
RefocusGAN: Scene Refocusing using

a Single Image

Parikshit Sakurikar1, Ishit Mehta1, Vineeth N. Balasubramanian2

and P. J. Narayanan1

1 Center for Visual Information Technology, Kohli Center on Intelligent Systems,
International Institute of Information Technology, Hyderabad, India

2 Department of Computer Science and Engineering,
Indian Institute of Technology, Hyderabad, India

Abstract. Post-capture control of the focus position of an image is a
useful photographic tool. Changing the focus of a single image involves
the complex task of simultaneously estimating the radiance and the de-
focus radius of all scene points. We introduce RefocusGAN, a deblur-
then-reblur approach to single image refocusing. We train conditional
adversarial networks for deblurring and refocusing using wide-aperture
images created from light-fields. By appropriately conditioning our net-
works with a focus measure, an in-focus image and a refocus control
parameter δ, we are able to achieve generic free-form refocusing over a
single image.
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1 Introduction

An image captured by a wide-aperture camera has a finite depth-of-field centered
around a specific focus position. The location of the focus plane and the size of
the depth-of-field depend on the camera settings at the time of capture. Points
from different parts of the scene contribute to one or more pixels in the image
and the size and shape of their contribution depends on their relative position to
the focus plane. Post-capture control of the focus position is a very useful tool
for amateur and professional photographers alike. Changing the focus position of
a scene using a single image is however an ill-constrained problem as the in-focus
intensity and the true point-spread-function for each scene point must be jointly
estimated before re-blurring a pixel to the target focus position.

Multiple focused images of a scene, in the form of a focal stack, contain the
information required to estimate in-focus intensity and the focus variation for
each scene point. Focal stacks have been used in the past for tasks such as esti-
mating a sharp in-focus image of the scene [1, 20], computing the depth-map of
the scene [19, 33], and free-form scene refocusing [11, 39]. In this paper, we in-
troduce RefocusGAN, a comprehensive image refocusing framework which takes
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Fig. 1. Refocusing a single-image: We use an input wide-aperture image along with its
focus measure response to create a deblurred, in-focus radiance image. The radiance
image is then used together with the input image to create a refocused image. The
second and third columns show the quality of our deblurring and refocusing stages.

only a single input image and enables post-capture control over its focus posi-
tion. This is a departure from current methods in computational photography
that provide post-capture control over depth-of-field using full focal stacks.

Our work is motivated by the impressive performance of deep neural networks
for tasks such as image deblurring, image-to-image translation and depth-map
computation from a single image. We propose a two-stage approach to single
image refocusing. The first stage of our approach computes the radiance of the
scene points by deblurring the input image. The second stage uses the wide-
aperture image together with the computed radiance to produce a refocused
image based on a refocus control parameter δ. We train conditional adversarial
networks for both stages using a combination of adversarial and content loss
[15]. Our networks are additionally conditioned by a focus measure response
during deblurring and the computed radiance image during refocusing. We train
our networks using wide-aperture images created from a large light-field dataset
of scenes consisting of flowers and plants [29]. The main contribution of this
paper is our novel two-stage algorithm for high-quality scene refocusing over a
single input image. To the best of our knowledge, this is the first attempt at
comprehensive focus manipulation of a single image using deep neural networks.

2 Related Work

Controlling the focus position of the scene is possible if multiple focused images
of the scene are available, usually in the form of a focal stack. Jacobs et al.
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[11] propose a geometric approach to refocusing and create refocused images by
appropriately blending pixels from different focal slices, while correctly handling
halo artifacts. Hach et al. [8] model real point-spread-functions between several
pairs of focus positions, using a high quality RGBD camera and dense kernel cal-
ibration. They are thereby able to generate production-quality refocusing with
accurate bokeh effects. Suwajanakorn et al. [33] compute the depth-map of the
scene from a focal stack and then demonstrate scene refocusing using the com-
puted depth values for each pixel. Several methods have been proposed in the
past to compute in-focus images and depth maps from focal stacks [4, 19, 20, 26,
33]. Most of these methods enable post-capture control of focus but use all the
images in the focal stack. Zhang and Cham [38] change the focus position of a
single image by estimating the amount of focus at each pixel and use a blind
deconvolution framework for refocusing. Methods based on Bae and Durand [3]
also estimate the per-pixel focus map but for the task of defocus magnification.
These methods are usually limited by the quality of the focus estimation algo-
rithm as the task becomes much more challenging with increasing amounts of
blur.

