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Abstract. We study an open problem of artwork identification and propose a

new dataset dubbed Open Museum Identification Challenge (Open MIC). It con-

tains photos of exhibits captured in 10 distinct exhibition spaces of several muse-

ums which showcase paintings, timepieces, sculptures, glassware, relics, science

exhibits, natural history pieces, ceramics, pottery, tools and indigenous crafts.

The goal of Open MIC is to stimulate research in domain adaptation, egocentric

recognition and few-shot learning by providing a testbed complementary to the

famous Office dataset which reaches ∼90% accuracy. To form our dataset, we

captured a number of images per art piece with a mobile phone and wearable

cameras to form the source and target data splits, respectively. To achieve robust

baselines, we build on a recent approach that aligns per-class scatter matrices of

the source and target CNN streams. Moreover, we exploit the positive definite

nature of such representations by using end-to-end Bregman divergences and the

Riemannian metric. We present baselines such as training/evaluation per exhibi-

tion and training/evaluation on the combined set covering 866 exhibit identities.

As each exhibition poses distinct challenges e.g., quality of lighting, motion blur,

occlusions, clutter, viewpoint and scale variations, rotations, glares, transparency,

non-planarity, clipping, we break down results w.r.t. these factors.

1 Introduction

Domain adaptation and transfer learning are widely studied in computer vision and

machine learning [1, 2]. They are inspired by the human cognitive capacity to learn

new concepts from very few data samples (cf. training classifier on millions of labeled

images from the ImageNet dataset [3]). Generally, given a new (target) task to learn, the

arising question is how to identify the so-called commonality [4, 5] between this task

and previous (source) tasks, and transfer knowledge from the source tasks to the target

one. Therefore, one has to address three questions: what to transfer, how, and when [4].

Domain adaptation and transfer learning utilize annotated and/or unlabeled data

and perform tasks-in-hand on the target data e.g., learning new categories from few

annotated samples (supervised domain adaptation [6, 7]), utilizing available unlabeled

data (unsupervised [8, 9] or semi-supervised domain adaptation [10, 7]). Similar is one-

and few-shoot learning that trains robust class predictors from one/few samples [11].

∗Both authors contributed equally. Our dataset can be found at claret.wikidot.com.
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Recently, algorithms for supervised, semi-supervised and unsupervised domain adap-

tation such as Simultaneous Deep Transfer Across Domains and Tasks [7], Second- or

Higher-order Transfer (So-HoT) of knowledge [5] and Learning an Invariant Hilbert

Space [12], all combined with Convolutional Neural Networks (CNN) [13, 14], have

reached state-of-the-art results ∼90% accuracy on classic benchmarks such as the Of-

fice dataset [15]. Such good results are due to fine-tuning of CNNs on the large-scale

datasets such as ImageNet [3]. Indeed, fine-tuning of CNN is a powerful domain adap-

tation and transfer learning tool by itself [16, 17]. Thus, these works show saturation for

CNN features on the Office [15] dataset and its newer Office+Caltech 10 variant [18].

Thus, we propose a new dataset for the task of exhibit identification in museum

spaces that challenges domain adaptation/fine-tuning due to its significant domain shifts.

For the source domain, we captured the photos in a controlled fashion by Android

phones e.g., we ensured that each exhibit is centered and non-occluded in photos. We

prevented adverse capturing conditions and did not mix multiple objects per photo un-

less they were all part of one exhibit. We captured 2–30 photos of each art piece from

different viewpoints and distances in their natural settings.

For the target domain, we employed an egocentric setup to ensure in-the-wild cap-

turing process. We equipped 2 volunteers per exhibition with cheap wearable cameras

and let them stroll and interact with artworks at their discretion. Such a capturing setup

is applicable to preference and recommendation systems e.g., a curator takes training

photos of exhibits with an Android phone while visitors stroll with wearable cameras

to capture data from the egocentric perspective for a system to reason about the most

popular exhibits. Open MIC contains 10 distinct source-target subsets of images from

10 different kinds of museum exhibition spaces, each exhibiting various photometric

and geometric challenges, as detailed in Section 5.

To demonstrate the intrinsic difficulty of Open MIC, we chose useful baselines in

supervised domain adaptation detailed in Section 5. They include fine-tuning CNNs on

the source and/or target data and training a state-of-the-art So-HoT model [5] which we

equip with non-Euclidean distances [19, 20] for robust end-to-end learning.

We provide various evaluation protocols which include: (i) training/evaluation per

exhibition subset, (ii) training/testing on the combined set that covers all 866 identity

labels, (iii) testing w.r.t. various scene factors annotated by us such as quality of light-

ing, motion blur, occlusions, clutter, viewpoint and scale variations, rotations, glares,

transparency, non-planarity, clipping, etc..

Moreover, we introduce a new evaluation metric inspired by the following saliency

problem: As numerous exhibits can be captured in a target image, we asked our volun-

teers to enumerate in descending order the labels of most salient/central exhibits they

had interest in at a given time followed by less salient/distant exhibits. As we ideally

want to understand the volunteers’ preferences, the classifier has to decide which de-

tected exhibit is the most salient. We note that the annotation- and classification-related

processes are not free of noise. Therefore, we propose to not only look at the top-k

accuracy known from ImageNet [3] but to also check if any of top-k predictions are

contained within the top-n fraction of all ground-truth labels enumerated for a target

image. We refer to this as a top-k-n measure.
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(a) (b) (c)

Fig. 1: The pipeline. Figure 1a shows the source and target network streams which merge at the

classifier level. The classification and alignment losses ℓ and ~ take the data Λ and Λ
∗ from both

streams for end-to-end learning. Loss ~ aligns covariances on the manifold of S++ matrices. Fig.

1b (top) shows alignment along the geodesic path (ours). Fig. 1b (bottom) shows alignment via

the Euclidean dist. [5]. At the test time, we use the target stream and the classifier as in Figure 1c.

To obtain convincing baselines, we balance the use of an existing approach [5]

with our mathematical contributions1 and evaluations. The So-HoT model [5] uses the

Frobenius metric for partial alignment of within-class statistics obtained from CNNs.

The hypothesis behind such modeling is that the partially aligned statistics capture

so-called commonality [4, 5] between the source and target domains; thus facilitat-

ing knowledge transfer. For the pipeline in Figure 1, we use two CNN streams of the

VGG16 network [14] which correspond to the source and target domains. We build

scatter matrices, one per stream per class, from feature vectors of the fc layers. To ex-

ploit the geometry of positive definite matrices, we regularize and align scatters by the

Jensen-Bregman LogDet Divergence (JBLD) [19] in end-to-end manner and compare

to the Affine-Invariant Riemannian Metric (AIRM) [20, 21]. However, evaluations of

gradients of non-Euclidean distances are slow for large matrices. We show by the use

of Nyström projections that, with typical numbers of datapoints per source/target per

class being ∼50 in domain adaptation, evaluating such distances is fast and exact.

