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Abstract. The reflections caused by common semi-reflectors, such as
glass windows, can impact the performance of computer vision algo-
rithms. State-of-the-art methods can remove reflections on synthetic data
and in controlled scenarios. However, they are based on strong assump-
tions and do not generalize well to real-world images. Contrary to a com-
mon misconception, real-world images are challenging even when polar-
ization information is used. We present a deep learning approach to sep-
arate the reflected and the transmitted components of the recorded irra-
diance, which explicitly uses the polarization properties of light. To train
it, we introduce an accurate synthetic data generation pipeline, which
simulates realistic reflections, including those generated by curved and
non-ideal surfaces, non-static scenes, and high-dynamic-range scenes.

Input Ours [1] [2] [3]
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Fig. 1: Glass surfaces are virtually unavoidable in real-world pictures. Our ap-
proach to separate the reflection and transmission layers, works even for gen-
eral, curved surfaces, which break the assumptions of state-of-the-art methods.
In this example, only our method can correctly estimate both reflection R̂ (the

tree branches) and transmission T̂ (the car’s interior).

1 Introduction

Computer vision algorithms generally rely on the assumption that the value
of each pixel is a function of the radiance of a single area in the scene. Semi-
reflectors, such as typical windows or glass doors, break this assumption by
creating a superposition of the radiance of two different objects: the one behind
the surface and the one that is reflected. It is virtually impossible to avoid semi-
reflectors in man-made environments, as can be seen in Figure 2(a), which shows



2 Wieschollek, Gallo, Gu, and Kautz.

1 23 45
4

5

(a) (b)

Fig. 2: Depending on the ratio between transmitted and reflected radiance, a
semi-reflector may produce no reflections 1 , pure reflections 2 , or a mix of the
two, which can vary smoothly 3 , or abruptly 5 . The local curvature of the
surface can also affect the appearance of the reflection 4 . The last two, 4 and
5 , are all but uncommon, as shown in (b).

a typical downtown area. Any multi-view stereo or SLAM algorithm would be
hard-pressed to produce accurate reconstructions on this type of images.

Several methods exist that attempt to separate the reflection and trans-
mission layers. At a semi-reflective surface, the observed image can be mod-
eled as a linear combination of the reflection and the transmission images:
Io = αrIr + αtIt. The inverse problem is ill-posed as it requires estimating
multiple unknowns from a single observation. A solution, therefore, requires ad-
ditional priors or data. Indeed, previous works rely on assumptions about the
appearance of the reflection (e.g ., it is blurry), about the shape and orientation
of the surface (e.g ., it is perfectly flat and exactly perpendicular to the principal
axis of the camera), and others. Images taken in the wild, however, regularly
break even the most basic of these assumptions, see Figure 2(b), causing the re-
sults of state-of-the-art methods [2,3,4] to deteriorate even on seemingly simple
cases, as shown in Figure 1, which depicts a fairly typical real-world scene.

One particularly powerful tool is is polarization: images captured through a
polarizer oriented at different angles offer additional observations. Perhaps sur-
prisingly, however, our analysis of the state-of-the-art methods indicates that
the quality of the results degrades significantly when moving from synthetic to
real data, even when using polarization. This is due to the simplifying assump-
tions that are commonly made, but also to an inherent issue that is all too often
neglected: a polarizer’s ability to attenuate reflections greatly depends on the
viewing angle [5]. The attenuation is maximal at an angle called the Brewster
angle, θB . However, even when part of a semi-reflector is imaged at θB , the angle
of incidence in other areas is sufficiently different from θB to essentially void the
effect of the polarizer, as clearly shown in Figure 3. Put differently, because of
the limited signal-to-noise ratio, for certain regions in the scene, the additional
observations may not be independent.
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We present a deep-learning method capable of separating the reflection and
transmission components of images captured in the wild. The success of the
method stems from our two main contributions. First, rather than requiring
a network to learn the reflected and transmitted images directly from the ob-
servations, we leverage the properties of light polarization and use a residual
representation, in which the input images are projected onto the canonical po-
larization angles (Section 3.1 and 3.2). Second, we design an image-based data
generator that faithfully reproduces the image formation model (Section 3.3).