Deep neural networks have been used in the past for refocusing light-field
images. Wang et al. [35] upsample the temporal resolution of a light-field video
using another aligned 30 fps 2D video. The light-field at intermediate frames is
interpolated using both the adjacent light-field frames as well as the 2D video
frames using deep convolutional neural networks. Any frame can then be refo-
cused freely as the light-field image at each temporal position is available. Full
light-fields can themselves be generated using deep convolutional neural networks
using only the four corner images as shown in [13]. A full 4D RGBD light-field can
also be generated from a single image using deep neural networks trained over
specific scene types as shown in [29]. Srinivasan et al. [28] implicitly estimate the
depth-map of a scene by training a neural network to generate a wide-aperture
image from an in-focus radiance image. These methods suggest that it is possible
to generate light-fields using temporal and spatial interpolation. However, these
methods have not been applied for focus interpolation.

Deep neural networks have been used for deblurring an input image to gener-
ate an in-focus image. Schuler et al. [27] describe a layered deep neural network
architecture to estimate the blur kernel for blind image deblurring. Nimisha et
al. [25] propose an end-to-end solution to blind deblurring using an autoencoder
and adversarial training. Xu et al. [37] propose a convolutional neural network
for deblurring based on separable kernels. Nah et al. [21] propose a multi-scale
convolutional neural network with multi-scale loss for generating high-quality
deblurring of dynamic scenes. Orest et al. [15] show state-of-the-art deblurring
for dynamic scenes using a conditional adversarial network and use perceptual
loss as an additional cue to train the deblurring network.

In this paper, we introduce RefocusGAN, a new approach to change the
focus position of a single image using deep neural networks. Our approach first
deblurs an input wide-aperture image to an in-focus image and then uses this in-
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Fig. 2. The architecture of the deblurring cGAN. It receives a wide-aperture image
and its focus measure channel as input and computes an in-focus radiance image.

Fig. 3. The architecture of the refocusing cGAN. It uses the generated in-focus image
together with the original wide-aperture image and a refocus control parameter δ to
compute a refocused image.

focus image in conjunction with the wide-aperture image to simulate geometric
refocusing.

3 Single Image Scene Refocusing

A standard approach to scene refocusing uses several wide-aperture images from
a focal stack to generate a new image with the target depth-of-field. Refocusing
is typically modeled as a composition of pixels from several focal slices to create
a new pixel intensity. This reduces the task of refocusing to selecting a set of
weights for each pixel across focal slices as is described in [11]. Other methods
that use all the slices of a focal stack first estimate the depth map of the scene
and a corresponding radiance image, and then convolve the radiance image with
geometrically accurate blur kernels, such as in [8]. In the case of single images,
it is difficult to simultaneously estimate the true radiance as well as the defocus
radius at each pixel. Moreover, the complexity of the size and shape of the defocus
kernel at each pixel depends on the scene geometry as well as the quality of the
lens. A deep learning approach to refocus a wide-aperture image using a single
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end-to-end network does not perform very well and this is discussed in more
detail in Section 5.

Refocusing a wide-aperture image can be modeled as a cascaded operation
involving two steps in the image space. The first step is a deblurring operation
that computes the true scene radiance Ĝr from a given wide-aperture image
Gi, where i denotes the focus position during capture. This involves deblurring
each pixel in a spatially varying manner in order to produce locally sharp pixels.
The second step applies a new spatially varying blur to all the sharp pixels
to generate the image corresponding to the new focus position Gi+δ, where
δ denotes the change in focus position. The required scene-depth information
for geometric refocusing can be assumed to be implicit within this two-stage
approach. Srinivasan et al. [28] have shown how the forward process of blurring
can actually be used to compute an accurate depth-map of the scene. Our two-
stage approach to refocusing a wide-aperture image is briefly described below.