Our contributions are: (i) we collect/annotate a new challenging Open MIC dataset

with domains consisting of iamges taken by Android phones and wearable cameras; the

latter exhibiting a series of realistic distortions due to the egocentric capturing process,

(ii) we compute useful baselines, provide various evaluation protocols, statistics and

top-k-n results, as well as include breakdown of results w.r.t. annotated by us scene

factors, (iii) we use non-Euclidean JBLD and AIRM distances for end-to-end training of

the supervised domain adaptation approach and we exploit the Nyström projections to

make this training tractable. To our best knowledge, these distances have not been used

before in the supervised domain adaptation due to their high computational complexity.

2 Related Work

Below we describe the most popular datasets for the problem at hand and explain how

Open MIC differs. Subsequently, we describe related domain adaptation approaches.

Datasets. A popular dataset for evaluating against the effect of domain shift is the Office

dataset [15] which contains 31 object categories and three domains: Amazon, DSLR

1We deal with large covariance matrices in a principled manner–the use of Euclidean distance

is suboptimal in the light of Riemannian geometry. We make non-Euclidean distances tractable.
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and Webcam. The 31 categories in the dataset consist of objects commonly encountered

in the office setting, such as keyboards, file cabinets, and laptops. The Amazon domain

contains images which were collected from a website of on-line merchants. Its objects

appear on clean backgrounds and at a fixed scale. The DSLR domain contains low-noise

high resolution images of object captured from different viewpoints while Webcam

contains low resolution images. The Office dataset and its newer extension to Caltech 10

domain [18] are used in numerous domain adaptation papers [8, 7, 9, 6, 22, 23, 24, 12].

The Office dataset is primarily used for the transfer of knowledge about object cat-

egories between domains. In contrast, our dataset addresses the transfer of instances

between domains. Each domain of the Open MIC dataset contains 37–166 specific in-

stances to distinguish from (866 in total) compared to relatively low number of 31

classes in the Office dataset. Moreover, our target subsets are captured in an egocentric

manner e.g., we did not align objects to the center of images or control the shutter etc..

A recent large collection of datasets for domain adaptation was proposed in tech-

nical report [25] to study cross-dataset domain shifts in object recognition with use

of the ImageNet, Caltech-256, SUN, and Bing datasets. Even larger is the latest Vi-

sual Domain Decathlon challenge [26] which combines datasets such as ImageNet,

CIFAR–100, Aircraft, Daimler pedestrian classification, Describable textures, German

traffic signs, Omniglot, SVHN, UCF101 Dynamic Images, VGG–Flowers. In contrast,

we target the identity recognition across exhibits captured in egocentric setting which

vary from paintings to sculptures to glass to pottery to figurines. Many artworks in our

dataset are fine-grained and hard to distinguish from without the expert knowledge.

The Office-Home dataset contains domains such as the real images, product photos,

clipart and simple art impressions of well-aligned objects [27]. The Car Dataset [28]

contains ‘easily acquired’ ∼1M cars of 2657 classes from websites for the fine-grained

domain adaptation. Approach [29] uses 170 classes and ∼100 samples per class for

attribute-based domain adaptation. Our Open MIC however is not limited to instances

of cars or rigid objects. With 866 classes, Open MIC contains diverse 10 subsets with

paintings, timepieces, sculptures, science exhibits, glasswork, relics, ancient animals,

plants, figurines, ceramics, native arts etc.We captured varied materials, some of which

are non-rigid, may emit light, be in motion or appear under large scale and viewpoint

changes to form extreme yet realistic domain shifts. In some subsets, we also have large

numbers2 of frames for unsupervised domain adaptation.

Domain adaptation algorithms. Deep learning has been used in the context of domain

adaptation in numerous recent works e.g., [7, 9, 6, 22, 23, 24, 5]. These works establish

the so-called commonality between domains. In [7], the authors propose to align both

domains via the cross entropy which ‘maximally confuses’ both domains for super-

vised and semi-supervised settings. In [6], the authors capture the ‘interpolating path’

between the source and target domains using linear projections into a low-dimensional

subspace on the Grassman manifold. Method [22] learns the transformation between the

source and target by the deep regression network. Our model differs in that our source

and target network streams co-regularize each other via the JBLD or AIRM distance

2We follow the the traditional domain adaptation paradigm that ‘learning quickly from only

a few examples is definitely the desired characteristic to emulate in any brain-like system’ [30] in

contrast to recent big data approaches [28, 29] which take on a complementary adaptation regime.
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Dist./Ref. d2(Σ,Σ∗) Invar.
Tr.

Geo.
d if ▽Σ ∂d2(Σ,Σ∗)

∂ΣIneq. S+ if S+

Frobenius ||Σ−Σ
∗||2F rot. yes no fin. fin. 2(Σ−Σ

∗)

AIRM [20] ||Σ−
1

2 Σ
∗
Σ

−
1

2 ||2F aff./inv. yes yes ∞ ∞ −2Σ−
1

2 log(Σ−
1

2 Σ
∗
Σ

−
1

2 )Σ−
1

2

JBLD [19] log
∣

∣

∣

Σ+Σ∗

2

∣

∣

∣
− 1

2
log|ΣΣ

∗| aff./inv. no no ∞ ∞ (Σ+Σ
∗)−1− 1

2
Σ

−1

Table 1: Frobenius, JBLD and AIRM distances and their properties. These distances operate be-

tween a pair of arbitrary matrices Σ and Σ
∗which are points in S++ (and/or S+ for Frobenius).

that respects the non-Euclidean geometry of the source and target matrices (other dist.

can also be used [31, 32]). We align covariances [5] via a non-Euclidean distance.

For visual domains, the domain adaptation can be applied in the spatially-local sense

to target so-called roots of domain shift. In [24], the authors utilize so-called ‘domain-

ness maps’ which capture locally the degree of domain specificity. Our work is orthog-

onal to this method. Our ideas can be extended to a spatially-local setting.

Correlation between the source and target distributions are often used. In [33], a

subspace forms a joint representation for the data from different domains. Metric learn-

ing [34, 35] can be also applied. In [8] and [36], the source and target data are aligned in

an unsupervised setting via correlation and Maximum Mean Discrepancy (MMD), resp.

