
ForestHash: Semantic Hashing With Shallow Random

Forests and Tiny Convolutional Networks

Qiang Qiu1, José Lezama2, Alex Bronstein3, and Guillermo Sapiro1

1 Duke University, USA
2 Universidad de la República, Uruguay

3 Technion-Israel Institute of Technology, Israel

Abstract. In this paper, we introduce a random forest semantic hashing scheme

that embeds tiny convolutional neural networks (CNN) into shallow random forests.

A binary hash code for a data point is obtained by a set of decision trees, set-

ting ‘1’ for the visited tree leaf, and ‘0’ for the rest. We propose to first ran-

domly group arriving classes at each tree split node into two groups, obtaining

a significantly simplified two-class classification problem that can be a handled

with a light-weight CNN weak learner. Code uniqueness is achieved via the ran-

dom class grouping, whilst code consistency is achieved using a low-rank loss

in the CNN weak learners that encourages intra-class compactness for the two

random class groups. Finally, we introduce an information-theoretic approach for

aggregating codes of individual trees into a single hash code, producing a near-

optimal unique hash for each class. The proposed approach significantly outper-

forms state-of-the-art hashing methods for image retrieval tasks on large-scale

public datasets, and is comparable to image classification methods while utiliz-

ing a more compact, efficient and scalable representation. This work proposes a

principled and robust procedure to train and deploy in parallel an ensemble of

light-weight CNNs, instead of simply going deeper.

1 Introduction

In view of the recent huge interest in image classification and object recognition prob-

lems and the spectacular success of deep learning and random forests in solving these

tasks, modest efforts are being invested into the related, and often more difficult, prob-

lems of image and multimodal content-based retrieval, and, more generally, similar-

ity assessment in very large-scale databases. These problems, arising as primitives in

many computer vision tasks, are becoming increasingly important in the era of expo-

nentially increasing information. Semantic and similarity-preserving hashing methods

have recently received considerable attention for addressing such a need, in part due

to their significant memory and computational advantage over other representations.

These methods learn to embed data points into a space of binary strings; thus producing

compact representations with constant or sub-linear search time; this is critical and one

of the few options for low-cost truly big data. Such an embedding can be considered as

a hashing function on the data, which translates the underlying similarity into the colli-

sion probability of the hash or, more generally, into the similarity of the codes under the

Hamming metric. Examples of recent similarity-preserving hashing methods include

2 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

ForestHash

Fig. 1. ForestHash embeds tiny convolutional neural networks (CNN) into shallow random

forests. ForestHash consists of shallow random trees in a forest, usually of depth 2 or 3. At each

tree split node, arriving classes are randomly partitioned into two groups for a significantly sim-

plified two-class classification problem, which can be sufficiently handled by a light-weight CNN

weak learner, usually of 2 to 4 layers. We set 1 for the visited tree leaf, and 0 for the rest. By simul-

taneously pushing each data point through M trees of the depth d, we obtain M(2d−1)-bit hash

codes. The random grouping of the classes enables code uniqueness by enforcing that each class

shares code with different classes in different trees. The non-conventional low-rank loss adopted

for CNN weak learners encourages code consistency by minimizing intra-class variations and

maximizing inter-class distance for the two random class groups. The obtained ForestHash codes

serve as efficient and compact image representation for both image retrieval and classification.

Locality-Sensitive Hashing (LSH) [1] and its kernelized version (KLSH) [2], Spectral

Hashing (SH) [3], Sparse Hash [4], Kernel-based Supervised Hashing (KSH) [5], An-

chor Graph Hashing (AGH) [6], Self-Taught Hashing (STH) [7], and Deep Supervised

Hashing (DSH) [8].

Due to the profound similarity between the problems of semantic hashing and that

of binary classification, numerous classification techniques have been adapted to the

former task. For example, multiple state-of-the-art supervised hashing techniques like

ANN Hashing [9], SparseHash [4], HDML [10] and DSH [7] are based on deep learn-

ing methodologies. Besides deep learning, random forest [11, 12] is another popular

classification technique that has recently shown great success for a large variety of clas-

sification tasks, such as pose estimation [13] and object recognition [14]. However, to

the best of our knowledge, random forests have not been used so far to construct se-

mantic hashing schemes, and therefore do not enjoy the advantages of such compact

and efficient codes. This is mainly because acting as hashing functions, a random forest

fails to preserve the underlying similarity due to the inconsistency of hash codes gener-

ated in each tree for the same class data; it also lacks a principled way of aggregating

hash codes produced by individual trees into a single longer code.

In this paper, we propose the ForestHash scheme. As shown in Figure 1, the pro-

posed ForestHash is designed to provide consistent and unique hashes to images from

the same semantic class, by embedding tiny convolutional neural networks (CNN) into

shallow random forests. We start with a simple hashing scheme, where random trees

in a forest act as hashing functions by setting ‘1’ for the visited tree leaf, and ‘0’ for

the rest. To enable such hashing scheme, we first introduce random class grouping to

randomly partition arriving classes into two groups at each tree split node. The class

random grouping enables code uniqueness by enforcing each class to share code with

different classes in different trees, and also produces a significantly reduced two-class

problem being sufficiently handled by a light-weight CNN.