In the first stage, an in-focus radiance image is computed from a given wide-
aperture image Gi and an additional focus measure m evaluated over Gi. The
focus measure provides a useful cue that improves the quality of deblurring:

Ĝr = G1
θG

(

Gi : m(Gi)
)

(1)

In the second stage, the generated in-focus image is used together with the input
wide-aperture image to generate the target image corresponding to a shifted
focus position i+ δ.

Gi+δ = G2
θG

(

Gi : Ĝr, δ
)

(2)

We train end-to-end conditional adversarial networks for both these stages.
While the deblurring network G1

θ is motivated by existing blind image-deblurring
works in the literature, we provide motivation for our second network G2

θ by pro-
ducing a far-focused slice from a near-focused slice using a simple optimization
method.

Adversarial Learning: Generative adversarial networks (GANs) [6] define the
task of learning as a competition between two networks, a generator and a dis-
criminator. The task of the generator is to create an image based on an arbitrary
input, typically provided as a noise vector, and the task of the discriminator is
to distinguish between a real image and this generated image. The generator is
trained to created images that are perceptually similar to real images, such that
the discriminator is unable to distinguish between real and generated samples.
The objective function of adversarial learning can be defined as:

min
G

max
D

LGAN , (3)

where LGAN is the classic GAN loss function:

LGAN = Ey∼pr(y) [logD(y)] + Ez∼pz(z) [log(1−D(G(z)))] , (4)

where D represents the discriminator, G is the generator, y is a real sample, z
is a noise vector input to the generator, pr represents the real distribution over
target samples and pz is typically a normal distribution.
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Conditional adversarial networks (cGANs), provide additional conditioning
to the generator to create images in accordance with the conditioning param-
eters. Isola et al. [10] provide a comprehensive analysis of GANs for the task
of image-to-image translation, and propose a robust cGAN architecture called
pix2pix, where the generator learns a mapping from an image x and a noise
vector z to an output image y as: G : x, z → y. The observed image is provided
as conditioning to both the generator and the discriminator. We use cGANs
for the tasks of de-blurring and refocusing and provide additional conditioning
parameters to both our networks as defined in the following sections.

3.1 Deblurring a Wide-Aperture Image

We use a conditional adversarial network to deblur a wide aperture image Gi

and estimate its corresponding scene radiance Ĝr as described in Equation 1.
Our work draws inspiration from several deep learning methods for blind image-
deblurring such as [15, 21, 27, 37]. Our network is similar to the state-of-the-art
deblurring network proposed by Orest et al. [15]. Our generator network is built
on the style transfer network of Johnson et al. [12] and consists of two strided
convolution blocks with a stride of 1

2 , nine residual blocks and two transposed
convolution blocks. Each residual block is based on the ResBlock architecture
[9] and consists of a convolution layer with dropout regularization [30], instance-
normalization [34] and ReLU activation [22]. The network learns a residual image
since a global skip connection (ResOut) is added in order to accelerate learning
and improve generalization [15]. The residual image is added to the input image
to create the deblurred radiance image. The discriminator is a Wasserstein-GAN
[2] with gradient penalty [7] as defined in [15]. The architecture of the critic
discriminator network is identical to that of PatchGAN [10, 16]. All convolution
layers except for the last layer are followed by instance normalization and Leaky
ReLU [36] with an α=0.2.

The cGAN described in [15] is trained to sharpen an image blurred by a
motion-blur kernel of the form IB = K ∗ IS + η, where IB is the blurred image,
IS is the sharp image, K is the motion blur kernel and η represents additive
noise. In our case, the radiance image Gr has been blurred by a spatially varying
defocus kernel and therefore the task of deblurring is more complex. We thereby
append the input image Gi with an additional channel that encodes a focus
measure response computed over the input image. We compute m(Gi) as the
response of the Sum-of-modified-Laplacian (SML) [23] filter applied over the
input image. We also provide the input image along with this additional channel
as conditioning to the discriminator. The adversarial loss for our deblurring
network can be defined as:

LcGAN =

N
∑

n=1

−D1
θD

(G1
θG

(xi), xi), (5)

where xi = Gi : m(Gi) is the input wide-aperture image Gi concatenated with
the focus measure channel m(Gi).
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In addition to the adversarial loss, we also use perceptual loss [12] as sug-
gested in [15]. Perceptual loss is L2-loss between the CNN feature maps of the
generated deblurred image and the target image:

LX =
1

WijHij

∑

x

∑

y

(φij(I
S)xy − φij(GθG(I

B))xy)
2, (6)

where φij is the feature map in VGG19 trained on ImageNet [5] after the jth

convolution and the ith max-pooling layer and W and H denote the size of
the feature maps. In this case, IS and IB represent the ground truth in-focus
image and the input wide-aperture image respectively. The loss function for
the generator is a weighted combination of adversarial and perceptual loss L =
LcGAN + λLX .

The structure of our deblurring cGAN is shown in Figure 2. A few wide-
aperture images along with the computed in-focus radiance image are shown in
Figure 7.

3.2 Refocusing a Wide-Aperture Image

The in-focus image computed from the above network not only represents the
true scene radiance at each pixel, but can also serve as proxy depth information
in conjunction with the input wide-aperture image. We motivate our second
refocusing network G2

θG
using a simple method that can refocus a near-focus

image to a far-focus image and vice versa, using the computed radiance image.
As shown in the example in Figure 4, a near-focused image G1 can be con-

verted to a far focused image Gn using the radiance image Ĝr resulting from the
deblurring network. Here 1 and n are used to denote the near and far ends of the
focus spread of a focal stack. To refocus these images, the first step would be to
compute the per-pixel blur radius between the input image G1 and the radiance
image Ĝr. This can be achieved using a blur-and-compare framework wherein
the in-focus pixels of the radiance image are uniformly blurred by different radii
and the best defocus radius σ is estimated for each pixel using pixel-difference
between a blurred patch and the corresponding patch in G1. Inverting these
defocus radii as σ′ = σmax − σ followed by re-blurring the radiance image is
the natural way to create the refocused image. This method can also be used to
convert a far-focused image to a near focused image as shown in the second row
of Figure 4. Free-form refocusing between arbitrary focus positions is not triv-
ial though since there is no front-to-back ordering information in the estimated
defocus radii.

For free-form scene refocusing, we use a conditional adversarial network sim-
ilar to our deblurring network. We use the same cGAN architecture of the previ-
ous section, with different conditioning and an additional refocus control param-
eter δ. The refocus control parameter is used to guide the network to produce a
target image corresponding to a desired focus position. The input to the network
is the original wide-aperture image Gi concatenated with the scene radiance im-
age Ĝr = G1

θG
(Gi : m(Gi)) computed by the deblurring network. The refocus
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Fig. 4. Refocusing using a simple image-processing operation over the input wide-
aperture image G

1 and the deblurred in-focus image Ĝ
r. The first row shows the input

near-focused image, the deblurred in-focus image from the network and the computed
far-focused image. The second row shows equivalent far-to-near refocusing.

parameter δ encodes the shift between the input and output images and is pro-
vided to the network as a one-hot vector. The refocus vector corresponding to δ

is concatenated as an additional channel to the innermost layer of the network,
using a fully connected layer to convert the one-hot vector into a 64×64 channel.

The structure of the refocusing cGAN is shown in Figure 3. We use the
same structure for the discriminator and the generator as that of the deblurring
cGAN. The loss function for the generator is a summation of adversarial loss
and perceptual loss. The discriminator network is conditioned using the input
image and the in-focus radiance image. The cGAN loss for this network can be
defined as:

LcGAN =

N
∑

n=1

−D2
θD

(G2
θG

(xi), xi), (7)

where xi = Gi : Ĝr is the input wide-aperture image Gi concatenated with
the scene radiance image Ĝr = G1

θG
(Gi : m(Gi)). Refocused images generated

from the input wide-aperture image, the in-focus image and different refocus
parameters are shown in Figures 8,9.

