further
analyze the contribution of condition augmentation in our method, and show
that it models the diversity in fine-grained details of the generated birds (check
Section 5 for details).
Stacking. The core idea behind the proposed FusedGAN model is to disentagle
the generation process by stacking. Stacking allows each stage of the genera-
tive model to focus on smaller tasks, and disentangling supports more flexible
sampling. We briefly summarize previous works addressing disentangling and
stacking.

Stacked image generation has shown to be effective in many image synthesis
tasks. At a high level, stacked image generation pipelines often have two separate
consecutive stages. The first stage generates an intermediate image (such as a
segmentation map, or a map of surface normals). Then, the second stage takes
the intermediate image as an input to generate a final conditional image.

For example, the S2 GAN [16] synthesizes images by first generating the
shape structure (i.e., surface normals), and then generates the final image of the
scene in the second stage. StackGAN [18] first generates a low resolution image
conditioned on the text embedding φt, and subsequently uses it to generate the
high resolution image. In fashionGAN [20], Zhu et al. have used the first stage
to generate a segmentation map conditioned on the design encoding φd and then
used it to generate a new fashion image in the second stage.
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Fig. 3. The end to end pipeline of the proposed method. Blue and orange blocks cor-
respond to the unconditional and conditional image generation pipelines respectively.

We use stacking as a way of learning disentangled representations. Different
from these existing work, the stages in our model are implicit. Specifically, in
our model, stage one performs unconditional image generation and stage two
performs conditional image generation. Moreover, both stages share a set of
high level filters. As a result, the two stages are literally fused into a single
stage, which is trained end to end.

Similar to S2GAN, our model disentangles style and structure. But differ-
ent from S2GAN [16], we do not require any additional supervision in terms of
surface normals, nor do we require separate training of stages. Similarly, Fash-
ionGAN [20] and attribute2image [17] both require additional intermediate su-
pervision in the form of segmentation maps, which are not needed in our case.

3 The FusedGAN: Formulation

In order to disentangle the generation of structure and style, our method com-
prises of two fused stages. The first stage performs an unconditional image gener-
ation, and produces a feature map which acts as a structure prior for the second
stage. The second stage then generates the final conditional image (i.e., the im-
age that match the style defined by the text description) using this structure
prior and the condition as the inputs. It must be noted that there is no explicit
hierarchy in stage one and stage two. Both stages can be trained simultaneously
using alternating optimization. We use text-to-image synthesis as an example
for providing the details of our approach which can be easily extended to other
tasks such as attribute-to-face synthesis.

3.1 Stage One: Learning a Structure Prior

Our first stage is a GAN which generates bird images from a random noise
vector, and also in the process produces a intermediate representation serving
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as a structure prior for the second stage. It contains a generator G1 and a
discriminator Du, which are pitched against each other in a two player min-max
game. In the min-max game, the generator tries to fool the discriminator by
generating birds as close to real as possible, whereas the discriminator tries to
differentiate between them.

G1 and Du are both differentiable functions such as deep neural networks
and the training is done by optimizing the min-max loss function

min
G1

max
Du

V (Du, G1) = Ex∼pdata
[logDu(x)] + Ez∼pz

[log(1−Du(G1(z)))]. (1)

Since we would like to first generate a structure prior, we split the generator
G1 of stage one into two modules: Gs and Gu. Gs takes a noise vector z as the
input. After a series of convolution and upsampling operations, it generates a
structure prior Ms. Gu then takes the structure prior as input and again after
a series of upsampling and convolutions, generates the final image. Accordingly,
G1 in the min-max objective function as presented in 1, is further decomposed
to Gs and Gu, i.e.,

Ms = Gs(z), G1(z) = Gu(Ms). (2)

whereMs is an intermediate representation. It captures all the required high level
information for creating a bird such as the posture and structure. Therefore, it
acts as a structure prior that dictates the final shape of the bird. Since the posture
and structure information is independent of the style, it could be reused in the
second stage to synthesize a bird that matches the description. The advantage
of this first stage is that it does not require any paired training data. It can be
trained using large datasets containing just the images of the target concept,
such as birds for example, which helps in learning an improved structure prior.

3.2 Stage Two: Stylzing with the Structure Prior

In the second stage, we use a CGAN for generating birds that match the de-
scription. Different from the traditional CGAN pipelines, whose input include
the condition (i.e., the text description) and the random noise vector, we feed
the structure prior Ms from stage one and the text description as inputs to the
conditional generator Gc. Similar to CGAN, the discriminator Dc of stage two
takes an image and condition as inputs to ensure that Gc generates images that
match the description.