A baseline we use [5] can be seen as end-to-end trainable MMD with polynomial kernel

as class-specific source and target distributions are aligned by the kernelized Frobenius

norm on tensors. Our work is somewhat related. However, we first project class-specific

vector representations from the last fc layers of the source and target CNN streams to

the common space via Nyström projections for tractability and then we combine them

with the JBLD or AIRM distance to exploit the (semi)definite positive nature of scat-

ter matrices. We perform end-to-end learning which requires non-trivial derivatives of

JBLD/AIRM distance and Nyström projections for computational efficiency.

3 Background

Below we discuss scatter matrices, Nyström projections, the Jensen-Bregman LogDet

(JBLD) divergence [19] and the Affine-Invariant Riemannian Metric (AIRM) [20, 21].

3.1 Notations

Let x ∈ R
d be a d-dimensional feature vector. IN stands for the index set {1, 2, ..., N}.

The Frobenius norm of matrix is given by ‖X‖F=
√∑

m,n

X2
mn, where Xmn represents

the (m,n)-th element of X . The spaces of symmetric positive semidefinite and definite

matrices are Sd
+ and Sd

++. A vector with all coefficients equal one is denoted by 1 and

Jmn is a matrix of all zeros with one at position (m,n).

3.2 Nyström Approximation

In our work, we rely on Nyström projections, thus, we review their mechanism first.
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Proposition 1. Suppose X ∈ R
d×N and Z ∈ R

d×N ′

store N feature vectors and N ′

pivots (vectors used in approximation) of dimension d in their columns, respectively.

Let k : R
d×R

d → R be a positive definite kernel. We form two kernel matrices KZZ ∈
SN ′

++ and KZX ∈ R
N ′×N with their (i, j)-th elements being k(zi, zj) and k(zi,xj),

respectively. Then the Nyström feature map Φ̃ ∈ R
N ′×N, whose columns correspond to

the input vectors in X , and the Nyström approximation of kernel KXX for which

k(xi,xj) is its (i, j)-th entry, are given by:

Φ̃ = K−0.5
ZZ KZX and KXX ≈ Φ̃T Φ̃. (1)

Proof. See [37] for details.

Remark 1. The quality of approximation of (1) depends on the kernel k, data points X ,

pivots Z and their number N ′. In the sequel, we exploit a specific setting under which

KXX =Φ̃T Φ̃ which indicates no approximation loss.

3.3 Scatter Matrices

We make a frequent use of distances d2(Σ,Σ∗) that operate between covariances Σ≡
Σ(Φ) and Σ∗≡Σ(Φ∗) on feature vectors. Therefore, we provide a useful derivative of

d2(Σ,Σ∗) w.r.t. feature vectors Φ.

Proposition 2. Let Φ=[φ1, ...,φN ] and Φ∗=[φ∗
1, ...,φ

∗
N∗] be feature vectors of quan-

tity N and N∗ e.g., formed by Eq. (1) and used to evaluate Σ and Σ∗ with µ and µ∗

being the mean of Φ and Φ∗. Then derivatives of d2≡d2(Σ,Σ∗) w.r.t. Φ and Φ∗are:

∂d2(Σ,Σ∗)
∂Φ

= 2
N

∂d2

∂Σ(Φ−µ1
T ),

∂d2(Σ,Σ∗)
∂Φ∗

= 2
N∗

∂d2

∂Σ∗(Φ∗−µ∗
1
T ). (2)

Then let Z be some projection matrix. For Φ′=Z[φ1, ...,φN ] and Φ′∗=Z[φ∗
1, ...,φ

∗
N∗]

with covariances Σ′, Σ′∗, means µ′, µ′∗and d′2≡d2(Σ′,Σ′∗), we obtain:

∂d2(Σ,Σ∗)
∂Φ

= 2ZT

N
∂d′2

∂Σ′(Φ′−µ′
1
T ),

∂d2(Σ,Σ∗)
∂Φ∗

=− 2ZT

N∗

∂d′2

∂Σ′∗(Φ′∗−µ′∗
1
T ). (3)

Proof. See our supplementary material.

3.4 Non-Euclidean Distances

In Table 1, we list the distances d with derivatives w.r.t. Σ used in the sequel. We

indicate properties such as invariance to rotation (rot.), affine mainpulations (aff.) and

inversion (inv.). We indicate which distances meet the triangle inequality (Tr. Ineq.)

and which are geodesic distances (Geo.). Lastly, we indicate if the distance d and its

gradient ▽Σ are finite (fin.) or infinite (∞) for S+ matrices. This last property indicates

that JBLD and AIRM distances require some regularization as our covariances are S+.

4 Problem Formulation

In this section, we equip the supervised domain adaptation approach So-HoT [5] with

the JBLD and AIRM distances and the Nyström projections to make evaluations fast.
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4.1 Supervised Domain Adaptation

Suppose IN and IN∗ are the indexes of N source and N∗ target training data points.

INc
and IN∗

c
are the class-specific indexes for c∈IC , where C is the number of classes

(exhibit identities). Furthermore, suppose we have feature vectors φ from an fc layer of

the source network stream, one per image, and their associated labels y. Such pairs are

given by Λ≡ {(φn, yn)}n∈IN
, where φn ∈ R

d and yn ∈ IC , ∀n ∈ IN . For the target

data, by analogy, we define pairs Λ∗≡ {(φ∗
n, y

∗
n)}n∈I∗

N
, where φ∗∈ R

d and y∗n∈ IC ,

∀n ∈ I∗
N . Class-specific sets of feature vectors are given as Φc ≡ {φc

n}n∈INc
and

Φ∗
c≡ {φ∗c

n }n∈IN∗
c
, ∀c ∈ IC . Then Φ≡ (Φ1, ...,ΦC) and Φ∗≡ (Φ∗

1, ...,Φ
∗
C). We write

the asterisk in superscript (e.g. φ∗) to denote variables related to the target network

while the source-related variables have no asterisk. Our problem is posed as a trade-

off between the classifier and alignment losses ℓ and ~. Figure 1 shows our setup. Our

loss ~ depends on two sets of variables (Φ1, ...,ΦC) and (Φ∗
1, ...,Φ

∗
C) – one set per

network stream. Feature vectors Φ(Θ) and Φ∗(Θ∗) depend on the parameters of the

source and target network streams Θ and Θ∗ that we optimize over. Σc≡Σ(Π(Φc)),
Σ∗

c ≡Σ(Π(Φ∗
c)), µc(Φ) and µ∗

c(Φ
∗) denote the covariances and means, respectively,

one covariance/mean pair per network stream per class. Specifically, we solve:

argmin
W,W ∗,Θ,Θ∗

s. t. ||φn||
2

2
≤τ,

||φ∗

n′ ||
2

2
≤τ,

∀n∈IN,n′∈I∗

N

ℓ(W,Λ)+ℓ(W ∗,Λ∗)+η||W−W ∗||2F + (4)

σ1

C

∑

c∈IC

d2g (Σc,Σ
∗
c )+

σ2

C

∑

c∈IC

||µc−µ
∗
c ||

2
2.