We show that our method can successfully separate the reflection and trans-
mission layers even in challenging cases, on which previous works fail. To further
validate our findings, we capture the Urban Reflections Dataset, a polarization-
based dataset of reflections in urban environments that can be used to test
reflection removal algorithms on realistic images. Moreover, to perform a thor-
ough evaluation against state-of-the-art methods whose implementation is not
publicly available, we re-implemented several representative methods. As part
of our contribution, we release those implementations for others to be able to
compare against their own methods [1].

2 Related Work

There is a rich literature of methods dealing with semi-reflective surfaces, which
can be organized in three main categories based on the assumptions they make.

Single-image methods can leverage gradient information to solve the prob-
lem. Levin and Weiss, for instance, require manual input to separate gradients
of the reflection and the transmission [6]. Methods that are fully automated can
distinguish the gradients of the reflected and transmitted images by leveraging
the defocus blur [7]: reflections can be blurry because the subject behind the
semi-reflector is much closer than the reflected image [4], or because the cam-
era is focused at infinity and the reflected objects are close to the surface [8].
Moreover, for the case of double-pane or thick windows, the reflection can ap-
pear “doubled” [9], and this can be used to separate it from the transmitted
image [10]. While these methods show impressive results, their assumptions are
stringent and do not generalize well to real-world cases, causing them to fail on
common cases.

Multiple images captured from different viewpoints can also be used to re-
move reflections. Several methods propose different ways to estimate the relative
motion of the reflected and transmitted image, which can be used to separate
them [11,12,13,14,15]. It is important to note that these methods assume static
scenes—the motion is the apparent motion of the reflected layer relative to the
transmitted layer, not scene motion. Other than that, these methods make as-
sumptions that are less stringent than those made by single-image methods.
Nonetheless, these algorithms work well when reflected and transmitted scenes
are shallow in terms of depth, so that their velocity can be assumed uniform. For
the case of spatially and temporally varying mixes, Kaftory and Zeevi propose
to use sparse component analysis instead [16].
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Multiple images captured under different polarization angles offer a third
venue to tackle this problem. Assuming that images taken at different polar-
ization angles offer independent measurements of the same scene, reflection and
transmission can be separated using independent component analysis [17,18,19].
An additional prior that can be leveraged is given by double reflections, when the
semi-reflective surface generates them [9]. Under ideal conditions, and leveraging
polarization information, a solution can also be found in closed form [2,3]. In our
experiments, we found that most of the pictures captured in unconstrained set-
tings break even the well-founded assumptions used by these papers, as shown
in Figure 2.

3 Method

We address the problem of layer decomposition by leveraging the ability of a
semi-reflector to polarize the reflected and transmitted layers differently. Cap-
turing multiple polarization images of the same scene, then, offers partially inde-
pendent observations of the two layers. To use this information, we take a deep
learning approach. Since the ground truth for this problem is virtually impossi-
ble to capture, we synthesize it. As for any data-driven approach, the realism of
the training data is paramount to the quality of the results. In this section, after
reviewing the image formation model, we give an overview of our approach, we
discuss the limitations of the assumptions that are commonly made, and how we
address them in our data generation pipeline. Finally, we describe the details of
our implementation.

3.1 Polarization, Reflections, and Transmissions

Consider two points, PR and PT such that P
′

R, the reflection of PR, lies on the
line of sight of PT , and assume that both emit unpolarized light, see Figure 3.
After being reflected or transmitted, unpolarized light becomes polarized by an
amount that depends on θ, the angle of incidence (AOI).

At point PS , the intersection of the line of sight and the surface, the total
radiance L is a combination of the reflected radiance LR, and the transmitted
radiance LT . Assume we place a linear polarizer with polarization angle φ in
front of the camera. If we integrate over the exposure time, the intensity at each
pixel x is

Iφ(x) = α(θ, φ⊥, φ) ·
IR(x)

2
+ (1− α(θ, φ⊥, φ)) ·

IT (x)

2
, (1)

where the mixing coefficient α(·) ∈ [0, 1], the angle of incidence θ(x) ∈ [0, π/2],
the p−polarization direction [2] φ⊥(x) ∈ [−π/4, π/4], and the reflected and trans-
mitted images at the semi-reflector, IR(x) and IT (x), are all unknown.