ForestHash 3

We further adopt a non-conventional low-rank loss for CNN weak learners to en-

courage code consistency by minimizing intra-class variations and maximizing inter-

class distance for the two random class groups, thereby preserving similarity. The low-

rank loss is based on the assumption that high-dimensional data often have a small in-

trinsic dimension. Consequently, when data from the same low-dimensional subspace

are arranged as columns of a single matrix, this matrix should be approximately low-

rank. In Section 2.3, we show how to learn a linear transformation of subspaces using

the matrix nuclear norm as the optimization criterion. We discuss both experimentally

and theoretically that such learned transformation simultaneously minimizes intra-class

variation and maximizes inter-class separation. We further show that kernelization or

deep learning can be used to handle intricate data that do not necessarily admit a linear

model.

Finally, the proposed information-theoretic aggregation scheme provides a princi-

pled way to combine hashes from each independently trained random tree in the forest.

The aggregation process discussed in Section 2.4 is performed efficiently in a greedy

way, which still achieves a near-optimal solution due to submodularity of the mutual

information criterion being optimized. We discuss both unsupervised and supervised

hash aggregation.

In Section 3, we show a comprehensive experimental evaluation of the proposed

representation scheme, demonstrating that it significantly outperforms state-of-the-art

hashing methods for large-scale image and multi-modal retrieval tasks.

2 Forest hashing

We first discuss a simple random forest hashing scheme, where independently trained

random trees act as hashing functions by setting ‘1’ for the visited tree leaf, and ‘0’

for the rest. We also show that hashes from a forest often fail to preserve the desired

intra-class similarity.

2.1 A toy hashing scheme

Random forest [11,12] is an ensemble of binary decision trees, where each tree consists

of hierarchically connected split (internal) nodes and leaf (terminal) nodes. Each split

node corresponds to a weak learner, and evaluates each arriving data point sending

it to the left or right child based on the weak learner binary outputs. Each leaf node

stores the statistics of the data points that arrived to it during training. During testing,

each decision tree returns a class posterior probability for a test sample, and the forest

output is often defined as the average (or otherwise aggregated distribution) of the tree

posteriors.

Following the random forest literature [12], in this paper, we specify a maximum

tree depth d to limit the size of a tree, which is different from algorithms like C4.5 [15]

that grow the tree relying on other termination criteria; we also avoid post-training

operations such as tree pruning. Thus, a tree of depth d consists of 2d−1 tree leaf nodes,

indexed in the breadth-first order.

4 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

During training, we can introduce randomness into the forest through a combination

of random set sampling and randomized node optimization, thereby avoiding duplicate

trees. As discussed in [11, 12], training each tree with a different randomly selected set

decreases the risk of overfitting, improves the generalization of classification forests,

and significantly reduces the training time. When given more than two classes, we in-

troduce node randomness by randomly partitioning the classes arriving at each binary

split node into two categories.

A toy pedagogic hashing scheme is constructed as follows: Each data point is

pushed through a tree until reaching the corresponding leaf node. We simply set ‘1’

for leaf nodes visited, and ‘0’ for the rest. By ordering those bits in a predefined node

order, e.g., the breadth-first order, we obtain a (2d−1)-bit hash code, always containing

exactly one 1. In a random forest consisting of M trees of the depth d, each point is

simultaneously pushed through all trees to obtain M (2d−1)-bit hash codes.

This hashing scheme has several obvious characteristics and advantages: First, both

the training and the hashing processes can be done in parallel to achieve high compu-

tational efficiency on modern parallel CPU or GPU hardware. Second, multiple hash

codes obtained from a forest, each from an independently trained tree, have the poten-

tial to inherit the boosting effect of the random forest, i.e., increasing the number of

trees increases accuracy (sublinearly) [12]. Finally, the scheme guarantees 1-sparsity

for hash codes from each tree.

However, hashes from a forest fail to preserve the underlying data similarity. In

classification, for which the forest was originally designed, an ensemble posterior is

obtained by averaging from a large number of trees, thus boosting the classification

accuracy [11], and no confident class posteriors are required for individual trees. This

has several negative consequences for constructing a suitable hash function. First, a

forest often distributes same class samples over multiple leave nodes in a tree, thus,

no consistent codes are assigned to each class. Second, for the same reason, samples

of different classes can follow the same path, therefore a forest does not guarantee a

unique code for each class. Moreover, it is not obvious how to combine hashes from

different trees given a target code length.

The inconsistency of the hash codes becomes more severe when increasing the tree

depth, as more leaf nodes are available to distribute the same class samples. This prob-

lem can not be solved by simply increasing the number of trees for longer total bit

length. For example, if 4-bit inconsistency is allowed for a 64-bit hash code, the Ham-

ming ball already contains C4
64 = 635, 376 codes. A principled way is required to

combine hashes from each tree. One can choose to combine hashes from different

trees simply through concatenating, averaging and thresholding, or voting. However,

the principles behind those heuristics are not obvious, and we might loose control on

code length, sparsity, and even binarity.

In what follows, we address these two problems. First, we propose the random

class grouping scheme, followed with near-optimal code aggregation, to enforce code

uniqueness for each class. Second, we adopt a non-conventional low-rank loss for weak

learners to encourage code consistency.