︸ ︷︷ ︸

~(Φ,Φ∗)

Note that Figure 1a indicates by the elliptical/curved shape that ~ performs the align-

ment on the S+ manifold along exact (or approximate) geodesics. For ℓ, we employ a

generic Softmax loss. For the source and target streams, the matrices W ,W ∗∈R
d×C

contain unnormalized probabilities. In Equation (4), separating the class-specific dis-

tributions is addressed by ℓ while attracting the within-class scatters of both network

streams is handled by ~. Variable η controls the proximity between W and W ∗ which

encourages the similarity between decision boundaries of classifiers. Coeffs. σ1, σ2

control the degree of the cov. and mean alignment, τ controls the ℓ2-norm of vectors φ.

The Nyström projections are denoted by Π . Table 1 indicates that backpropagation

on the JBLD and AIRM distances involves inversions of Σc and Σ∗ for each c ∈ IC
according to (4). As Σc and Σ∗ are formed from say 2048 dimensional feature vectors

of the last fc layer, inversions are too costly to run fine-tuning e.g., 4s per iteration is

prohibitive. Thus, we show next how to combine the Nyström projections with dg .

Proposition 3. Let us chooseZ=X= [Φ,Φ∗] for pivots and source/target feature vec-

tors, kernel k to be linear, and substitute them into Eq. (1). Then we obtain Π(X) =
(ZTZ)−0.5ZTX = ZX=(ZTZ)0.5=(XTX)0.5 where Π(X) is a projection of X

on itself that is isometric e.g., distances between column vectors of (XTX)0.5 corre-

spond to distances of column vectors in X . Thus, Π(X) is an isometric transformation

w.r.t. distances in Table 1, that is d2g(Σ(Φ),Σ(Φ∗))=d2g(Σ(Π(Φ)),Σ(Π(Φ∗))).

Proof. Firstly, we note that the following holds:

KXX =Π(X)TΠ(X)=(XTX)0.5(XTX)0.5=XTX. (5)
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Fig. 2: Source subsets of Open MIC. (Top) Paintings (Shn), Clocks (Clk), Sculptures (Scl), Sci-

ence Exhibits (Sci) and Glasswork (Gls). As 3 images per exhibit demonstrate, we covered differ-

ent viewpoints and scales during capturing. (Bottom) 3 different art pieces per exhibition such as

Cultural Relics (Rel), Natural History Exhibits (Nat), Historical/Cultural Exhibits (Shx), Porce-

lain (Clv) and Indigenous Arts (Hon). Note the composite scenes of Relics, fine-grained nature

of Natural History and Cultural Exhibits and non-planarity of exhibits.

Note that Π(X)=ZX projects X into a more compact subspace of size d′=N+N∗

if d′ ≪ d which includes the spanning space for X by construction as Z = X . Eq.

(5) implies that Π(X) performs at most rotation on X as the dot-product (used to

obtain entries of KXX ) just like the Euclidean distance is rotation-invariant only e.g.,

has no affine invariance. As spectra of (XTX)0.5 and X are equal, this implies Π(X)
performs no scaling, shear or inverse. Distances in Table 1 are all rotation-invariant,

thus d2g(Σ(Φ),Σ(Φ∗))=d2g(Σ(Π(Φ)),Σ(Π(Φ∗))).

A strict proof shows that Z is a composite rotation V UT if SVD of Z=UλV T :

Z=(ZTZ)−0.5ZT =(V λUTUλV T )−0.5 V λUT= V λ−1V TV λUT=V UT. (6)

In practice, for each class c ∈ IC , we choose X = Z = [Φc,Φ
∗
c ]. Then, as

Z[Φ,Φ∗] = (XTX)0.5, we have Π(Φ)= [y1, ...,yN ] and Π(Φ∗)= [yN+1, ...,yN+N∗]
where Y = [y1, ...,yN+N∗] = (XTX)0.5. With typical N ≈ 30 and N∗ ≈ 3, we obtain

covariances of side sized′≈33 rather than d=4096.

Proposition 4. Typically, the inverse square root (XTX)−0.5 of Z(X) can be only

differentiated via costly SVD. However, ifX = [Φ,Φ∗], Z(X) = (XTX)−0.5XT and

Π(X)=Z(X)X as in Prop. 3, and if we consider the chain rule we require:

∂d2

g(Σ(Π(Φ)),Σ(Π(Φ∗)))

∂Σ(Π(Φ)) ⊙ ∂Σ(Π(Φ))
∂Π(Φ) ⊙ ∂Π(Φ)

∂Φ
, 3 (7)

then Z(X) can be treated as a constant in differentiation:

∂Π(X)
∂Xmn

= ∂Z(X)X
∂Xmn

=Z(X) ∂X
∂Xmn

=Z(X)Jmn. (8)

Proof. It follows from the rotation-invariance of the Euclidean, JBLD and AIRM dis-

tances. Let us write Z(X)=R(X)=R, where R is a rotation matrix. Thus, we have:

d2g(Σ(Π(Φ)),Σ(Π(Φ∗)))=d2g(Σ(RΦ),Σ(RΦ∗))=d2g(RΣ(Φ)RT,RΣ(Φ∗)RT ).
Therefore, even if R depends on X , the distance d2g is unchanged by any choice of valid

R i.e., for the Frobenius norm we have: ||RΣRT−RΣ∗RT ||2F =Tr
(
RATRTRART

)
=
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Fig. 3: Examples of the target subsets of Open MIC. From left to right, each column illustrates

Paintings (Shn), Clocks (Clk), Sculptures (Scl), Science Exhibits (Sci) and Glasswork (Gls), Cul-

tural Relics (Rel), Natural History Exhibits (Nat), Historical/Cultural Exhibits (Shx), Porcelain

(Clv) and Indigenous Arts (Hon). Note the variety of photometric and geometric distortions.