The Ms acts as a template and provides additional signal to the generator of
stage two. This forces the generator to synthesize birds that not only match the
description but also preserve the structure information contained in it. There-
fore, instead of learning from scratch, Gc builds on top of Ms by adding styles
to it using the text description. Note that the Ms could also have its own style
information from stage one. However, because both the generator and discrimi-
nator in stage two takes the text description as inputs, the Gc ensures that the
style of the generated image is that of the description and not Ms

In this way, the tasks are divided among Gs, Gu and Gc, where Gs is re-
sponsible to learn the overall image structure, and Gu and Gc focus on taking
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the structure information and generating unconditional and conditional images,
respectively. The overall pipeline is shown in Figure 3. The conditional GAN is
trained by optimizing the following objective function, i.e.,

min
Gc

max
Dc

V (Dc, Gc) = Ex∼pdata
[logDc(x|y)] + Ez∼pz

[log(1−Dc(Gc(Gu(z)|y)))].

(3)

4 The FusedGAN: Learning and Inference

In this section, we provide the details of training our FusedGAN pipeline, as well
as the inference procedures. We first present the notation used to describe the
training algorithm and then details of the architecture and the inference steps.
Learning. Let z ∈ IRd×1 be a noise vector sampled from a normal distribution,
i.e., z ∼ N (0, I), where d is the dimensionality of the latent space; Gs(z, θs) be
the generator that generates the structure prior Ms ∈ IRs×s×k; Gu(Ms, θu) be
the unconditional image generator that takes the structure prior Ms as input
and generates a target image xuf ; and Du(x, θdu) be the unconditional image
discriminator that takes a real image xr or a generated image xuf as inputs.

For the conditional image generation pipeline, let E(θe, y) be the text encoder
that takes a text embedding y ∈ IRp×1 as the input, and produces a tensor My ∈
IRs×s×q. To achieve this, inspired by the StackGAN [18], condition augmentation
is performed to sample latent variables ĉ ∈ IRq×1 from an independent Gaussian
distribution N(µ(y), Σ(y)) around the text embedding. The ĉ is then spatially
repeated to match the spatial dimension of Ms to produce My.

We denote Gc(My,Ms, θc) as the conditional generator that takes My and
Ms as inputs to generate xcf , the conditional image. Similarly,Dc(x, y, θdc) is the
conditional image discriminator which takes a real image xcr, or a conditional
image xcf along with the condition y as inputs. Both real or generated images
are of size IRN×N×3.

The standard alternating optimization method is used to train our model.
We train the conditional and unconditional pipelines in alternating steps till the
model converges. The model parameters are updated by optimizing the combined
GAN and CGAN objectives, i.e.,

LGu
= logDu(Gu(z)), LDu

= logDu(x), LDc
= logDc(x, y),

LGc
= logDc(Gc(My,Ms), y) + λDKL(N(µ(y), Σ(y))‖N(0, I))

(4)

Inference. During inference, for generating a conditional image, we first draw a
noise sample z fromN(0, I), which is passed throughGs to generate the structure
prior Ms. Ms then takes two paths, one through the generator Gu to produce
an unconditional image xuf . In the second path, we first send the text input
through the encoder E, which draws a sample from the Gaussian around the
text embedding. The output of E and Ms are concatenated, and passed through
Gc to generate the conditional image xcf .

Note in this process, we have two random noise vectors from 1) N(0, I)
and 2) the distribution of the input text N(µ(y), Σ(y)), which are two control
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factors over the sampling procedure. In other words, in one inference step, we
synthesize two images : xcf the conditional image and xuf the unconditional
image, a byproduct of our model which helps to analyze and better understand
our proposed model and the results.

Further details about the architecture and algorithm are presented in the
supplementary material.

5 Experiments

We present results and analysis of our method in two conditional image gen-
eration use cases: 1) text-to-image synthesis using birds as a case study, and 2)
attributes-to-image synthesis using faces as a case study. For evaluation of our
method we perform both qualitative and quantitative analysis. The qualitative
analysis is done by performing user study. For quantitative results, we use the
inception score [13].