ForestHash 5

0

0.5

1

−0.5
0

0.5
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Original subspaces

(a)

0 0.5 1 1.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Transformed subspaces

(b)

−0.5 0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3
Original subspaces

(c)

0.04
0.06

0.08
0.1

0.12
0.14

0.16

−0.3

−0.2

−0.1

0

0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Transformed subspaces

(d)

Fig. 2. Synthetic two-class examples illustrating the properties of the learned low-rank transfor-

mation. (a), (c) are transformed to (b), (d), respectively. In (a), two classes are defined as {blue,

cyan} and {yellow, red}. An RBF kernel is applied to transform (c) to (d)

2.2 Random class grouping

A random class grouping scheme is first introduced to randomly partition arriving

classes into two groups at each tree split node. Random class grouping serves two main

purposes: First, a multi-class problem is significantly reduced to a two-class classifica-

tion problem at each split node, which can be sufficiently handled by a very light-weight

CNN weak learner. Second, random class grouping enforces each class to share its code

with different classes in different trees, which allows the information-theoretic aggrega-

tion developed in the sequel to later produce a near-optimal unique hash code for each

class.

2.3 Low-rank loss

A non-conventional low-rank loss is adopted for weak learners, e.g., a light-weight

CNN learner, in a forest. Consider s-dimensional data points belonging to two classes

after random class grouping, which for simplicity are denoted as positive and negative.

We stack the points as columns of the matrices X+ and X−, respectively. Let ||A||∗
denote the nuclear norm of the matrix A, i.e., the sum of its singular values. The nuclear

norm is known to be the convex envelope of matrix rank over the unit ball of matrices

[16]. The following result in [17] helps motivate our per-node classifier:

Lemma 1. Let A and B be matrices of the same row dimensions, and [A,B] denote

their column-wise concatenation. Then, ||[A,B]||∗ ≤ ||A||∗ + ||B||∗, with equality

holding if the column spaces of A and B are orthogonal.

At each tree split node, we propose to learn a weight matrix W minimizing the

following low-rank loss function.

min
W

||WX+||∗ + ||WX−||∗−||W[X+,X−]||∗,

(1)

Based on Lemma 1, the loss function (1) reaches its minimum 0 if the column spaces of

the two classes become orthogonal after applying the learned transformation W. Equiv-

alently, (1) reaches the minimum 0 if the subspaces of the two classes are maximally

opened up after transformation, i.e., the smallest principal angle between the subspaces

6 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

equals π
2 . Simultaneously, minimizing the first two nuclear norm terms in (1) helps re-

duce the variation within classes. Synthetic examples presented in Figure 2 illustrate

the properties of the learned transformation. The trivial solution W = 0 can be avoided

through a good initialization, e.g., the identity matrix [17].

Splitting functions. With random class grouping, we have a two-class classification

problem at each split node. We stack the training data points from each class as columns

of the matrices X+ and X−, respectively.

During training, at the i-th split node, we denote the arriving training samples as

X+ and X−. After a weight matrix W is successfully learned by minimizing (1), it is

reasonable to assume that each of the classes will belong to a low-dimensional subspace,

the distance from which can be used to classify previously unseen points. We use k-

SVD [18] to learn a pair of dictionaries D±, for each of the two classes, by minimizing

min
D±,Z±

‖WX± −D±Z±‖ s.t. ‖z±‖0 ≤ l, (2)

where the ℓ0 pseudonorm ‖z±‖0 counts the number of non-zero elements in each col-

umn of Z±, and l controls the subspace dimension.

At testing, given a data point x, the splitting function is evaluated by first projecting

x onto both dictionaries and evaluating the projection errors

e±(x) = argmin
z±

‖D±z± −Wx‖2 = ‖P±x‖2, (3)

where P± = D±(D±TD±)−1D±TW are the n× n projection matrices. The point is

sent to the left subtree if e−(x) < e+(x), and to the right subtree otherwise. In practice,

we only store the projection matrices P± at each split node. Note that similar splitting

functions report success in a classification context with much deeper trees in [19].

Optimization. To optimize the low-rank loss function (1) using gradient descent,

the subgradient of the nuclear norm of a matrix can be computed as follows: Let A =
UΣVT be the SVD decomposition of the matrix A. Let Û and V̂ be the columns of

U and V corresponding to eigenvalues larger than a predefined threshold. Following

[17, 20], the subgradient of the nuclear norm can be evaluated in a simplified form as

∂||A||∗ = ÛV̂T

Note that (1) is a D.C. (difference of convex functions) program; and the minimization

is guaranteed to converge to a local minimum (or a stationary point), with the D.C.

procedure detailed in [21, 22].

Kernelization. A sufficient number of tree splits could potentially handle non-

linearity in data for classification. In this work, only very limited number of splits is

preferred in each tree, e.g., depth 1 to 3, to encourage short codes, which is insufficient

in modeling data non-linearity well. Moreover, if we rely on tree splits in modeling non-

linearity, we may still obtain less confident class posteriors as explained. The low-rank

loss in (1) is particularly effective when data approximately lie in linear subspaces [17].

To improve the ability of handling more generic data, an effective way is to map data

points into an inner product space prior to optimize for low-rank loss.

