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Abstract. Effectively bridging between image level keyword annotations and

corresponding image pixels is one of the main challenges in weakly supervised

semantic segmentation. In this paper, we use an instance-level salient object de-

tector to automatically generate salient instances (candidate objects) for train-

ing images. Using similarity features extracted from each salient instance in the

whole training set, we build a similarity graph, then use a graph partitioning al-

gorithm to separate it into multiple subgraphs, each of which is associated with

a single keyword (tag). Our graph-partitioning-based clustering algorithm allows

us to consider the relationships between all salient instances in the training set

as well as the information within them. We further show that with the help of at-

tention information, our clustering algorithm is able to correct certain wrong as-

signments, leading to more accurate results. The proposed framework is general,

and any state-of-the-art fully-supervised network structure can be incorporated

to learn the segmentation network. When working with DeepLab for semantic

segmentation, our method outperforms state-of-the-art weakly supervised alter-

natives by a large margin, achieving 65.6% mIoU on the PASCAL VOC 2012

dataset. We also combine our method with Mask R-CNN for instance segmenta-

tion, and demonstrated for the first time the ability of weakly supervised instance

segmentation using only keyword annotations.

Keywords: Semantic segmentation, weak supervision, graph partitioning.

1 Introduction

Semantic segmentation, providing rich pixel level labeling of a scene, is one of the most

important tasks in computer vision. The strong learning ability of convolutional neural

networks (CNNs) has enabled significant progress in this field recently [5,27,29,46,47].

However, the performance of such CNN-based methods requires a large amount of

training data annotated to pixel-level, e.g., PASCAL VOC [11] and MS COCO [28];

such data are very expensive to collect. As an approach to alleviate the demand for

pixel-accurate annotations, weakly supervised semantic segmentation has drawn great

attention recently. Such methods merely require supervisions of one or more of the
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(a) input images (b) salient instances (c) proxy GT (d) output results

Fig. 1: Input images (a) are fed into a salient instance detection method (e.g., S4Net

[12]) giving instances shown in colour in (b). Our system automatically generates proxy

ground-truth data (c) by assigning correct tags to salient instances and rejecting noisy

instances. Traditional fully supervised semantic/instance segmentation methods learn

from these proxy ground-truth data; final generated segmentation results are shown in

(d).

following kinds: keywords [19, 22, 23, 42, 43], bounding boxes [36], scribbles [26],

points [2], etc. , making the collection of annotated data much easier. In this paper,

we consider weakly supervised semantic segmentation using only image-level keyword

annotations.

In weakly supervised semantic segmentation, one of the main challenges is to ef-

fectively build a bridge between image-level keyword annotations and corresponding

semantic objects. Most previous state-of-the-art methods focus on generating proxy

ground-truth from the original images by utilizing low-level cue detectors to capture

pixel-level information. This may be done using a saliency detector [4, 20, 22, 42] or

attention models [4, 42], for example. Because these methods give only pixel-level

saliency/attention information, it is difficult to distinguish different types of semantic

objects from the heuristic cues produced. Thus, the ability to discriminate semantic in-

stances is essential. With the rapid development of saliency detection algorithms, some

saliency extractors, such as MSRNet [24] and S4Net [12], are now not only able to pre-

dict gray-level salient objects but also instance-level masks. Inspired by the advantages

of such instance-level salient object detectors, in this paper, we propose to carry out

the instance distinguishing task in the early saliency detection stage, with the help of

S4Net, greatly simplifying the learning pipeline. Fig. 1(b) shows some instance-level

saliency maps predicted by S4Net.

In order to make use of the salient instance masks with their bounding boxes, two

main obstacles need to be overcome. Firstly, an image may be labeled with multiple

keywords, so determining a correct keyword (tag) for each class-agnostic salient in-

stance is essential. For example, see Fig. 1(b): the upper image is associated with two

image-level labels: ‘sheep’ and ‘person’. Allocating the correct tag to each detected in-

stance is difficult. Secondly, not all salient instances generated by the salient instance
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detector are semantically meaningful; incorporating such noisy instances would de-

grade downstream operations. For example, in the lower image in Fig. 1(b), an obvious

noisy instance occurs in the sky (shown in gray). Such instances and the associated

noisy labels frequently arise using current algorithms. Therefore, recognizing and ex-

cluding such noisy salient instances is important in our approach. The two obstacles

described above can be regarded as posing a tag-assignment problem, i.e., , associating

salient instances, including both semantically meaningful and noisy ones, with correct

tags.