At the Brewster angle, θB , the reflected light is completely polarized along
φ⊥, i.e. in the direction perpendicular to the incidence plane1, and the trans-

1 The incidence plane is defined by the direction in which the light is traveling and
the semi-reflector’s normal.
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mitted light along φ‖, the direction parallel to the plane of incidence. The angles
φ⊥ and φ‖ are called the canonical polarization angles. In the unique condition
in which θ(x) = θB , two images captured with the polarizer at the canonical
polarization angles offer independent observations that are sufficient to disam-
biguate between IR and IT . Unless the camera or the semi-reflector are at infinity,
however, θ(x) = θB only holds for few points in the scene, if any, as shown in
Figure 3. To complicate things, for curved surfaces, θ(x) varies non-linearly with
x. Finally, even for arbitrarily many acquisitions at different polarization angles,
φj , the problem remains ill-posed as each observation Iφj

adds new pixel-wise
unknowns α(θ, φ⊥, φj).

φ ≈ φ⊥ φ ≈ φ‖

LT

LR

polarizer

φ

PR

P ′
R

PT

semi-reflector M2

M1

camera C

θθ

PS

Fig. 3: A polarizer attenuates reflections when they are viewed at the Brewster
angle θ = θB . For the scene shown on the left, we manually selected the two
polarization directions that maximize and minimize reflections respectively. In-
deed, the reflection of the plant is almost completely removed. However, only a
few degrees away from the Brewster angle, the polarizerhas little to no effect, as
is the case for the reflection of the book on the right.

3.2 Recovering R and T

When viewed through a polarizer oriented along direction φ, IR and IT , which
are the reflected and transmitted images at the semi-reflector, produce image
Iφ at the sensor. Due to differences in dynamic range, as well as noise, in some
regions the reflection may dominate Iφ, or vice versa, see Section 3.3. Without
hallucinating content, one can only aim at separating R and T , which we define
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T̂ = ξ‖T̃ + (1− ξ‖)I‖

R̂ = ξ⊥R̃+ (1− ξ⊥)I⊥

Fig. 4: Our encoder-decoder network architecture with ResNet blocks includes a
Canonical Projection Layer, which projects the input images onto the canonical
polarization directions, and uses a residual parametrization for T̂ and R̂.
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to be the observable reflected and transmitted components. For instance, T may
be zero in regions where R dominates, even though IT may be greater than zero
in those regions. To differentiate them from the ground truth, we refer to our
estimates as R̂ and T̂ .

To recover R̂ and T̂ , we use an encoder-decoder architecture, which has been
shown to be particularly effective for a number of tasks, such as image-to-image
translation [20], denoising [21], or deblurring [22]. Learning to estimate R̂ and

T̂ directly from images taken at arbitrary polarization angles does not produce
satisfactory results. One main reason is that parts of the image may be pure
reflections, thus yielding no information about the transmission, and vice versa.

To address this issue, we turn to the polarization properties of reflected and
transmitted images. Recall that R and T are maximally attenuated, though
generally not completely removed, at φ‖ and φ⊥ respectively. The canonical
polarization angles depend on the geometry of the scene, and are thus hard to
capture directly. However, we note that an image Iφ(x) can be expressed as [3]:

Iφ(x) = I⊥(x) cos
2(φ− φ⊥(x)) + I‖(x) sin

2(φ− φ⊥(x)). (2)

Since Equation 2 has three unknowns, I⊥, φ⊥, and I‖, we can use three different
observations of the same scene, {Iφi

(x)}i={0,1,2}, to obtain a linear system that

allows to compute I⊥(x) and I‖(x). To further simplify the math we capture
images such that φi = φ0 + i · π/4.