Given a data point y, we create a nonlinear map K(x) = (κ(x,x1); ...;κ(x,xn))
by computing the inner product between x and a fixed set of n points {x1, ...,xn}

ForestHash 7

Fig. 3. Angles between the deep features learned for the validation set of CIFAR-10 using VGG-

16. (Left) with additional low-rank loss. (Right) with the standard softmax loss. With low-rank

loss, the intra-class variations among features are collapsed and inter-class features are orthogo-

nal, which are particularly preferred at each tree split node.

randomly drawn from the training set. The inner products are computed via the kernel

function, κ(x,xi) = ϕ(x)′ϕ(xi), which has to satisfy the Mercer conditions; note

that no explicit representation for ϕ is required. Examples of kernel functions include

polynomial kernels κ(y,xi) = (x′xi + p)q (with p and q being constants), and radial

basis function (RBF) kernels κ(x,xi) = exp(− ||x−xi||
2

2

2σ2) with variance σ2. Given the

data points X, the set of mapped data is denoted as K(X) ⊆ R
n. We now learn a weight

matrix W minimizing,

min
W

||WK(X+)||∗ + ||WK(X−)||∗−||W[K(X+),K(X−)]||∗,

(4)

Deep networks. While kernelization shows a simple yet effective non-linear map-

ping, we present a CNN-based weak learner now as the ultimate way in handling in-

tricate data. With the gradient descent optimization discussed above, it is possible to

implement the following function

L = ||Φ(X+)||∗ + ||Φ(X−)||∗−||[Φ(X+),Φ(X−)]||∗,

(5)

as a low-rank loss layer for general deep networks, where Φ denotes the mapping from

a deep network. From our experimental experience, the low-rank loss reports compa-

rable performance as the standard softmax loss, while being used standalone as a clas-

sification loss for small classification problems. However, together with softmax, we

observed consistent classification performance improvements over most popular CNN

architectures and challenging datasets. As in Fig. 3, with low-rank loss, the intra-class

variations among features are collapsed and inter-class features are orthogonal [23].

Such property is particularly beneficial at each tree split node.

2.4 Information-theoretic code aggregation

After training each random tree with the low-rank loss learner to produce consistent

hashes for similar data points, we propose an information-theoretic approach to ag-

gregate hashes across trees into a unique code for each data class. As labels are usually

8 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

unavailable or only available for a small subset of data, unsupervised aggregation allows

exploiting all available data. We also explain how labels, if available, can be further in-

corporated for supervised hash aggregation. Note that the code aggregation step is only

learned once during training, no cost at testing.

Unsupervised aggregation. Consider a random forest consisting of M trees of

depth d; the hash codes obtained for N training samples are denoted as B = {Bi}
M
i=1,

with the Bi ∈ {0, 1}(2
d−1)×N being the codes generated from the i-th tree, henceforth

denoted as code blocks. Given the target hash code length L, our objective is to select

k code blocks B∗, k ≤ L/(2d−1), maximizing the mutual information between the

selected and the remaining codes,

B∗ = arg max
B:|B|=k

I(B;B\B). (6)

A set function is said to be submodular if it has a diminishing return property, i.e.,

adding an element to a smaller set helps more than adding it to a larger set.

Lemma 2. I(B;B\B) is submodular.

The general problem of maximizing submodular functions is NP-hard, by reduction

from the max-cover problem. However, motivated by the sensor placement strategy

in [24], we propose a very simple greedy algorithm to approximate the solution of (6).

We start with B = ∅, and iteratively choose the next best code block b∗ from B\B
which provides a maximum increase in mutual information, i.e.,

arg max
b∗∈B\B

I(B ∪ b∗;B\(B ∪ b∗))− I(B;B\B)

= arg max
b∗∈B\B

H(b∗|B)−H(b∗|B\(B ∪ b∗)), (7)

where H(b∗|B) denotes the conditional entropy. Intuitively, the first term H(b∗|B)
forces b∗ to be most different from the already selected codes B, and the second term

−H(b∗|B\(B ∪ b∗)) forces b∗ to be most representative among the remaining codes.

By defining a covariance matrix with the ij-th entry equal to exp(−dH(Bi,Bj)
N

), with

dH being the Hamming distance, (7) can be efficiently evaluated in a closed form as

detailed in [24]. It has been proved in [24, 25] that the above greedy algorithm gives a

polynomial-time approximation that is within (1− 1/e) of the optimum, where e is the

the Napier’s constant. Based on similar arguments as those in [24], the near-optimality

of our approach can be guaranteed if the forest size |B| is sufficiently larger than 2k.

Supervised aggregation. When the class labels C are available for the N train-

ing samples, an upper bound on the Bayes error over hashing codes B is given by
1
2 (H(C)−I(B;C)) [26]. This bound is minimized when I(B;C) is maximized. Thus,

discriminative hash codes can be obtained by maximizing

arg max
B:|B|=k

I(B;C). (8)

Similarly to the unsupervised case, we maximize (8) using a greedy algorithm initial-

ized with B = ∅ and iteratively choosing the next best code block b∗ from B\B which

ForestHash 9

provides a maximum mutual information increase, i.e.,

arg max
b∗∈B\B

I(B ∪ b∗;C)− I(B;C), (9)

where I(B;C) is evaluated as I(B;C) = H(B) −
∑p

c=1 p(c)H(B|c). Entropy mea-

sures here involve computation of probability density functions p(B) and p(B|c), which

can both be efficiently computed by counting the frequency of unique codes in B. Note

that the number of unique codes is usually very small due to the learned transformation

step.