In this paper, we take into consideration both the intrinsic properties of a salient in-

stance and the semantic relationships between all salient instances in the whole training

set. Here we use the term intrinsic properties of a salient instance to refer to the appear-

ance information within its (single) region of interest. In fact, it is possible to predict

a correct tag for a salient instance using only its intrinsic properties: see [19, 22, 42].

However, as well as the appearance information within each region of interest, there are

also strong semantic relationships between all salient instances: salient instances in the

same category typically share similar semantic features. We will show that taking this

property into account is important in the tag-assignment operation in Section 5.2.

More specifically, our proposed framework contains an attention module to pre-

dict the probability of a salient instance belonging to a certain category, based on its

intrinsic properties. On the other hand, to assess semantic relationships, we use a se-

mantic feature extractor which can predict a semantic feature for each salient instance;

salient instances sharing similar semantic information have close semantic feature vec-

tors. Based on the semantic features, a similarity graph is built, in which the vertices

represent salient instances and the edge weights record the semantic similarity between

a pair of salient instances. We use a graph partitioning algorithm to divide the graph into

subgraphs, each of which represents a specific category. The graph partitioning process

is modelled as a mixed integer quadratic program (MIQP) problem [3], for which a

globally optimal solution can be found. The aim is to make the vertices in each sub-

graph as similar as possible, while taking into account the intrinsic properties of the

salient instances.

Our approach provides high-quality proxy-ground-truth data, which can be used to

train any state-of-the-art fully-supervised semantic segmentation methods. When work-

ing with DeepLab [5] for semantic segmentation, our method obtains mean intersection-

over-union (mIoU) of 65.6% for PASCAL VOC 2012 test set, beating the current state-

of-the-art. In addition to pixel-level semantic segmentation, this paper demonstrated for

the first time the ability of weakly supervised instance segmentation using only keyword

annotations, by fitting our instance level proxy ground-truth data into latest instance

segmentation network, i.e., Mask R-CNN [14]. In summary, the main contributions of

this paper are:

– the first use of salient instances in a weakly supervised segmentation framework,

significantly simplifying object discrimination, and performing instance-level seg-

mentation under weak supervision.

– a weakly supervised segmentation framework exploiting not only the information

inside salient instances but also the relationships between all objects in the whole

dataset.
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2 Related Work

While longstanding research has considered fully supervised semantic segmentation,

e.g., [5, 27, 29, 46, 47], more recently, weakly-supervised semantic segmentation has

come to the fore. Early work such as [41] relied on hand-crafted features, such as color,

texture, and histogram information to build a graphical model. However, with the advent

of convolutional neural network (CNN) methods, this conventional approach has been

gradually replaced because of its lower performance on challenging benchmarks [11].

We thus only discuss weakly supervised semantic segmentation work based on CNNs.

In [32], Papandreou et al. use the expectation-maximization algorithm [8] to per-

form weakly-supervised semantic segmentation based on annotated bounding boxes

and image-level labels. Similarly, Qi et al. [36] used proposals generated by Multi-

scale Combinatorial Grouping (MCG) [35] to help localize semantically meaningful

objects. Scribbles and points are further used as additional supervision. In [26], Lin et

al. made use of a region-based graphical model, with scribbles providing ground-truth

annotations to train the segmentation network. Bearman et al. [2] likewise leveraged

knowledge from human-annotated points as supervision.

Other works rely only on image-level labels. Pathak et al. [33] addressed the

weakly-supervised semantic segmentation problem by introducing a series of constraints.