For efficiency, we implement the projection onto the canonical views as a
network layer in TensorFlow. The canonical views and the actual observations
are then stacked in a 15-channel tensor and used as input to our network. Then,
instead of training the network to learn to predict R̂ and T̂ , we train it to
learn the residual reflection and transmission layers. More specifically, we train
the network to learn an 8-channel output, which comprises the residual images
T̃ (x), R̃(x), and the two single-channel weights ξ‖(x) and ξ⊥(x). Dropping the
dependency on pixel x for clarity, we can then compute:

R̂ = ξ⊥R̃+ (1− ξ⊥)I⊥ and T̂ = ξ‖T̃ + (1− ξ‖)I‖. (3)

While ξ⊥ and ξ‖ introduce two additional unknowns per pixel, they significantly
simplify the prediction task in regions where the canonical projections are al-
ready good predictors of R̂ and T̂ . We use an encoder-decoder with skip con-
nections [23] that consists of three down-sampling stages, each with two ResNet
blocks [24]. The corresponding decoder mirrors the encoding layers using a trans-

posed convolution with two ResNet blocks. We use an ℓ2 loss on R̂ and T̂ . We
also tested ℓ1 and a combination of ℓ1 and ℓ2, which did not yield significant
improvements.

The use of the canonical projection layer, as well as the parametrization
of residual images is key for the success of our method. We show this in the
Supplementary, where we compare the output of our network with the output of
the exact same architecture trained to predict R̂ and T̂ directly from the three
polarization images Iφi

(x).
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Fig. 5: Our image-based data generation procedure. We apply several steps to im-
ages IR and IT simulating reflections in most real-world scenarios (Section 3.3).

3.3 Image-Based Data Generation

The ground truth data to estimate R̂ and T̂ is virtually impossible to capture
in the wild. Recently, Wan et al . released a dataset for single-image reflection
removal [25], but it does not offer polarization information. In principle, Equa-
tion 1 could be used directly to generate, from any two images, the data we
need. The term α in the equation, however, hides several subtleties and nonide-
alities. For instance, previous polarization-based works use it to synthesize data
by assuming uniform AOI, perfectly flat surfaces, comparable power for the re-
flected and transmitted irradiance, or others. This generally translates to poor
results on images captured in the wild: Figures 1 and 2 show common scenes
that violate all of these assumptions.

We propose a more accurate synthetic data generation pipeline, see Fig-
ure 5. Our pipeline starts from two randomly picked images from the PLACE2
dataset [26], IR and IT , which we treat as the image of reflected and transmitted
scene at the surface. From those, we model the behaviors observed in real-world
data, which we describe as we “follow” the path of the photons from the scene
to the camera.

Dynamic Range Manipulation at the Surface To simulate realistic reflec-
tions, the dynamic range (DR) of the transmitted and reflected images at the
surface must be significantly different. This is because real-world scenes are gen-
erally high-dynamic-range (HDR). Additionally, the light intensity at the surface
drops with the distance from the emitting object, further expanding the com-
bined DR. However, our inputs are low-dynamic-range images because a large
dataset of HDR images is not available. We propose to artificially manipulate
the DR of the inputs so as to match the appearance of the reflections we observe
in real-world scenes.

Going back to Figure 3 (right), we note that for regions where LT ≈ LR, a
picture taken without a polarizer will capture a smoothly varying superposition
of the images of PR and PT (Figure 2 3 ). For areas of the surface where LR ≫
LT , however, the total radiance is L ≈ LR, and the semi-reflector essentially
acts as a mirror (Figure 2 2 ). The opposite situation is also common (Figure 2
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1 ). To allow for these distinct behaviors, we manipulate the dynamic range of
the input images with a random factor β ∼ U [1,K]:

ĨR = βI
1/γ
R and ĨT =

1

β
I
1/γ
T , (4)

where 1/γ linearizes the gamma-compressed inputs2. We impose that K > 1
to compensate for the fact that a typical glass surface transmits a much larger
portion of the incident light than it reflects3.