Semi-supervised aggregation. The above two aggregation models can be simply

unified as

arg max
b∗∈B\B

[I(B ∪ b∗;B\(B ∪ b∗))− I(B;B\B)]

+λ[I(B ∪ b∗;C)− I(B;C)]. (10)

The two terms here can be evaluated using different samples to exploit all labeled and

unlabeled data. The parameter λ in (10) is suggested to be estimated as the ratio be-

tween the maximal information gained from a code block to each respective criteria,

i.e., λ = maxi I(Bi;B\Bi)
maxi I(Bi;C) . Exploiting the diminishing return property, only the first

greedily selected code block based on (7) and (9) need to be evaluated, which leads

to an efficient process for finding λ. Selecting using only semantic information gives a

hash model that is less robust, e.g., overfits to training data, than a model also concern-

ing the actual code representation. As shown in the experiments, both unsupervised and

supervised aggregation approaches promote unique codes for each class, with further

improvements when both are unified.

2.5 Multimodal hashing

We can further extend ForestHash as a multimodal similarity learning approach. It is of-

ten challenging to enable similarity assessment across modalities, for example, search-

ing a corpus consisting of audio, video, and text using queries from one of the modali-

ties. The ForestHash framework can be easily extended for hashing data from multiple

modalities into a single space.

At training, when multimodal data arrives at a tree split node, we simply enforce the

same random class partition for all modalities, and learn for each modality a dictionary

pair independently using the shared class partition. During training, only the splitting

function of one dominant (usually most discriminant) modality is evaluated for each

arriving data point; during testing, based on the modality of an arriving point, the cor-

responding splitting function acts independently. As shown in Section 3, ForestHash

significantly outperforms state-of-the-art hashing approaches on cross-modality multi-

media retrieval tasks.

3 Experimental evaluation

We present an experimental evaluation of ForestHash on image retrieval tasks using

standard hashing benchmarks: the CIFAR-10 image dataset [27], the MNIST image

10 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

dataset [28], and the Wikipedia image and document dataset [29]. CIFAR-10 is a chal-

lenging dataset of 60,000 32 × 32 labeled color images with 10 different object cate-

gories, and each class contains 6,000 samples. MNIST consists of 8-bit grayscale hand-

written digit images of “0” to “9” with 7,000 examples per class, and a total of 70,000

images.

CNN2

1 Conv+ReLU+MaxPool 5 × 5 × 3 × 64
2 Conv+ReLU+MaxPool 5 × 5 × 64 × 32
3 FC output: 256

CNN4

1 Conv+ReLU+MaxPool 5 × 5 × 3 × 64
2 Conv+ReLU+MaxPool 5 × 5 × 64 × 64
3 Conv+ReLU+MaxPool 5 × 5 × 64 × 64
4 Conv+ReLU+MaxPool 5 × 5 × 64 × 64
5 FC output: 256

Table 1. Network structures of light-weight CNN learners.

Method 12-bit 24-bit 36-bit 48-bit

LSH [1] 0.13 0.14 0.14 0.15

SH [3] 0.13 0.13 0.14 0.13

ITQ [30] 0.11 0.11 0.11 0.12

CCA-ITQ [30] 0.17 0.20 0.21 0.22

MLH [31] 0.18 0.20 0.21 0.21

BRE [32] 0.16 0.16 0.17 0.17

KSH [5] 0.29 0.37 0.40 0.42

CNNH [33] 0.54 0.56 0.56 0.56

DLBHC [34] 0.55 0.58 0.58 0.59

DNNH [35] 0.57 0.59 0.59 0.59

DSH [8] 0.62 0.65 0.66 0.68

ForestHash-CNN2 0.61 0.75 0.78 0.80

ForestHash-CNN4 0.70 0.80 0.82 0.84

ForestHash-VGG16 0.76 0.82 0.86 0.89

Table 2. Retrieval performance (mAP) of different hashing methods on CIFAR-10. All methods

use the 32x32 RGB images as input.

As discussed in Section 2.3, a low-rank weak learner at each tree split node is al-

lowed in various implementations. Without particular specification, a 256-dimensional

RBF kernelization is assumed. We use the CNN suffix when using a light-weight CNN

as weak learner. Table 1 shows two network structures of light-weight CNN learners,

CNN2 and CNN4, adopted in experiments. Unless otherwise specified, 128 trees are

trained and semi-supervised aggregation are used (with only training data).

Note that a shallow tree is preferred; and a deeper tree (d ≥ 8) becomes less pre-

ferred for (fast) retrieval, and loses the robustness gained from randomness. A tree of

depth 2 is assumed by default in this section. In practice, the choice of tree depth also

depends of the target code length and the level of parallelism supported, as each hash

tree can be trained and deployed independently in parallel.