Pinheiro et al. [34] treated this problem as a multiple instance learning problem. In [23],

three loss functions are designed to gradually expand the areas located by an attention

model [48]. Wei et al. [42] improved this approach using an adversarial erasing scheme

to acquire more meaningful regions that provide more accurate heuristic cues for train-

ing. In [43], Wei et al. presented a simple-to-complex framework which used saliency

maps produced by the methods in [6, 21] as initial guides. Hou et al. [19] advanced

this approach by combining the saliency maps [18] with attention maps [45]. More re-

cently, Oh et al. [31] and Chaudhry et al. [4] considered linking saliency and attention

cues together, but they adopted different strategies to acquire semantic objects. Roy and

Todorovic [38] leveraged both bottom-up and top-down attention cues and fused them

via a conditional random field as a recurrent network. Very recent work [17, 22] tack-

les the weakly-supervised semantic segmentation problem using images or videos from

the Internet. Nevertheless, the ideas used to obtain heuristic cues are similar to those in

previous works.

In this paper, differently from all the aforementioned methods, we propose a weakly

supervised segmentation framework using salient instances. We assign tags to salient

instances to generate proxy ground-truth for fully supervised segmentation network.

The tag-assignment problem is modeled as graph partitioning, in which both the rela-

tionships between all salient instances in the whole dataset, as well as the information

within them are taken into consideration.

3 Overview and Network Structure

We now present an overview of our pipeline, then discuss our network structure and

tag-assignment algorithm. Our proposed framework is shown in Fig. 2. Most previous

work which relies on pixel level cues (such as saliency, edges and attention maps) re-

gards instance discrimination as a key task. However, with the development of deep
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Fig. 2: Pipeline. Instances are extracted from the input images by a salient instance de-

tector (e.g., S4Net [12]). An attention module predicts the probability of each salient

instance belonging to a certain category using its intrinsic properties. Semantic features

are obtained from the salient instances and used to build a similarity graph. Graph par-

titioning is used to determine the final tags of the salient instances. The fully supervised

segmentation network (e.g., DeepLab [5] or Mask R-CNN [14]) is trained using the

proxy ground-truth generated.

learning, saliency detectors are now available that can predict saliency maps along with

instance bounding boxes. Given training images labelled only with keywords, we use

an instance-level saliency segmentation network, S4Net [12], to extract salient instances

from every image. Each salient instance has a bounding box and a mask indicating a

visually noticeable foreground object in an image. These salient instances are class-

agnostic, so the extractor S4Net does not need to be trained for our training set. Al-

though salient instances contain ground-truth masks for training a segmentation mask,

there are two major limitations in the use of such salient instances to train a segmen-

tation network. The first is that an image may be labelled by multiple keywords. For

example, a common type of scene involves pedestrians walking near cars. Determining

the correct keyword associated with each salient instance is necessary. The second is

that instances detected by S4Net may not fall into the categories in the training set. We

refer to such salient instances as noisy instances. Eliminating such noisy instances is a

necessary part of our complete pipeline. Both limitations can be removed by solving a

tag-assignment problem, in which we associate salient instances with correct tags based

on image keywords, and tag others as noisy instances.

Our pipeline takes into consideration both the intrinsic characteristics of a single

region, and the relationships between all salient instances. A classification network

responds strongly to discriminative areas (pixels) of an object in the score map for

the correct category of the object. Therefore, inspired by class activation mapping

(CAM) [48], we use an attention module to identify the tags of salient instances di-
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rectly from their intrinsic characteristics. One weakness of existing weakly supervised

segmentation work is that it treats the training set image by image, ignoring the relation-

ships between salient instances across the entire training set. However, salient instances

belonging to the same category share similar contextual information which is of use in

tag-assignment. Our architecture extracts semantic features for each salient instance; re-

gions with similar semantic information have similar semantic features. These are used

to construct a similarity graph. The tag-assignment problem now becomes one of graph

partitioning, making use not only of the intrinsic properties of a single salient instance,

but the global relationships between all salient instances.