Tr
(
RTRATA

)
=Tr

(
ATA

)
= ||Σ−Σ∗||2F , where A=Σ−Σ∗. Therefore, we obtain:

∂||RΣ(Φ)RT−RΣ(Φ∗)RT||2F
∂RΣ(Φ)RT ⊙ ∂RΣ(Φ)RT

∂Σ(Φ) ⊙ ∂Σ(Φ)
∂Φ

=
∂||Σ(Φ)−Σ(Φ∗)||2F

∂Σ(Φ) ⊙ ∂Σ(Φ)
∂Φ

3which

completes the proof.

Complexity. The Frobenius norm between covariances plus their computation have

combined complexity O((d′+1)d2), where d′=N+N∗. For non-Euclidean distances,

we take into account the dominant cost of evaluating the square root of matrix and/or

inversions by SVD, as well as the cost of building scatter matrices. Thus, we have

O((d′+1)d2 + dω), where constant 2<ω<2.376 concerns complexity of SVD. Lastly,

evaluating the Nyström projections, building covariances and running a non-Euclidean

distance enjoys O(d′
2
d+ (d′+1)d′

2
+ d′

ω
)=O(d′

2
d) complexity for d≫d′.

For typical d′= 33 and d = 2048, the non-Euclidean distances are 1.7× slower4

than the Frobenius norm. However, non-Eucldiean distances combined with our projec-

tions are 210× and 124× faster than naively evaluated non-Eucldiean distances and the

Frobenius norm. This cuts the time of each training from a couple of days to 6–8 hours.

Moreover, while unsupervised methods such as CORAL [8] align only two covariances

(source and target), our most demanding supervised protocol operates on 866 classes

which requires aligning 2×866 covariances. For naive alignment via JBLD, we need 6

days (or much more4) to complete. With Nyström projections, JBLD takes ∼70 hours.

5 Experiments

Below we detail our CNN setup, discuss the Open MIC dataset and our evaluations.

Setting. At the training and testing time, we use the setting shown in Figures 1a and

1c, respectively. The images in our dataset are portrait or landscape oriented. Thus,

we extract 3 square patches per image that cover its entire region. For training, these

patches are training data points. For testing, we average over 3 predictions from a group

of patches to label image. We briefly compare VGG16 [14] and GoogLeNet [40], and

the Eucldiean, JBLD and AIRM distances on subsets of Office and Open MIC. Table 3

3For simplicity of notation, ⊙ denotes the summation over multiplications in chain rules.
4For CPU as SVD of large matrices (d≥2048) in CUDA BLAS is close to intractable.
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shows that VGG16 and GoogLeNet yield similar scores while JBLD and AIRM beat

the Euclidean distance. Thus, we employ VGG16 with JBLD in what follows.

Parameters. Both streams are pre-trained on ImageNet [3]. We set non-zero learning

rates on the fully-connected and the last two convolutional layers of each stream. Fine-

tuning of both streams takes 30–100K iterations. We set τ to the average value of the ℓ2
norm of fc feature vectors sampled on ImageNet and the hyperplane proximity η = 1.

Inverse in Z(X)=(XTX)−0.5XT and matrices Σ and Σ∗ are regularized by ∼1e-6

on diagonals. Lastly, we set σ1 and σ2 between 0.005–1 to perform cross-validation.

Office. It has DSLR, Amazon and Webcam domains. For brevity, we check if our

pipeline matches results in the literature on the Amazon-Webcam domain shift (A�W).

Open MIC. The proposed dataset contains 10 distinct source-target subsets of images

from 10 different kinds of museum exhibition spaces which are illustrated in Figures

2 and 3, resp.; see also [41]. They include Paintings from Shenzhen Museum (Shn),

the Clock and Watch Gallery (Clk) and the Indian and Chinese Sculptures (Scl) from

the Palace Museum, the Xiangyang Science Museum (Sci), the European Glass Art

(Gls) and the Collection of Cultural Relics (Rel) from the Hubei Provincial Museum,

the Nature, Animals and Plants in Ancient Times (Nat) from Shanghai Natural History

Museum, the Comprehensive Historical and Cultural Exhibits from Shaanxi History

Museum (Shx), the Sculptures, Pottery and Bronze Figurines from the Cleveland Mu-

seum of Arts (Clv), and Indigenous Arts from Honolulu Museum Of Arts (Hon).

For the target data, we annotated each image with labels of art pieces visible in it.

The wearable cameras were set to capture an image every 10s and operated in-the-wild

e.g., volunteers had no control over shutter, focus, centering. Thus, our data exhibits

many realistic challenges e.g., sensor noises, motion blur, occlusions, background clut-

ter, varying viewpoints, scale changes, rotations, glares, transparency, non-planar sur-

faces, clipping, multiple exhibits, active light, color inconstancy, very large or small

Shn Clk Scl Sci Gls Rel Nat Shx Clv Hon Total
Inst. 79 113 41 37 98 100 111 166 81 40 866
Src+ 566 413 225 637 601 775 763 2928 531 1121 8560
Src. 417 650 160 391 575 587 695 2697 503 970 7645
Tgt+ 515 323 130 1692 964 1229 868 776 682 417 7596
Tgt. 404 305 112 1342 863 863 668 546 +307K fr 625 364 +73K fr 6092 +380K fr

Table 2: Unique exhibit instances (Inst.) and numbers of images of Open MIC in the source (Src.)

and target (Tgt.) subsets plus backgrounds (Src+) and (Tgt+). We also have ∼380K frames (fr).

Alex VGG16 GoogLe
Net Net

S+T 82.4 88.66 88.92
So 84.5 89.45 89.70

JBLD 85.6 90.80 91.33
AIRM 85.2 90.72 91.20

DLID [6] 51.9
DeCAF6 S+T [38] 80.7

DaNN [39] 53.6
Source CNN [7] 56.5
Target CNN [7] 80.5

Source+Target CNN [7] 82.5
Dom. Conf.+Soft Labs. [7] 82.7

So JBLD AIRM
sp1 55.8 57.7 57.2
sp2 58.9 58.9 58.9
sp3 69.6 71.4 71.4
sp4 53.8 57.7 57.7
sp5 58.3 60.4 60.4
acc. 59.3 61.2 61.1

Table 3: Verification of baseline setups. (Left) Office (A�D domain shift) on AlexNet, VGG16

and GoogLeNet streams. We compare baseline fine-tuning on the combined source+target do-

mains (S+T), second-order (So) Euclidean-based method [5] and our JBLD/AIRM dist. (Middle)

State of the art. (Right) Open MIC on (Clk) domain shift and VGG16.
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exhibits, to name but a few phenomena visible in Figure 3. The numbers and statistics

regarding the Open MIC dataset are given in Table 2. Every subset contains 37–166 ex-

hibits to identify and 5 train, val., and test splits. In total, our dataset contains 866 unique

exhibit labels, 8560 source (7645 exhibits and 915 backgrounds) and 7596 target (6092

exhibits and 1504 backgrounds including a few of unidentified exhibits) images.