ForestHash 11

Method depth params CIFAR-10

Network in Network [36] - - 10.41

All-CNN [37] - - 9.08

Deeply Supervised Net [38] - - 9.69

FractalNet [39] 21 38.6M 10.18

ResNet ([40]) 110 1.7M 13.63

ResNet with Stochastic Depth [40] 110 1.7M 11.66

ResNet (pre-activation) [41]
164 1.7M 11.26

1001 10.2M 10.56

ForestHash CNN2 128-bit 2 (× 64) 0.58M (× 64) 20.3

ForestHash CNN4 128-bit 4 (× 64) 0.38M (× 64) 16.47

ForestHash VGG16 128-bit 16 (× 64) 20.1M (× 64) 11.03

Table 3. Error rates (%) on CIFAR-10 image classification benchmark. ForestHash performs at

the level of other state-of-the-art image classification techniques while utilizing a very compact

128-bit only representation.

radius = 0 radius ≤ 2

Method Precision Recall Precision Recall

SH [3] 5.90 0.01 21.00 0.25

KSH [5] 8.50 0.07 21.41 0.66

AGH1 [6] 29.48 0.21 30.55 0.41

AGH2 [6] 29.92 0.24 30.13 0.58

SparseHash [4] 16.65 0.05 32.69 1.81

ForestHash (rand) 31.37 2.74 32.25 4.90

ForestHash (unsup) 34.02 3.65 34.55 6.40

ForestHash (sup) 33.86 3.33 34.02 5.21

ForestHash (semi) 34.05 4.12 33.73 7.29

ForestHash CNN4-softmax 22.72 0.33 34.27 1.52

ForestHash CNN2-softmax 23.00 0.42 32.13 1.56

ForestHash CNN4 28.66 0.86 38.60 2.88

ForestHash CNN2 29.30 1.78 38.29 4.68

Table 4. Retrieval performance (%) of different hashing methods (48-bit codes) on CIFAR-10

using reduced training. The methods on the top two groups use GIST features. For reference, the

bottom group shows the performance of ForestHash with CNN features extracted from the 32x32

RGB images.

3.1 Image retrieval

We first adopt a CIFAR-10 protocol popular among many deep-learning based hashing

methods, e.g., DSH [8], where the official CIFAR-10 train/test split is used; namely,

50,000 images are used as the training and the gallery, and 10,000 images as the query.

Table 2 reports the retrieval performance comparisons with multiple hashing methods4.

ForestHash with a simplest two-layer learner CNN2 in Table 1 already significantly

outperforms state-of-the-art methods. Given such large size of training set, retrieval

performance increases using more complex network structures as learners, e.g., CNN4

or VGG16 over CNN2.

The superior retrieval performance of the ForestHash codes in Table 2 can be easily

explained by both the low-rank loss properties in Figure 3 and the boosting effect of

the random forest in Figure 4. ForestHash shows a principled and robust procedure

to train and deploy in parallel an ensemble of light-weight CNNs, instead of simply

going deeper. As shown in Table 3, ForestHash performs at the level of other state-

4 Results are taken from the respective papers.

12 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

6,000 samples per class 100 samples per class 30 samples per class

Test Train Train Train

time (µs) time (s) Prec. Rec. time (s) Prec. Rec. time (s) Prec. Rec.

HDML [10] 10 93780 92.94 60.44 1505 62.52 2.19 458 24.28 0.21

FastHash [42] 115 865 84.70 76.60 213 73.32 33.04 151 57.08 11.77

TSH [43] 411 164325 86.30 3.17 21.08 74.00 5.19 2.83 56.86 3.94

ForestHash 57 24.20 86.53 46.30 4.19 84.98 45.00 1.43 79.38 42.27

ForestHash CNN2 13 81.6 97.99 95.99 7 94.24 74.02 2.69 89.56 46.36

Table 5. 36-bit retrieval performance (%) on MNIST (rejection hamming radius 0) using different

training set sizes. Test time is the average binary encoding time in microseconds (µs).

ForestHash

CNN2
ForestHash USPLH [44] SH [3] KLSH [2] SIKH [45] AGH1 [6] AGH2 [6]

24 bits 99.63 82.99 46.99 26.99 25.55 19.47 49.97 67.38

48 bits 99.68 86.09 49.30 24.53 30.49 19.72 39.71 64.10

Table 6. Mean average precision (mAP in %) in percent of Hamming ranking on MNIST.

of-the-art image classification techniques, e.g., ResNet, while utilizing a 128-bit only

representation.

We further experiment with CIFAR-10 using reduced size of training with both

handcrafted feature and deep features. We adopt the same setup as in [4, 5] for the

image retrieval experiments: we only used 200 images from each class for training; and

for testing, a disjoint test set of 1,000 images are evenly sampled from ten classes, to

query the remaining 59,000 images. Images are used as inputs for ForestHash with CNN

learners, and 384-dimensional GIST descriptors are used for other compared methods,

including ForestHash with an RBF kernel.

Table 4 summarizes the retrieval performance of various methods on CIFAR-10

at reduced training using the mean precision and recall for Hamming radius 0 and 2

hash look-up. For the compared methods SH, KSH, AGH1 and AGH2, we use the

code provided by the authors; while for SparseHash, we reproduce the results from [4].

SH is unsupervised, while the rest of the hashing schemes are all supervised. We re-

port the performance of ForestHash using the random, unsupervised, supervised, and

semi-supervised hash aggregation schemes, respectively. We observe that the proposed

information-theoretic code aggregation provides an effective way to combine hashes

from different trees, and showing further benefits to unify both unsupervised and super-

vised aggregation. We also observe that using softmax loss only for CNN learners leads

to performance degradation. At reduced training, more complex learner structures show

no obvious advantage. In general, the proposed ForestHash shows significantly higher

precision and recall compared to other methods.