5.1 Text-to-image synthesis

The CUB birds dataset [15] contains 11,788 images. For each image, 10 descrip-
tions and a 1024 dimensional text encodings are provided by Reed et al. [10].
The dataset is partitioned into class disjoint train and test splits of 8,855 and
2,933 images, respectively, as mentioned in [12]. Since our approach can han-
dle semi-supervised data, we augment this dataset with the nabirds dataset [14]
which contains 48,562 images of the birds without any corresponding text de-
scriptions. We use a total of 57,417 images for our stage one structure prior
generation and 8,855 image and text pairs for training the stage two conditional
image generator. As a pre-processing step, we crop the images to make sure that
object-image size ratio is greater than 0.75 [18].

Results and Analysis In this section, we present the usefulness of our method
in various controlled sampling use cases and compare the performance with
baseline methods: StackGAN stage-I, StackGAN stage-II, GAN-INT-CLS and
GAWWN.We provide a detailed ablation analysis on the contributions of various
components in our pipeline. Since synthesizing high resolution images is not the
main contribution of our work, we perform the ablation experiments by analyzing
64× 64 synthesized images.

Fixed posture with varying styles: Many birds with varying style could
have the same posture. We show how to generate them with the FusedGAN.
An illustration with visual results are presented in Figure 4 on the left. We also
analyze the contribution of the structure prior in the overall conditional image
generation process. For this we consider 5 text descriptions ti where i = 1, 2, .., 5
of birds and sample 4 images per description with the same posture in every
column as shown in Figure 4 on the left.
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This bird is completely red 

with black wings and pointy 

beak.

This bird has a bright 

yellow body, with brown on 

its crown and wings.

This bird has wings that 

are brown and has a white 

body.

A bird with bright yellow 

belly, and colors of orange 

on it tail and back.

A small colorful bird that 

contains bright blue 

feathers covering most of 
its body except for on its 

black tail.

S
ty

le

Structure
(A) FusedGAN

(B) StackGAN Stage-I (C) GAN-INT-CLS

Fig. 4. Example birds synthesized from our FusedGAN model, StackGAN stage-I and
GAN-INT-CLS. For FusedGAN, the first five rows correspond to the images generated
by the respective text descriptions shown on the left and the last row corresponds to
the unconditional images generated by our model.

In order to control the posture, i.e., to generate birds of various styles (text
descriptions) with same posture, we keep the z constant and vary the text de-
scriptions. For example, consider the first column in Figure 4 of FusedGAN. To
generate these birds, we sample a z from N(0, I) and pass it through Gs which
produces a structure prior Ms. We then use the same Ms with 5 of our text
description samples to produce the respective conditional images as shown in
the first five rows. Notice that they all have the same posture, because the struc-
ture prior is the same for them. This demonstrates that the pose and structure
information is successfully captured in Ms, and the style information is left to
Gc.

We further examine the contribution of the structure prior by visualizing the
unconditional images, as shown in the last row of Figure 4 for FusedGAN. For
the third column, all the birds seem to have a distinct long tail which can also
be seen in the unconditional image. Also in the fourth column, we can observe
that the unconditional image has a large breast, which is clearly transferred
to the yellow, red and orange birds. These results strongly support that Ms is
able to successfully capture and transfer significant amount of information about
the structure of the bird into the conditional generated bird images of various
descriptions.

We further compare the controlled sampling approach with StackGAN and
GAN-INT-CLS, as shown in Figure 4. For both methods, we try to control the
posture by using the same z as the input to each image in a column, but with
varying text descriptions. The GAN-INT-CLS seems to be able to control the
posture across all the columns, whereas the StackGAN is not. Although for some
results of StackGAN, such as the second column, it seems to have preserved the
posture across all styles but for the other columns it does not. For example, in
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Fig. 5. (a) Generated bird images of various styles but varying amount of fine-grained
details. (b) Interpolation between birds of six text descriptions by keeping the same
posture

the third column, we can clearly observe that the posture of the last two birds are
completely flipped. This indicates that the style and structure are not completely
disentangled. In contrast, in results from our FusedGAN, we observe that the
structure prior explicitly ensures that the posture is consistently preserved.

Fixed posture with varying details: A bird with a particular posture and
style could still have a lot of diversity in terms of fine-grained details and back-
ground. In this experiment, we show a way to sample them. This also shows the
role and usefulness of condition augmentation in our model.

To keep the posture to be the same, as mentioned in the previous section, we
sample a z and generate Ms which is held constant for this experiment. To vary
the fine details, we consider a particular text description and pass it through E

and draw 5 samples from the Gaussian distribution around the text embedding
applying the condition augmentation. Each of these 5 samples produce birds
with the same posture (and style) but with varying amount of fine details and
backgrounds as shown in Figure 5a.