Baselines. We provide baselines such as (i) fine-tuning CNNs on the source subsets

(S) and testing on the randomly chosen target splits, (ii) fine tuning on target only (T)

and evaluating on remaining disjoint target splits, (iii) fine-tuning on the source+target

(S+T) and evaluating on remaining disjoint target splits, (iv) training state-of-the-art

domain adaptation So-HoT algorithm [5] equipped by us with non-Euclidean distances.

We include evaluation protocols: (i) training/eval. per exhibition subset, (ii) train-

ing/testing on the combined set with all 866 identity labels, (iii) testing w.r.t. scene

factors annotated by us (Section 5.2, Challenge III), (iv) unsupervised domain adapt.

5.1 Comparison to the State of the Art

Firstly, we validate that our reference method performs on the par or better than the

state-of-the-art approaches. Table 3 shows that the JBLD and AIRM distances outper-

form the Euclidean-based So-HoT method (So) [5] by ∼1.6% (A�D, Office, VGG16),

0.9% (Clk, Open MIC, VGG16) and recent approaches e.g., [7] by ∼ 2.9% accuracy

(A�D, Office, AlexNet). We also observe that GoogLeNet outperforms the VGG16-

based model by ∼0.5%. Having validated our model, we opt to evaluate our proposed

Open MIC dataset on VGG16 streams for consistency with the So-HoT model [5].

Supervised vs. unsupervised domain adaptation. The goal of the supervised domain

adaptation is to use few source and target training samples per class, all labeled, to

mimic human abilities of learning from very few samples. In contrast, the unsupervised

S T S+T JBLD S T S+T JBLD S T S+T JBLD S T S+T JBLD S T S+T JBLD
sp1

S
h
n

45.3 45.3 59.0 60.0

C
lk

55.8 51.9 55.8 57.7

S
cl

56.5 60.9 65.2 65.2

S
ci

59.3 58.9 65.6 65.8

G
ls

17.6 69.7 73.1 78.6
sp2 48.4 52.6 53.7 62.1 55.4 44.6 50.0 58.9 44.4 50.0 44.4 50.0 56.9 57.2 67.1 69.1 15.2 75.5 76.2 76.9
sp3 46.1 52.7 60.4 64.8 58.9 58.9 67.9 71.4 55.6 38.9 44.4 44.4 69.9 62.0 65.7 68.2 17.0 69.1 72.2 74.0
sp4 49.5 50.5 54.8 64.5 51.9 48.1 46.1 57.7 55.0 55.0 55.0 50.0 58.1 59.2 64.2 66.3 12.2 67.6 69.7 70.0
sp5 49.5 57.0 63.4 69.9 62.5 41.7 60.4 60.4 56.2 56.2 62.5 62.5 57.3 53.3 61.5 64.5 17.1 69.3 71.7 72.7

top-1 47.7 51.6 58.3 64.3 56.9 49.1 56.0 61.2 53.5 52.2 54.3 54.4 58.5 58.1 64.9 66.8 15.8 70.2 72.6 74.4
top-1-5 48.2 54.2 60.2 66.4 58.9 56.3 60.3 68.9 54.7 55.4 57.3 58.4 60.2 61.7 67.8 70.2 19.4 85.1 86.0 89.0
top-5 64.5 68.8 76.9 81.6 76.7 63.8 78.2 86.9 67.4 66.6 70.0 70.0 83.3 82.7 86.0 88.6 31.1 90.7 91.0 92.5

top-5-5 66.0 73.3 79.5 84.2 77.8 75.0 82.7 91.0 69.4 69.8 71.1 72.0 85.6 86.3 89.4 91.3 42.7 94.5 94.8 95.8
Avgk
top-k-k

59.0 63.4 71.0 76.6 69.4 65.6 73.6 81.2 63.7 62.5 65.1 65.1 75.3 76.0 80.7 82.5 31.2 87.9 88.9 90.5

S T S+T JBLD S T S+T JBLD S T S+T JBLD S T S+T JBLD S T S+T JBLD
sp1

R
el

18.5 65.0 63.3 66.3

N
a
t

38.0 56.2 52.6 58.8

S
h
x

33.3 43.2 31.5 58.6

C
lv

47.4 65.8 66.2 71.4

H
o
n

65.6 71.1 70.3 75.8
sp2 16.5 65.7 63.0 68.0 39.9 52.5 52.5 59.6 31.8 39.8 27.4 47.8 47.0 70.2 65.1 72.2 63.9 67.2 70.5 74.6
sp3 19.1 70.4 67.4 70.7 43.7 56.2 59.4 59.9 25.7 47.7 31.2 47.7 49.7 64.1 61.5 67.7 68.5 70.2 71.8 79.0
sp4 18.3 68.5 62.8 67.1 41.8 59.8 62.0 67.9 33.0 38.8 26.2 44.7 48.3 63.0 64.0 68.5 67.8 63.6 79.3 76.9
sp5 18.1 61.0 59.3 62.6 44.6 62.0 63.0 67.4 25.7 35.8 28.4 44.0 42.3 62.8 54.1 65.8 67.5 65.8 75.0 80.0

top-1 18.1 66.1 63.2 67.0 41.6 57.3 57.9 62.7 29.9 41.1 29.0 48.5 47.0 65.2 62.2 69.1 66.7 67.6 73.4 77.3
top-1-5 24.0 76.8 73.2 79.5 43.5 62.8 61.9 67.7 31.5 47.7 31.9 56.3 50.8 69.5 66.6 73.9 70.2 70.3 76.3 79.7
top-5 26.2 87.1 85.8 90.3 60.6 79.3 75.5 84.3 51.6 62.5 51.2 75.0 65.3 84.3 79.9 87.7 82.1 85.2 88.3 90.0

top-5-5 28.7 90.0 89.4 93.7 65.3 82.8 80.1 87.0 54.9 67.3 54.8 77.6 70.5 89.2 84.4 91.0 88.1 88.8 91.7 92.7
Avgk
top-k-k

25.2 82.8 80.5 85.2 55.7 74.0 72.4 79.6 45.1 57.1 44.5 66.8 61.5 80.6 76.5 83.5 79.7 81.0 84.5 86.7

Table 4: Challenge I. Open MIC performance on the 10 subsets for data 5 splits. Baselines (S),

(T) and (S+T) are given as well as our JBLD approach. We report top-1, top-1-5, top-5-1, top-5-5

accuracies and the combined scores Avgk top-k-k. See Section5.2 for details.
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case can use large numbers of unlabeled target training samples. We ran our code on the

Office-Home dataset [27] which has no supervised protocol. We chose Cl�Ar/Pr�

Ar domain shifts, 20 source and 3 target train images per class (all labeled) which

yielded 48.1/49.3 (So) and 49.2/50.5% (JBLD) accuracy. Unsupervised approach [27]

that used all available target datapoints yielded 34.69/29.91% accuracy.