The supervised hashing methods HDML [10], TSH [43], and FastHash [42] report

excellent performance, where HDML is a deep learning based hashing method, and

FastHash is a boosted trees based method. We adopt the experimental setting from [10],

i.e., a 60K training set and a disjoint 10K query set split on the MNIST data. Each

hashing method is assessed by the retrieval precision and recall at radius 0. As shown

in Table 5, using all 60K training samples, ForestHash with an RBF kernel shows com-

parable performance as HDML and FastHash, and better than TSH. ForestHash with

a two-layer CNN significantly outperform all compared methods. We further assume

ForestHash 13

20 40 60 80 100 120
Code length (bit)

0.4

0.6

0.8

1

R
ec

og
ni

tio
n

ac
cu

ra
cy

CNN4
CNN2

Fig. 4. The forest boosting effect using ForestHash codes. ForestHash shows a principled and

robust procedure to train and deploy in parallel an ensemble of light-weight CNNs, instead of

simply going deeper.

ForestHash ForestHash CM-SSH [46] CM [29] SM [29] SCM [29] MM-NN [9] CM-NN [9]

(64-bit) (36-bit)

50.8 45.5 18.4 19.6 22.3 22.6 27.4 25.8

Table 7. Cross-modality image retrieval using text queries on the Wiki dataset (mAP in %).

labels are only available for a small subset of data, which is often the case for a retrieval

system. When the number of labeled samples reduces to 100 and 30 per class respec-

tively (instead of 6,000), the retrieval performance of other deep learning and boosted

tree-based hashing degrades dramatically, as those methods require a dense training set

to learn a rich set of parameters. Due to the subspace assumption behind the low-rank

loss, which are known to be robust in the regime with few labeled training examples

per class [47], ForestHash significantly outperforms state-of-the-art methods for such

reduced training cases. Note that the training and hashing time of ForestHash reported

here is the time for one tree, in order to emphasize the fact that different trees are trained

and deployed independently and can easily be done in parallel

More experiments were conducted on MNIST following [6], enabling the compar-

ison with more hashing methods for which we have no implementation accessible. We

split the MNIST dataset into a training set containing 69,000 samples and a disjoint

query set of 1,000 samples. Table 6 reports the Hamming ranking performance mea-

sured by the Mean Average Precision (mAP) (performance of other methods is repro-

duced from [6]). For both code lengths, the proposed ForestHash significantly outper-

forms other hashing methods.

3.2 Cross-modality retrieval

We performed a cross-modality retrieval experiment following [9,29] on the Wikipedia

dataset. The purpose is to demonstrate that ForestHash natively supports cross-modality,

though not being designed for. The Wikipedia dataset contains a total of 2866 docu-

ments. These are article-image pairs, annotated with a label from 10 semantic classes.

To enable a fair comparison, we adopted the provided features for both images and

text from [29]. Table 7 shows the mean average precision scores for the cross-modality

image retrieval using text queries. The proposed ForestHash significantly outperforms

state-of-the-art hashing approaches on cross-modality multimedia retrieval tasks. Note

14 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

Query 1: (Biology) The Kakapo is the only species of flightless parrot in the world, and the only

 flightless bird that has a lek breeding system. "Collins Field Guide to New Zealand Wildlife"…

Answer:

ForestHash

CM

Query 2: (Sport) Wales won two matches in each Five Nations championship between 1980 and

 1984, and in 1983 were nearly upset by Japan; winning by 24-29 at Cardiff ...

Answer:

ForestHash

CM

Fig. 5. Two examples of text queries and the top-10 images retrieved by ForestHash and CM [29].

Note that only text information are used to compose each query, and images are retrieved from

the same category of the query text.

that MM-NN and CM-NN [9] in Table 7 are both deep learning motivated hashing

methods. Two examples of cross-modality text queries and the top-10 images retrieved

are shown in Figure 5, using ForestHash and CM [29]. Note that only text information

is used to compose a query, and ForestHash retrieves images from the same category

of the query text. ForestHash significantly outperforms CM with codes at least 10×
shorter.

4 Conclusion

Considering the importance of compact and computationally efficient codes, we in-

troduced a random forest semantic hashing scheme, extending random forest beyond

classification and for large-scale multimodal retrieval of incommensurable data. The

proposed scheme consists of a forest with random class grouping, low-rank loss, and

an information-theoretic code aggregation scheme. Using the matrix nuclear norm as

the optimization criterion, the low-rank loss simultaneously reduces variations within

the classes and increases separations between the classes. Thus, hash consistency (sim-

ilarity) among similar samples is enforced in a random tree. The information-theoretic

code aggregation scheme provides a nearly optimal way to combine hashes generated

from different trees, producing a unique code for each sample category, and is applica-

ble in training regimes ranging from totally unsupervised to fully supervised. Note that

the proposed framework combines in a fundamental fashion kernel methods, random

forests, CNNs, and hashing. Our method shows exceptional effectiveness in preserving

similarity in hashes, and significantly outperforms state-of-the-art hashing methods in

large-scale single- and multi-modal retrieval tasks.

Acknowledgements

Work partially supported by AFOSR, ARO, NGA, NSF, ONR. José Lezama was sup-

ported by ANII (Uruguay) grant PD NAC 2015 1 108550.

ForestHash 15

References

1. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In:

Proc. of International Conference on Very Large Data Bases. (1999)

2. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In:

Proc. International Conference on Computer vision. (2009)

3. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information

Processing Systems. (2009)

4. Masci, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G.: Sparse similarity-

preserving hashing. In: International Conference on Learning Representations, Banff,

Canada (April, 2014)

5. Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels. In: Proc.