4 Training Details

For training both networks, we compute multiple wide-aperture images from
a large light-field dataset of scenes consisting of flowers and plants [29]. The
method used to generate training images from light-fields is explained in the
following section.
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4.1 Focal Stacks from Light-Fields

A focal stack is a sequence of differently focused images of the scene with a
fixed focus step between consequent images of the stack. A focal stack can be
understood as an ordered collection of differently blurred versions of the scene
radiance. A focal slice Gi is a wide-aperture image corresponding to a focus
position i and can be defined as:

Gi =

∫ ∫

hi(x, y, dx,y) ∗ Ĝ
r(x, y) dx dy , (8)

where hi is the spatially varying blur kernel dependent on the spatial location of
the pixel and the depth dx,y of its corresponding scene point and Ĝr is the true
radiance of the scene point which is usually represented by the in-focus intensity
of the pixel.

An ideal focal stack, as defined by Zhou et al. [39], consists of each pixel
in focus in one and only one slice. Focal stacks can be captured by manually
or programmatically varying the focus position between consequent shots. Pro-
grammed control of the focus position is possible nowadays on DSLR cameras
as well as high-end mobile devices. Canon DSLR cameras can be programmed
using the MagicLantern API [18] and both iOS and Android mobile devices can
be controlled using the Swift Camera SDK and Camera2 API respectively. Cap-
turing a focal stack as multiple shots suffers from the limitation that the scene
must be static across the duration of capture, which is difficult to enforce for
most natural scenes. Handheld capture of focal stacks is also difficult due to the
multiple shots involved. Moreover, being able to easily capture focal stacks is a
somewhat recent development and there is a dearth of large quantities of focal
stack image sequences.

A focal stack can also be created from a light-field image of the scene. The
Lytro light-field camera based on Ng et al. [24] captures a 4D light-field of a
scene in a single shot, and can thereby be used for dynamic scenes. The different
angular views captured by a light-field camera can be merged together to create
wide-aperture views corresponding to different focus positions. A large number
of light-fields of structurally similar scenes have been captured by Srinivasan et
al. [29]. Several other light-field datasets also exist such as the Stanford light-field
archive [31] and the light-field saliency dataset [17]. Large quantities of similar
focal stacks can be created from such light-field datasets.

Srinivasan et al. [29] captured a large light-field dataset of 3343 light-fields
of scenes consisting of flowers and plants using the Lytro Illum Camera. Each
image in the dataset consists of the angular views encoded into a single light-field
image. A 14×14 grid of angular views can be extrapolated from the light-field,
each having a spatial resolution of 376×541. Typically, only the central 8×8
views are useful as the samples towards the corners of the light-field suffer from
clipping as they lie outside the camera’s aperture. This dataset is described in
detail in [29]. A few sample images from this dataset are shown in Figure 5. For
our experiments, we use a central 7×7 grid of views to create focal stacks, so as
to have a unique geometric center to represent the in-focus image. We generate
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a focal stack at a high focus resolution for each of these light-field images using
the synthetic photography equation defined in [24]:

Gi(s, t) =

∫ ∫

L

(

u, v, u+
s− u

αi

, v +
t− v

αi

)

du dv. (9)

Here Gi represents the synthesized focal slice, L(u, v, s, t) is the 4D light-field
represented using the standard two-plane parameterization and αi represents the
location of the focus plane. This parameterization is equivalent to the summation
of shifted versions of the angular views captured by the lenslets as shown in [24].
We vary the shift-sum parameter linearly between -smax to +smax to generate
30 focal slices between the near and far end of focus.

Fig. 5. A few examples of the light-field images in the Flowers dataset of [29].

To reduce the size of focal stacks to an optimal number of slices, we apply
the composite focus measure [26] and study the focus variation of pixels across
the stack. We use this measure as it has been shown to be more robust than
any single focus measure for the task of depth-from-focus [26]. For each pixel,
we record the normalized response of the composite measure at each slice. We
build a histogram of the number of pixels that peaked at each of the 30 slices
across the 3343 light-field dataset. We find that in close to 90% of the images, all
the pixels peak between slices 6 and 15 of the generated focal stack. The depth
variation of the captured scenes is mostly covered by these ten focal slices. We
thereby subsample each focal stack to consist of ten slices, varying from slice 6
to slice 15 of our original parameterization. Our training experiments use these
10-sliced focal stacks computed from the light-field dataset.