Images ĨR and ĨT can reproduce the types of reflections described above,
but are limited to those cases for which LR − LT changes smoothly with PS .
However, as shown in Figure 2 5 , the reflection can drop abruptly following
the boundaries of an object. This may happen when an object is much closer
than the rest of the scene, or when its radiance is larger than the surrounding
objects. To properly model this behavior, we treat it as a type of reflection on
its own, which we apply to a random subset of the image whose range we have
already expanded. Specifically, we set to zero the regions of the reflection or
transmission layer, whose intensity is below T = mean(ĨR+ ĨT ), similarly to the
method proposed by Fan et al . [4].

Dealing with Dynamic Scenes Our approach requires images captured un-
der three different polarization angles. While cameras that can simultaneously
capture multiple polarization images exist [27,28,29], they are not widespread.
To date, the standard way to capture different polarization images is sequential;
this causes complications for non-static scenes. As mentioned in Section 2, if
multiple pictures are captured from different locations, the relative motion be-
tween the transmitted and reflected layers can help disambiguate them. Here,
however, “non-static” refers to the scene itself, such as is the case when a tree
branch moves between the shots. Several approaches were proposed that can deal
with dynamic scenes in the context of stack-based photography [30]. Rather than
requiring some pre-processing to fix artifacts due to small scene changes at infer-
ence time, however, we propose to synthesize training data that simulates them,
such as local, non-rigid deformations. We first define a regular grid over a patch,
and then we perturb each one of the grid’s anchors by (dx, dy), both sampled
from a Gaussian with variance σ2

NR , which is also drawn randomly for each
patch. We then interpolate the position of the rest of the pixels in the patch.
For each input patch, we generate three different images, one per polarization
angle. We only apply this processing to a subset of the synthesized images—the
scene is not always dynamic. Figure 6(a) and (b) show an example of original
and distorted patch respectively.

2 Approximating the camera response function with a gamma function does not affect
the accuracy of our results, as we are not trying to produce data that is radiomet-
rically accurate with respect to the original scenes.

3 At an angle of incidence of π/4, for instance, a glass surface reflects less than 16% of
the incident light.
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Fig. 6: Examples of our non-rigid motion deformation (a, b) and a curved surface-
generator given the camera position, C, a surface-point, PS , length, ℓ, and the
convexity ±1 (c). Randomly sampled training data (d) with synthesized obser-

vations Iφ0
, Iφ1

, Iφ2
from the ground truth data T and R, and estimates T̂ , R̂.

Geometry of the Semi-Reflective Surface The images synthesized up to
this point can be thought of as the irradiance of the unpolarized light at the
semi-reflector. After bouncing off of, or going through, the surface, light becomes
polarized as described in Section 3.1. The effect of a linear polarizer placed in
front of the camera and oriented at a given polarization angle, depends on the
angle of incidence (AOI) of the specific light ray. Some previous works assume
this angle to be uniform over the image, which is only true if the camera is at
infinity, or if the surface is flat.

We observe that real-world surfaces are hardly ever perfectly flat. Many com-
mon glass surfaces are in fact designed to be curved, as is the case of car windows,
see Figure 1. Even when the surfaces are meant to be flat, the imperfections of
the glass manufacturing process introduce local curvatures, see Figure 2 4 .

At training time, we could generate unconstrained surface curvatures to ac-
count for this observation. However, it would be difficult to sample realistic
surfaces. Moreover, the computation of the AOI from the surface curvature may
be non-trivial. As a regularizer, we propose to use a parabola. When the patches
are synthesized, we just sample four parameters: the camera position C, a point
on the surface PS , a segment length, ℓ, and the convexity as ±1, Figure 6(c).
Since the segment is always mapped to the same output size, this parametriza-
tion allows to generate a number of different, realistic curvatures. Additionally,
because we use a parabola, we can quickly compute the AOI in closed form, from
the sample parameters, see Supplementary.