5.2 Open MIC Challenge

Below we detail our challenges on the Open MIC dataset and present our results.

Challenge I. Below we run our supervised domain adaptation with the JBLD distance

per subset. We prepare 5 training, validation and testing splits. For the source data, we

use all samples available per class. For the target data, we use 3 samples per class for

training and validation, respectively, and the rest for testing.

We report top-1 and top-5 accuracies. Moreover, as our target images often contain

multiple exhibits, we ask a question whether any of top-k predictions match any of top-

n image labels ordered by our expert volunteers according to the perceived saliency. If

so, we count it as a correctly recognized image. We count these valid predictions and

normalize by the total number of testing images. We denote this measure as top-k-n

where k, n∈I5. Lastly, we indicate an area-under-curve type of measure Avgk top-k-k

which rewards correct recognition of the most dominant object in the scene and offers

some reward if the order of top predictions is wrong (less dominant objects pred. first).

We divided Open MIC into Shn, Clk, Scl, Sci, Gls, Rel, Nat, Shx, Clv and Hon sub-

sets to allow short 6–8 hours long runs per experiment. We ran 150 jobs on (S), (T) and

(S+T) baselines and 300 jobs on JBLD: 5 splits ×10 subsets ×6 hyperp. choices. Table

4 shows that the exhibits in the Comprehensive Historical and Cultural Exhibits (Shx)

and the Sculptures (Scl) were the hardest to identify given 48.5 and 54.4% top-1 accu-

racy. This is consistent with volunteers’ reports that both exhibitions were crowded, the

lighting was dim, exhibits were occluded, fine-grained and non-planar. Moreover, train-

ing on the source and testing on target baseline (S) scored mere 15.8 and 18.1% top-1

sp1 sp2 sp3 sp4 sp5 top-1 top-1-5 top-5 top-5-5
Avgk
top-k-k

S 33.9 34.2 34.8 34.2 33.8 34.2 36.0 49.2 53.7 46.0
T 56.9 55.9 58.7 56.0 55.2 56.5 64.1 76.5 80.6 72.5

S+T 56.4 55.2 57.1 56.3 54.4 55.9 62.5 75.8 79.2 71.6
So 64.2 62.4 65.0 62.7 60.0 62.8 70.4 84.0 88.5 79.5

JBLD 65.7 63.8 65.7 63.7 62.0 64.2 72.0 85.7 88.6 80.8

Table 5: Challenge II. Open MIC performance on the combined set for data 5 splits. Baselines

(S), (T) and (S+T) are given as well as second-order (So) method [5] and our JBLD approach.

clp lgt blr glr bgr ocl rot zom vpc sml shd rfl ok
S 41.4 17.0 23.8 27.3 40.3 34.5 29.7 52.7 33.4 14.2 10.4 32.3 65.5
T 56.2 38.2 42.6 56.1 57.9 49.6 58.3 60.4 50.3 29.6 59.2 60.7 64.3

S+T 56.6 34.6 39.8 54.9 56.2 48.3 56.7 65.9 48.7 27.3 56.5 59.0 72.6
JBLD 65.3 48.6 51.6 64.0 65.9 56.4 65.0 70.0 58.6 34.1 70.4 67.5 81.0

Table 6: Challenge III. Open MIC performance on the combined set w.r.t. 12 factors detailed in

Section 5.2. Top-1 accuracies for baselines (S), (T), (S+T), and for our JBLD appr. are listed.
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accuracy on the Glass (Gls) and Relics (Rel) due to extreme domain shifts. The easiest

to identify were the Sculptures, Pottery and Bronze Figurines (Clv) and the Indigenous

Arts (Hon) as both exhibitions were spacious with good lighting. The average top-1 ac-

curacy across all subsets on JBLD is 64.6%. Averages over baselines (S), (T) and (S+T)

are 43.9, 57.8, and 59.2% top-1 acc. To account for uncertainty of saliency-based label-

ing (classifier confusing which exhibit to label), we report our proposed average top-1-5

acc. as 71.0%. Our average combined score Avgk top-k-k is 79.8%. The results show

that Open MIC challenges CNNs due to in-the-wild capture with wearable cameras.

Challenge II. Below we evaluate the combined set covering 866 exhibit identities. In

this setting, a single experiment runs 80–120 hours. We ran 15 jobs on (S), (T) and (S+T)

baselines and 60 jobs on (So) and JBLD: 2 distances ×5 splits ×6 hyperp. choices.

Table 5 shows that our JBLD approach scores 64.2% top-1 accuracy and outperforms

baselines (S), (T) and (S+T) by 30, 7.7 and 8.3%. Fine-tuning CNNs on the source and

testing on target (S) is a poor performer due to the large domain shift in Open MIC.

Challenge III. For this challenge, we break down performance on the combined set

covering 866 exhibit identities w.r.t. the following 12 factors: object clipping (clp), low

lighting (lgt), blur (blr), light glares (glr), background clutter (bgr), occlusions (ocl),

in-plane rotations (rot), zoom (zom), tilted viewpoint (vpc), small size/far away (sml),

object shadows (shd), reflections (rfl) and the clean view (ok). Table 6 shows results

averaged over 5 data splits. We note that JBLD outperforms baselines. The factors most

affecting the supervised domain adaptation are the small size (sml) of exhibits/distant

view, low light (lgt) and blur (blr). The corresponding top-1 accuracies of 34.1, 48.6
and 51.6% are below our average top-1 accuracy of 64.2% listed in Table 5. In contrast,

images with shadows (shd), zoom (zom) and reflections (rfl) score 70.4, 70.0 and 67.5%
top-1 accuracy (above avg. 64.2%). Our wearable cameras captured also a few of clean

shots scoring 81.0% top-1 accuracy. Thus, we claim that domain adaptation methods

need to evolve to deal with such adverse factors. Our suppl. material presents further

analysis of combined factors. Figure 4 shows hard to recognize instances.