It can be observed from the second row of Figure 5a that for the red bird
with black on its wing, even though all the birds have the same posture, no two
birds are exactly the same. They all have varying amount of black on their wings
and the length of the tail. Similar behavior can be seen in the fourth row, where
all the birds are orange but with varying color saturation. This demonstrates
that condition augmentation is positively adding to diversity by modeling the
finer details of the birds in our model.

The GAN-INT-CLS does not have any additional control over sampling of
text embedding. While the StackGAN shows that the condition augmentation
helps in general in improving the diversity, it does not have a way to leverage
it for controlled sampling. Using condition augmentation, our model can both
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Model Inception score Human rank
GAN-INT-CLS (64 × 64) 2.88 ± .04 1.60

StackGAN stage-I (64 × 64) 2.95 ± .02 1.91
FusedGAN(ours) (64 × 64) 3.00 ± .03 3.12

GAWWN (128 × 128) 3.62 ± .07 -
StackGAN stage-II (256 × 256) 3.70 ± .04 -

FusedGAN + high-res(ours) (256 × 256) 3.92 ± .05 -

Table 1. Inception scores and average human ranks

improve the diversity and perform controlled sampling of birds with varying
fine-grained details.

Interpolation with the same posture but varying styles: Our method also
allows to interpolate between various styles by keeping the posture constant, as
shown in Figure 5b. To achieve this, we take two text-samples t1 and t2 and
then pass them through E to draw two samples from their respective Gaussian
distributions. We obtain two samples each of 1 × 128 dimensions. Then, we
interpolate between them to uniformly pick 8 samples, such that the first sample
corresponds to t1 and last one corresponds to t2. We then draw a z and generate
a Ms which is held constant for these 8 samples.

As described in our earlier sections and inference process, Ms and the inter-
polated samples are given as inputs to Gc to generate the conditional images.
In Figure 5b, we show some results of this interpolation experiment. The first
and last image of each row correspond to the two styles. All the images in be-
tween are interpolated. Moreover, the first image of each row is the same as the
last image of the previous row. In this way, we interpolate between 5 different
styles keeping the same posture. Note that the rows are interpolation between :
t1 → t2, t2 → t3, t3 → t4, t4 → t5 and t5 → t1 to complete the full cycle.

High resolution image synthesis: Since the main contribution of our work is
synthesizing images with controlled sampling, we presented a model to synthe-
size 64 × 64 images. However image resolution is not a limitation of our model
and it can be seamlessly stacked with a high resolution generator, similar to
stackGAN stage-II to synthesize better high resolution images. We show some
of the visual results of stacking Gc with high resolution generator in Figure 6.
These visual results verify that high resolution images can be generated without
loosing the controlled image synthesis ability akin to Figure 4 and 5. We provide
further details about the high resolution generator pipeline in the supplementary
material.

Qualitative and quantitative comparison: To quantitatively compare the
results of our method with StackGAN, GAN-INT-CLS and GAWWN, we use
the publicly available models from respective authors and compute the inception
scores as shown in Table 1. We randomly sample 30k images for each model and
compute the inception scores using the pre-trained model on CUB birds test set
provided by StackGAN. Table 1 shows the performance of various methods in
both high resolution and low resolution setups. For the low resolution 64 × 64
image synthesis, our method obtains a slightly better inception score than that of
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Metric StackGAN-I FusedGAN-FS FusedGAN(ours)
Inception score 2.95 ± .02 2.69 ± .02 3.00 ± .03

Table 2. FusedGAN-FS refers to training FusedGAN with full supervision on CUB
birds dataset alone. FusedGAN(ours) refers to semi-supervised training.

StackGAN, and beats GAN-INT-CLS with a significant margin. Since inception
score has its own limitations in terms of fully evaluating fidelity and diversity,
we also perform a user study to compare the results of our method with the two
competing methods.

A

B

Fig. 6. First row corresponds to low reso-
lution FusedGAN (64×64) and second row
corresponds to high resolution FusedGAN
(256× 256). A and B are two examples

For this user study we randomly
select 100 text descriptions and sam-
ple 8 images for every model. We show
these images to 10 different people
and ask them to score the fidelity of
the birds. None of the authors were
part of the user study. The results of
the user study shows that birds gener-
ated by our method have better visual
quality compared to stage-I of Stack-
GAN and GAN-INT-CLS. This can
be partly attributed to the fact that
our proposed model can leverage more
training images with no paired text
description, due to semi-supervised
nature of our model.