3.4 Implementation Details

From the output of the pipeline described so far, the simulated AOI, and a ran-
dom polarization angle φ0, the polarization engine generates three observations
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with polarization angles separated by π/4, see Figure 5. In practice, the polar-
izer angles φi will be inaccurate for real data due to the manual adjustments of
the polarizer rotation. We account for this by adding noise within ±4◦ to each
polarizer angle φi. Additionally we set β ∼ U [1, 2.8]. The input for our neural
network is R

B×128×128×9 when trained on 128 × 128 patches, where B = 32 is
the batch size. We trained the model from scratch with a learning rate 5 · 10−3

using ADAM. See the Supplementary for more details about the architecture.
The colors of the network predictions might be slightly desaturated [31,32,4]. We
use a parameter-free color-histogram matching against one of the observations
to obtain the final results.

4 Experiments

In this section we evaluate our method and data modeling pipeline on both
synthetic and real data. For the latter, we introduce the Urban Reflections
Dataset (URD), a new dataset of images containing semi-reflectors captured
with polarization information. A fair evaluation can only be done against other
polarization-based methods, which use multiple images. However, we also com-
pare against single-image methods for completeness.

The Urban Reflections Dataset (URD). For practical relevance, we compile a
dataset of 28 high-resolution RAW images (24MP) that are taken in urban en-
vironments using two different consumer cameras (Alpha 6000 and Canon EOS
7D, both ASP-C sensors), and which we make publicly available. The Supple-
mentary shows all the pictures in the dataset. This dataset includes examples
taken with a wide aperture, and while focusing on the plane of the semi-reflector,
thus meeting the assumptions of Fan et al . [4].

4.1 Numerical Performance Evaluation

Table 1: Cross-validation on synthetic
data. Best results in bold.

PASCAL VOC 2012 PLACE2
Method RMSE PSNR RMSE PSNR

Farid et al . [17] 0.401 7.93 0.380 8.38
Kong et al . [3] 0.160 15.88 0.156 16.12
Schechner et al . [2] 0.085 21.34 0.086 21.27
Fan et al . [4] 0.080 21.89 0.084 21.48
Ours 0.064 23.83 0.066 23.58

Due to the need for ground-truth, a
large-scale numerical evaluation can
only be performed on synthetic data.
For this task we take two datasets, the
VOC2012 [33] and the PLACE2 [26]
datasets. A comparison with state-
of-the-art methods shows that our
method outperforms the second best
method by a significant margin in
terms of PSNR: ∼ 2 dB, see Table 1.
For a numerical evaluation on real
data, we set up a scene with a glass
surface and objects causing reflections. After capturing polarization images of
the scene, we removed the glass and captured the ground truth transmission,
Tgt. Figure 7 shows the transmission images estimated by different methods.
Our method achieves the highest PSRN, and the least amount of artifacts.
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Tgt Tgt +Rgt T̂ours T̂[1] T̂[3] T̂[7]

PSNR: 26.7 dB PSNR: 20.0 dB PSNR: 25.1 dB PSNR: 25.9 dB
Setup

Fig. 7: By removing the semi-reflector, we can capture the ground truth trans-
mission, Tgt, optically.

4.2 Effect of Data Modeling

We also thoroughly validate our data-generation pipeline. Using both synthetic
and real data, we show that the proposed non-rigid deformation (NRD) proce-
dure and the local curvature generation (LCG) are effective and necessary. To
do this, we train our network until convergence on three types of data: data
generated only with the proposed dynamic range manipulation, DR for short,
data generated with DR+NRD, and data generated with DR+NRD+LCG.

We evaluate these three models on a hold-out synthetic validation set that
features all the transformations from Figure 5. The table in Figure 8 shows that
the PSNR drops significantly when only part of our pipeline is used to train the
network. Unfortunately, a numerical evaluation is only possible when the ground
truth is available. However, Figure 8 shows the output of the three models on
the real image from Figure 1. The benefits of using the full pipeline are apparent.

A visual inspection of Figure 1 allows to appreciate that, thanks to our ability
to deal with curved surfaces and dynamic scenes, we achieve better performance
than the state-of-the-art methods.

D
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u
ts

Model PSNR

DR 28.17 dB
DR+NRD 30.44 dB
DR+NRD+LCG 31.18 dB

Fig. 8: Our reflection estimation (left) on a real-world curved surface and
synthetic data (right Table) using the same network architecture trained on
different components of our data pipeline. Only when using the full pipeline
(DR+NRD+LCG) the reflection layer is estimated correctly. Note how faint
the reflection is in the inputs (bottom row).