IEEE Computer Society Conf. on Computer Vision and Patt. Recn. (June 2012)

6. Liu, W., Wang, J., Chang, S.: Hashing with graphs. In: International Conference on Machine

Learning. (2011)

7. Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search. In: Proc.

of International Conference on Research and Development in Information Retrieval. (2010)

8. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In:

Proc. IEEE Computer Society Conf. on Computer Vision and Patt. Recn. (2016)

9. Masci, J., Bronstein, M.M., Bronstein, A.M., Schmidhuber, J.: Multimodal similarity-

preserving hashing. IEEE Trans. on Patt. Anal. and Mach. Intell. 36(4) (2014) 824–830

10. Norouzi, M., Fleet, D.J., Salakhutdinov, R.: Hamming distance metric learning. In: Advances

in Neural Information Processing Systems. (2012)

11. Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32

12. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analy-

sis. Springer (2013)

13. Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R.,

Kohli, P., Criminisi, A., Kipman, A., Blake, A.: Efficient human pose estimation from single

depth images. IEEE Trans. on Patt. Anal. and Mach. Intell. 35(12) (2013)

14. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: Proc. IEEE

Computer Society Conf. on Computer Vision and Patt. Recn. (2009)

15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.

(1993)

16. Fazel, M.: Matrix Rank Minimization with Applications. PhD Thesis, Stanford University

(2002)

17. Qiu, Q., Sapiro, G.: Learning transformations for clustering and classification. Journal of

Machine Learning Research 16 (2015) 187–225

18. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete

dictionaries for sparse representation. IEEE Trans. on Signal Processing 54(11) (Nov. 2006)

4311–4322

19. Qiu, Q., Sapiro, G.: Learning transformations for classification forests. In: ICLR. (2014)

20. Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear Algebra

and Applications 170 (1992) 1039–1053

21. Sriperumbudur, B.K., Lanckriet, G.R.G.: A proof of convergence of the concave-convex

procedure using zangwill’s theory. Neural Computation 24(6) (2012) 1391–1407

22. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Computation 4 (2003)

915–936

23. Lezama, J., Qiu, Q., Musé, P., Sapiro, G.: Olé: Orthogonal low-rank embedding, a plug and

play geometric loss for deep learning. In: Proc. IEEE Computer Society Conf. on Computer

Vision and Patt. Recn. (2018)

16 Q. Qiu, J. Lezama, A. Bronstein, and G. Sapiro

24. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research

(9) (2008) 235–284

25. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing sub-

modular set functions. Mathematical Programming 14(1) (1978) 265–294

26. Hellman, M.E., Raviv, J.: Probability of error, equivocation, and the Chernoff bound. IEEE

Trans. on Info. Theory 16 (1979) 368–372

27. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report

(2009)

28. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proceedings of the IEEE 86(11) (Nov 1998) 2278–2324

29. Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G.R., Levy, R., Vas-

concelos, N.: A new approach to cross-modal multimedia retrieval. In: Proceedings of the

International Conference on Multimedia. (2010)

30. Gong, Y., Lazebnik, S.: Iterative quantization: A procrustean approach to learning binary

codes. In: Proc. IEEE Computer Society Conf. on Computer Vision and Patt. Recn. (2011)

31. Norouzi, M., Fleet, D.J.: Minimal loss hashing for compact binary codes. In: International

Conference on Machine Learning. (2011)

32. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: Advances

in Neural Information Processing Systems. (2009)

33. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via im-

age representation learning. In: Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence. (2014)

34. Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast

image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW). (2015)

35. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep

neural networks. In: Proc. IEEE Computer Society Conf. on Computer Vision and Patt.

Recn. (2015)

36. Lin, M., Chen, Q., Yan, S.: Network In Network. ICLR (2014)

37. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: The

all convolutional net. CoRR abs/1412.6806 (2014)

38. Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS.

(2015)

39. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks without

residuals. In: ICLR. (2017)

40. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic

depth. In: Proc. European Conference on Computer Vision. (2016)

41. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proc.

European Conference on Computer Vision. (2016) 630–645

42. Lin, G., Shen, C., Shi, Q., van den Hengel, A., Suter, D.: Fast supervised hashing with deci-

sion trees for high-dimensional data. In: Proc. IEEE Computer Society Conf. on Computer

Vision and Patt. Recn. (2014)

43. Lin, G., Shen, C., Suter, D., van den Hengel, A.: A general two-step approach to learning-

based hashing. In: Proc. International Conference on Computer vision. (2013)

44. Wang, J., Kumar, S., Chang, S.F.: Sequential projection learning for hashing with compact

codes. In: International Conference on Machine Learning, Haifa, Israel (2010)

45. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In:

Advances in Neural Information Processing Systems. (2010)

ForestHash 17

46. Bronstein, M., Bronstein, A., Michel, F., Paragios, N.: Data fusion through cross-modality

metric learning using similarity-sensitive hashing. In: Proc. IEEE Computer Society Conf.

on Computer Vision and Patt. Recn. (June 2010)

47. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspec-

tives. IEEE Trans. on Patt. Anal. and Mach. Intell. 35(8) (2013) 1798–1828