Table 1 high resolution image syn-
thesis performance shows that our
FusedGAN with high resolution gen-
erator achieves state of the art performance compared to published works on
text-to-image synthesis using CUB dataset. More details about user study are
presented in the supplementary material. In addition to the limited visual results
presented in Figure 4, we provide more visual results in supplementary material.

Evaluating semi-supervised training: Since by design, our FusedGAN sup-
ports training with semi-supervised data, without the need for the entire dataset
to have corresponding text captions. This lets us use unpaired images in train-
ing which is expected to learn a better generator Gs and in turn learn a better
structure prior Ms. To quantitatively evaluate and show that semi-supervised
training indeed helps in generating better images, we compare the inception score
by training our model on CUB dataset alone, without any data augmentation
with nabirds. Also, since StackGAN stage-I is trained only on CUB dataset with
full supervision, it serves as another baseline to compare with. Table 2 shows
that semi-supervised training helps in improving the inception score and hence
synthesizes better images compared to fully supervised training, which can not
leverage more aboundant unpaired images.
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Fig. 7. Generated visual examples illustrating the disentangling of style and structure
in face synthesis.

5.2 Attribute-to-face generation

To further analyze the importance of disentangling and the structure prior, we
evaluate its usefulness on attribute-to-face synthesis as shown in Figure 7. For
this experiment, we use the CelebA [7] dataset that has a 40 dimensional binary
attribute vector annotated with each face image. We follow the same training
protocol for building our proposed model, except that we do not augment the
dataset with any more images without paired attributes. That is because CelebA
already has over 200k images, which are sufficient. We use the standard DCGAN
architecture [9] for training and more details on this are provided in the supple-
mentary material.

Results and Analysis: Sampling with the same structure but varying

attributes Similar to the experiment in birds generation, in this experiment,
we draw a z from N(0, I) and keep the structure prior constant. We then give
various attribute vectors as inputs to synthesize faces as shown in Figure 7. For
every column in Figure 7, all the rows have the same pose and structure, but
the synthesized faces vary as per the attributes. For every row, by default all the
attributes are off and only the attributes that are shown next to each row are
on.

We make several interesting observations from Figure 7a. For example, in the
first column, for the first two images, when the attribute for gender is switched
from male to female, not only the pose but also some other characteristics of the
face, such as hair style is also roughly preserved. Similarly, for the second and
third images in the same column, the faces look very similar. A closer inspection
of these images reveal that there are subtle differences around the mouth and
jaw bone areas, which distinguishes between male and female. More over, in the
last column, it can be observed that the structure is preserved even for extreme
poses. This further reaffirms that our model is able to successfully disentangle
the style and structure.

Figure 7b presents a batch of faces generated from various random attributes
but with the same structure prior. We can observe how different faces are gener-
ated with varying attributes, such as color and style of the hair, wearing a hat or
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not, skin tone, gender, etc., but they all look alike. Controlled sampling like this
finds its use case in forensic science to synthesize similarly looking faces with
varying attributes, which helps in making a portrait of a potential suspect.

To quantitatively measure the performance of our method, we compare with
attribute2image. Attr2Image uses additional supervision of segmentation maps
during training whereas our method doesn’t require any such supervision. They
performed experiments on LFW dataset because of availability of segmentation
maps. However, there are no ground truth attribute vectors for LFW and the
authors have used attributes from a pretrained model which are not reliable.
Instead we performed our experiments on CelebA which provides ground truth
attribute vectors. Therefore, merely comparing the visual quality of images from
two different setups is not very useful. For the sake of completeness, we compare
the performance of our model with attr2image by evaluating inception score
(using the model in [17]). We observe a score of 1.87± 0.01 for attr2image and
2.63± 0.03 for FusedGAN.

6 Conclusion

We presented FusedGAN, a new deep generative model architecture for condi-
tional image generation by fusing two generators, where one of them generates
an unconditional image and the other generates a conditional image. The uncon-
ditional image generation can leverage additional training images without the
corresponding conditions to learn a good structure prior. This in turn helps in
synthesizing a better conditional image, as it takes the structure prior as part of
its input in addition to the condition. The proposed model enjoys the strengths
of stacking and disentangling without the need for separate training of stages or
additional intermediate image supervision. Extensive analysis and experiments
on text-to-image synthesis and attribute-to-face synthesis show that the model
is able to successfully learn a disentangled representation for style and struc-
ture, and hence generate birds and faces with high fidelity, diversity, and more
controllability in sampling.
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