4.3 Evaluation on Real-World Examples

We extensively evaluate our method against previous work on the proposed
URD. For fairness towards competing methods, which make stronger assump-
tions or expect different input data, we slightly adapt them, or run them multiple
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Input Transmission Reflection

Fig. 9: Applying the different algorithms to the whole image and cropping a
region (‘full’) is equivalent to applying the same algorithms to the cropped region
directly (‘crop’).

times with different parameters retaining only the best result. Due to space con-
straints, Figure 10 only shows seven of the results. We refer the reader to the
Supplementary for the rest of the results and for a detailed explanation about
how we adapted previous methods. One important remark is in order. Although
the images we use include opaque objects, i.e. the semi-reflector does not cover
the whole picture, the methods against which we compare are local: applying
the different algorithms to the whole image and cropping a region is equivalent
to applying the same algorithms to the cropped region directly, Figure 9.

Figure 10, Curved Window shows a challenging case in which the AOI is
significantly different from θB across the whole image, thus limiting the effect
of the polarizer in all of the inputs. Moreover, the glass surface is slanted and
locally curved, which breaks several of the assumptions of previous works. As
a result, other methods completely fail at estimating the reflection layer, the
transmission layer, or both. On the contrary, our method separates T̂ and R̂
correctly, with only a slight halo of the reflection in T̂ . In particular, notice the
contrast of the white painting with the stars, as compared with other methods.
While challenging, this scene is far from uncommon.

Figure 10, Bar shows another result on which our method performs signifi-
cantly better than most related works. On this example, the method by Schech-
ner et al . [2] produces results comparable to ours. However, recall that, to be fair
towards their method, we exhaustively search the parameter space and hand-
pick the best result. Another thing to note is that our method may introduce
artifacts in a region for which there is little or no information about the reflected
or transmitted layer in any of the inputs, such as the case in the region marked
with the red square on our T̂ .

We also show an additional comparison showing the superiority of our method
(Figure 10, Paintings) and a few more challenging cases. We note that in a few
examples, our method may fail at removing part of the “transmitted” objects
from R̂, as is the case in Figure 10, Chairs.
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Table 2: Result from the user
study. We report the average
recall-rate for each method.

Transmission Reflection
Method R@1 R@2 R@1 R@2

Ours 0.46 0.65 0.34 0.54

[2] 0.14 0.38 0.23 0.40
[3] 0.11 0.27 0.09 0.20
[4] 0.06 0.17 0.08 0.20
[7] 0.08 0.21 0.10 0.29
[17] 0.06 0.13 0.15 0.37

User Study Since we do not have the ground
truth for real data, we evaluate our method
against previous results by means of a thor-
ough user study. We asked 43 individuals not
involved with the project, to rank our re-
sults against the state-of-the-art [17,4,7,2,3].

In our study, we evaluate R̂ and T̂ as two sep-
arate tasks, because different methods may
perform better on one or the other. For each
task, the subjects were shown the three input
polarization images, and the results of each
method on the same screen, in randomized
order. They were given the task to rank the
results 1–6, which took, on average, 35 min-
utes per subject. We measure the recall rate
in ranking, R@k, i.e. the fraction of times a method ranks among the top-k
results. Table 2 reports the recall-rates. Two conclusions emerge from analyzing
the table. First, and perhaps expected, polarization-based methods outperform
the other methods. Second, our method ranks higher than related works by a
significant margin.