For training, the 3343 focal stacks are partitioned into 2500 training sam-
ples and 843 test samples. Each focal slice is cropped to a spatial resolution of
256×256 pixels. The smax parameter while computing focal slices is set to 1.5
pixels. For the deblurring network, we use all the ten focal slices from the 2500
focal stacks for training. For the refocusing network, we experiment with three
different configurations. In the first configuration a single refocus parameter of
δ = +8 is used. In the second configuration, the refocus parameter has four
distinct values: δ = {−9,−5,+5,+9}. In the third configuration, the refocus
parameter can take any one of 19 possible values from −9 to +9. The deblurring
network is trained for 30 epochs (∼50 hours) and all configurations of the refo-
cusing network are trained for 60 epochs (∼45 hours). All training experiments
were performed on an Nvidia GTX 1080Ti. The learning rate is set to 0.0001
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Table 1. Quantitative evaluation of our deblurring network. PSNR and SSIM is re-
ported for the test-split of the light-field dataset. We compare the performance of the
deblurring network with and without the additional Sum-of-Modified-Laplacian (SML)
focus measure channel. There is a marginal but useful improvement in the quality of
deblurring on using the focus measure channel. As an indication of overall performance,
we generate an in-focus image using the composite focus measure [26] applied on all
slices of the focal stack and report its quality. Note that our method uses only a single
image.

Deblurring Experiment PSNR SSIM

Ours (without additional Focus Measure) 34.88 0.937
Ours (with additional Focus Measure) 35.02 0.938

Composite Focus Measure (uses entire stack) 38.697 0.965

initially for all network configurations. The learning rate is linearly decreased
to zero after half the total number of epochs are completed. All networks are
trained for a batch size of 1 and the Adam solver [14] is used for gradient descent.
The λ parameter for scaling content loss is set to 100 as suggested in [15].

5 Experiments and Results

We provide a quantitative evaluation of the performance of our two-stage refo-
cusing approach in Tables 1,2. We compare the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) of the refocused images with the ground
truth images from the focal stacks. Since this is the first work that compre-
hensively manipulates the focus position from a single image, there is no direct
comparison of the generated refocused images with existing geometric techniques
over focal stacks. However, we generate in-focus images using the composite fo-
cus measure [26] applied across the full focal stack and report the quantitative
reconstruction quality in Table 1. We show the quantitative performance of our
networks individually and report the PSNR and SSIM of the computed in-focus
radiance image in comparison with the ground-truth central light-field image.

Our two-stage approach to refocusing is motivated by our initial experiments
wherein we observed that an end-to-end refocusing network does not work well.
Our experiments spanned several network architectures such as the purely con-
volutional architecture of the disparity estimation network of [13], the separable
kernel convolutional architecture of [37], the encoder-decoder style deep network
with skip-connections of [32] and the conditional adversarial network of [15].
These networks exhibit poor refocusing performance in both cases of fixed pairs
of input-output focal slices as well as for the more complex task of free-form
refocusing. Since the networks are only given input wide-aperture images while
training, there may be several pixel intensities which do not occur sharply in
either the input or output images, and the task of jointly estimating all true in-
tensities and re-blurring them is difficult to achieve within a reasonable compute
power/time budget for training. In Table 2, we compare our two-stage approach
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to refocusing with an equivalent single-stage, end-to-end network. This essen-
tially compares the performance of our refocusing network with and without
the additional radiance image computed by the deblurring network. It can be
seen that the two-stage method clearly outperforms a single-stage approach to
refocusing.