Moreover, Table 7 present results (left) and the image counts (right) w.r.t. pairs of

factors co-occurring together. The combination of (sml) with (glr), (blr), (bgr), (lgt),

(rot) and (vpc) results in 13.5, 21.0, 29.9, 31.2, 32.6 and 33.2% mean top-1 accuracy,

respectively. Therefore, these pairs of factors affect the quality of recognition the most.

Challenge IV. For unsupervised domain adaptation algorithms, we use all source data

(labeled instances) for training and all target data as unlabeled input. A previously, we

extract 3 patches per image and train Invariant Hilbert Space (IHS) [12], Uns. Domain

Adaptation with Residual Transfer Networks (RTN) [42] and Joint Adaptation Networks

(JAN) [43]. Table 8 shows results on the Open MIC dataset on the 10 subsets. Unsuper-

Fig. 4: Examples of difficult to identify exhibits from the target domain in the Open MIC dataset.
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vised (IHS), (RTN) and (JAN) scored on average 48.3, 49.1 and 52.1%. For split (Gls),

which yielded 26.0, 30.5 and 34.2% top-1 accuracy, an extreme domain shift prevented

algorithms from successful adaptation. On (Sci), unsupervised (IHS), (RTN) and (JAN)

scored 63.3, 62.2 and 69.8%. On (Hon), they scored 67.3, 71.1 and 72.5%. For simple

domain shifts, unsupervised domain adaptation yields visible improvements. For harder

domain shifts, supervised JBLD from Table 4 works much better. Lastly, for (Hon) and

(Shx) splits and (JAN), we added 4.3K and 13K unlabeled target frames (1 photo/s) and

got 74.0% and 32.6% accuracy–this is a 1.5 and 0.6% increase over the low number of

target images – adding many unsupervised images has only a small positive impact.

6 Conclusions

We have collected, annotated and evaluated a new challenging Open MIC dataset with

the source and target domains formed by images from Android and wearable cameras,

respectively. We covered 10 distinct exhibition spaces in 10 different museums to col-

lect a realistic in-the-wild target data in contrast to typical photos for which the users

control the shutter. We have provided a number of useful baselines e.g., breakdowns

of results per exhibition, combined scores and analysis of factors detrimental to do-

main adaptation and recognition. Unsupervised domain adaptation and few-shot learn-

ing methods can also be compared to our baselines. Moreover, we proposed orthogonal

improvements to the supervised domain adaptation e.g., we integrated non-trivial non-

Euclidean distances and Nyström projections for better results and tractability. We will

make our data and evaluation scripts available to the researchers.

Acknowledgement. Big thanks go to Ondrej Hlinka and (Tim) Ka Ho from the Scien-

tific Computing Services at CSIRO for their can-do attitude and help with Bracewell.

∩ clp lgt blr glr bgr ocl rot zom vpc sml shd rfl
all 65.3 48.6 51.6 64.0 65.9 56.4 65.0 70.0 58.6 34.1 70.4 67.5
clp 65.3 55.1 51.8 67.5 66.8 61.5 67.2 68.1 62.3 45.5 72.7 67.0
lgt 55.1 48.6 41.0 43.6 59.8 43.5 48.3 44.4 46.1 31.2 57.9 80.9
blr 51.8 41.0 51.6 48.7 48.6 37.0 52.3 64.2 43.3 21.0 39.1 59.4
glr 67.5 43.6 48.7 64.0 62.3 47.9 65.1 67.1 60.4 13.5 50.0 64.5
bgr 66.8 59.8 48.6 62.3 65.9 59.6 66.6 76.1 61.2 29.9 79.6 73.2
ocl 61.5 43.5 37.0 47.9 59.6 56.4 55.6 75.4 55.9 40.7 78.8 64.8
rot 67.2 48.3 52.3 65.1 66.6 55.6 65.0 75.5 57.6 32.6 73.4 70.4
zom 68.1 44.4 64.2 67.1 76.1 75.4 75.5 70.0 66.3 n/a 83.3 69.7
vpc 62.3 46.1 43.3 60.4 61.2 55.9 57.6 66.3 58.6 33.2 64.1 61.6
sml 45.5 31.2 21.0 13.5 29.9 40.7 32.6 n/a 33.2 34.1 n/a 46.4
shd 72.7 57.9 39.1 50.0 79.6 78.8 73.4 83.3 64.1 n/a 70.4 80.0
rfl 67.0 80.9 59.4 64.5 73.2 64.8 70.4 69.7 61.6 46.4 80.0 67.5

∩ clp lgt blr glr bgr ocl rot zom vpc sml shd rfl
all 5136 335 1728 1346 2290 1529 7344 2278 4571 557 125 2000
clp 5136 216 770 572 1415 873 3401 1803 2549 167 66 1009
lgt 216 335 105 55 92 69 232 9 234 16 38 21
blr 770 105 1728 240 323 235 1348 240 820 152 23 330
glr 572 55 240 1346 183 143 1054 204 640 52 12 155
bgr 1415 92 323 183 2290 565 1604 464 1409 227 49 395
ocl 873 69 235 143 565 1529 1090 183 978 253 33 219
rot 3401 232 1348 1054 1604 1090 7344 1380 3292 405 113 1522
zom 1803 9 240 204 464 183 1380 2278 611 0 18 535
vpc 2549 234 820 640 1409 978 3292 611 4571 370 39 856
sml 167 16 152 52 227 253 405 0 370 557 0 69
shd 66 38 23 12 49 33 113 18 39 0 125 15
rfl 1009 21 330 155 395 219 1522 535 856 69 15 2000

Table 7: Challenge III. (Left) Open MIC performance on the combined set w.r.t. the pairs of 12

factors detailed in Section 5.2. Top-1 accuracies for our JBLD approach are listed. The top row

shows results w.r.t. the original 12 factors. Color-coded cells are normalized w.r.t. entries of this

row. For each column, intense/pale red indicates better/worse results compared to the top cell,

respectively. (Right) Target image counts for pairs of factors.

Shn Clk Scl Sci Gls Rel Nat Shx Clv Hon top-1
IHS 47.1 61.9 50.8 63.3 26.0 32.6 51.0 22.0 61.2 67.3 48.3
RTN 54.4 59.0 65.2 62.2 30.5 24.8 44.2 32.1 47.7 71.1 49.1
JAN 51.7 63.6 67.8 69.8 34.2 28.5 47.1 32.0 53.9 72.5 52.1

Table 8: Unsupervised domain adaptation: Open MIC performance on the 10 subsets.
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