5 Conclusion

Separating the reflection and transmission layers from images captured in the
wild is still an open problem, as state-of-the-art methods fail on many real-world
images. Rather than learning to estimate the reflection and the transmission di-
rectly from the observations, we propose a deep learning solution that leverages
the properties of polarized light: it uses a Canonical Projection Layer, and it
learns the residuals of the reflection and transmission relative to the canonical
images. Another key ingredient to the success of our method is the definition
of an image-synthesis pipeline that can accurately reproduce typical nonideali-
ties observed in everyday pictures. We also note that the non-rigid deformation
procedure that we propose can be used for other stack-based methods where
non-static scenes may be an issue. To evaluate our method, we also propose the
Urban Reflection Dataset, which we will make available upon publication. Using
this dataset, we extensively compare our method against a number of related
works, both visually and by means of a user study, which confirms that our ap-
proach is superior to the state-of-the-art methods. Finally, the code for most of
the existing methods that separate reflection and transmission is not available:
to perform an accurate comparison, we re-implemented representative, state-of-
the-art works, and make our implementation of those algorithms available to the
community, to enable more comparisons.
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Fig. 10: Results on typical real-world scenes. Top pane: comparison with state-
of-the-art methods, bottom pane: additional results. More results are given in
the Supplementary.
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suppression. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2017)

9. Diamant, Y., Schechner, Y.Y.: Overcoming visual reverberations. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2008)

10. Shih, Y., Krishnan, D., Durand, F., Freeman, W.T.: Reflection removal using
ghosting cues. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2015)

11. Li, Y., Brown, M.S.: Exploiting reflection change for automatic reflection removal.
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV).
(2013)

12. Xue, T., Rubinstein, M., Liu, C., Freeman, W.T.: A computational approach
for obstruction-free photography. ACM Transactions on Graphics (SIGGRAPH)
(2015)

13. Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images con-
taining reflections and transparency. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2000)

14. Guo, X., Cao, X., Ma, Y.: Robust separation of reflection from multiple images. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2014)

15. Han, B.J., Sim, J.Y.: Reflection removal using low-rank matrix completion. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2017)

16. Kaftory, R., Zeevi, Y.Y.: Blind separation of time/position varying mixtures. IEEE
Transactions on Image Processing (TIP) (2013)

17. Farid, H., Adelson, E.H.: Separating reflections and lighting using independent
components analysis. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (1999)

18. Barros, A.K., Yamamura, T., Ohnishi, N., et al.: Separating virtual and real objects
using independent component analysis. IEICE Transactions on Information and
Systems (2001)

http://research.nvidia.com/publication/2018-09_Separating-Reflection-and
http://research.nvidia.com/publication/2018-09_Separating-Reflection-and


16 Wieschollek, Gallo, Gu, and Kautz.

19. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Sparse ica for blind
separation of transmitted and reflected images. International Journal of Imaging
Systems and Technology (2005)

20. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2017)

21. Mao, X., Shen, C., Yang, Y.: Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections. In: Advances in Neural
Information Processing Systems (NIPS). (2016)

22. Wieschollek, P., Schölkopf, M.H.B., Lensch, H.P.A.: Learning blind motion deblur-
ring. In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV). (2017)

23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomed-
ical image segmentation. arXiv preprint arXiv:1505.04597 (2015)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2016)

25. Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: Benchmarking single-image re-
flection removal algorithms. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV). (2017)

26. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million
image database for scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) (2017)

27. Fluxdata. http://www.fluxdata.com/products/

fd-1665p-imaging-polarimeter (Accessed on July 10, 2018)
28. Ricoh. https://www.ricoh.com/technology/tech/051_polarization.html (Ac-

cessed on July 10, 2018)
29. Polarcam. https://www.4dtechnology.com/products/polarimeters/polarcam/

(2018)
30. Gallo, O., Sen, P.: Stack-based algorithms for HDR capture and reconstruction.

In: High Dynamic Range Video. Elsevier (2016)
31. Wieschollek, P., Schölkopf, B., Lensch, H.P.A., Hirsch, M.: End-to-end learning

for image burst deblurring. In: Proceedings of the Asian Conference on Computer
Vision (ACCV). (2016)

32. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very
deep convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2016)

33. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

34. Schechner, Y.Y., Kiryati, N., Shamir, J.: Separation of transparent layers by polar-
ization analysis. In: Proceeding of the Scandinavian Conference on Image Analysis.
(1999)

http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter
http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter
https://www.ricoh.com/technology/tech/051_polarization.html
https://www.4dtechnology.com/products/polarimeters/polarcam/