Table 2. Quantitative evaluation of our refocusing network. The PSNR and SSIM
values are reported on the test-split of the light-field dataset. The first two rows show
the performance of our refocusing network without an additional in-focus image. This
corresponds to an end-to-end, single stage approach to refocusing. The next three
rows show the performance on using different refocus control parameters in our two-
stage experiments. The final row shows the test performance of our refocusing network
which was trained using ground truth in-focus images Gr but tested using the radiance
images computed by the deblurring network Ĝ

r. Note that the two-stage approaches
significantly outperform their single-stage counterparts. The high PSNR and SSIM
values quantitatively suggest that our network enables high-quality refocusing.

Experiment Type Refocus Control Steps PSNR SSIM

Without Gr single-stage +8 38.73 0.97
Without Gr single-stage {-9,-5,+5,+9} 38.4 0.956

With G
r two-stage +8 44.225 0.992

With G
r two-stage {-9,-5,+5,+9} 43.4 0.988

With G
r two-stage {-9,-8,..,0,..,+8,+9} 40.42 0.975

With AIF(Ĝr) two-step -9,-5,+5,+9 38.63 0.958

The deblurring network uses an additional focus measure channel to compute
the radiance image Ĝr. The benefit of using the focus measure is indicated in
Table 1. For the refocusing network, we perform experiments on three different
configurations. The configurations differ from each other in the number of refocus
control parameters and are shown in Table 2. The first configuration is a proof-
of-concept network and is trained on a single refocus parameter. This clearly
exhibits the best performance as the training samples have a high degree of
structural similarity. The network with four control parameters performs better
than the network with 19 parameters, which can be seen in Table 2. This can
be attributed to two separate issues. The focal stacks created from the light-
field dataset consist of ten slices that roughly span the depth range of the scene
from near-to-far. However, in the absence of scene content at all depths, certain
focal slices may be structurally very similar to adjacent slices. Training these
slices with different control parameters can confuse the network. Secondly, in
the case of the 19 parameter configuration, the total number of training samples
increases to 250000 as there are 100 samples from each focal stack. We use a
subset of size 30000 from these training images sampled uniformly at random.
In the case of refocusing with 4 control parameters, the focus shift between
input and output images is clearly defined and the network thereby captures



RefocusGAN: Single Image Scene Refocusing 13

the relationship better. All the training samples from the dataset can be used
directly to train this network as there are only 12 training samples per focal
stack in the four parameter configuration.

Fig. 6. The performance of our two-stage refocusing framework on generic images. The
first row has the input wide-aperture image and the second row shows the refocused
image. The first four columns show the performance on structurally different light-field
focal slices from another light-field dataset while the last column shows the performance
on an image captured by a wide-aperture camera.

We show qualitative deblurring and refocusing results for several test sam-
ples in Figures 7,8,9. In Figure 6, we show the performance of our refocusing
framework on generic images from different light-fields that were not images of
flowers or plants, and also show the performance on an image captured using a
wide-aperture camera. The performance suggests that our networks are implic-
itly learning both tasks quite well and can be used for high-quality refocusing of
standalone images.

6 Conclusion

We present a two-stage approach for comprehensive scene refocusing over a
single-image. Our RefocusGAN framework uses adversarial training and per-
ceptual loss to train separate deblurring and refocusing networks. We provide
a focus measure channel as an additional conditioning for deblurring a wide-
aperture image. We use the deblurred in-focus image as an additional condition-
ing for refocusing. Our quantitative and qualitative results suggest high-quality
performance on refocusing. Our networks exhibit useful generalization and can
further benefit from fine-tuning and training over multiple datasets together. In
the future, we plan to work on creating a refocusing network based on a free-form
refocus parameter that is independent of the number and spread of focal slices.
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Fig. 7. In-focus radiance images created using the deblurring network. The top row
shows the input wide-aperture images and the bottom row shows the deblurred output
from our deblurring network.

Fig. 8. Near-to-Far Refocusing generated with δ=+9 using our refocusing network.
The top row shows the input wide-aperture images and the bottom row shows the
output refocused images.

Fig. 9. Far-to-Near Refocusing generated with δ=−9 using our refocusing network.
The top row shows the input wide-aperture images and the bottom row shows the
output refocused images.
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