3.1 Attention Module

The attention module in our pipeline is used to determine the correct tag for each salient

instance from its intrinsic characteristics. Formally, let C be the number of categories

(excluding the background) in the training set. Given an image I , the attention module

predicts C attention maps. Each pixel in a map indicates the probability that the pixel

belongs to the corresponding object category. Following FCAN [4], we make use of a

fully convolutional network as our classifier. After prediction of C score maps by the

backbone model, e.g., off the shelf VGG16 [40] or ResNet101 [15], the classification

result y is output by a sigmoid layer fed with the average of the score maps using a

global average pooling (GAP) layer. Notice that y is not a probability distribution, as

the input image may have multiple keywords. An attention map denoted by Ai can

be produced by feeding the i-th score map into a sigmoid layer. As images may be

associated with multiple keywords, we treat network optimization as C independent

binary classification problems. Thus, the loss function is:

La = −
1

C

C
∑

i

(ȳi logyi + (1− ȳi) log(1− yi)), (1)

where ȳi denotes the keyword ground-truth. The dataset for weakly supervised semantic

segmentation is used to train the classifier, after which the attention maps for the images

in this dataset can be obtained.

Assuming that a salient instance has a bounding box (x0, y0, x1, y1) in image I , the

probability of this salient instance belonging to the i-th category pi is:

pi = −
1

(x1 − x0)(y1 − y0)

x1
∑

x=x0

y1
∑

y=y0

Ai(x, y), (2)

and the tag for this salient instance is given by argmax(p).

3.2 Semantic Feature Extractor

The attention module introduced above assigns tags to salient instances from their in-

trinsic properties, but fails to take relationships between all salient instances into consid-

eration. To discover such relationships, we use a semantic feature extractor to produce
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feature vectors for each input region of interest, such that regions of interest with sim-

ilar semantic content share similar features. To avoid the need for additional data, we

use ImageNet [9] to train this model.

The network architecture of the semantic feature extractor is very similar to that of

a standard classifier. ResNet [16] is used as the backbone model. We add a GAP layer

after the last layer of ResNet to obtain a 2048-channel semantic feature vector f . During

the training phase, a 1000-dimensional auxiliary classification vector y is predicted by

feeding f into a 1× 1 convolutional layer.

Our training objective is to maximize the distance between features from regions

of interest with different semantic content and minimize the distance between features

from the same category. To this end, in addition to the standard softmax-cross entropy

classification loss, we employ center loss [44] to directly concentrate features on similar

semantic content. For a specific category of ImageNet, the standard classification loss

trains y to be the correct probabilistic distribution, and the center loss simultaneously

learns a center c for the semantic features and penalizes the distance between f and c.

The overall loss function is formulated as:

L = Lcls + λLc, Lc = 1−
f · cȳ

‖f‖ ‖cȳ‖
, (3)

where Lcls is the softmax-crossentropy loss, ȳ is the ground-truth label of a training

sample and cȳ is the center of the ȳ-th category.

In every training iteration, the center for the category of the input sample is updated

using:

ct+1
ȳ = ctȳ + α · (f − ctȳ), (4)

4 Tag-Assignment Algorithm

In order to assign a correct keyword to every salient instance with or identify it as a noisy

instance, we use a tag-assignment algorithm, exploiting both the intrinsic properties

of a single salient instance, and the relationships between all salient instances in the

whole dataset. The tag-assignment process is modeled as a graph partitioning problem .

Although the purpose of graph partitioning can be considered as clustering, traditional

clustering algorithms using a hierarchical approach [37], k-means [30], DBSCAN [10]

or OPTICS [1], are unsuited to our task as they only consider relationships between

input data points, and ignore the intrinsic properties of each data point.

In detail, assume that n salient instances have been produced from the training set

by S4Net, and n semantic features extracted for each salient instance, denoted as fj ,

j = 1, . . . , n. As Sec. 3.1 described, we predict the probability of every salient instance

j belonging to category i, written as pij , i = 0, . . . , C, j = 1, . . . , n, where category 0

means the salient instance is a noisy one.

Let the image keywords for a salient instance j be the set Kj . The purpose of the

tag-assignment algorithm is to predict the final tags of the salient instances xij , i =
0, . . . , C, j = 1, . . . , n, such that xij ∈ {0, 1} if i ∈ Kj and otherwise xij ∈ {0}, and
∑

i xij = 1, where x0j = 1 means that instance j is considered noisy.
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(a) Similarity graph (b) A vertex in detail (c) Subgraphs

Fig. 3: Graph partitioning. (a): similarity graph, thickness of edges indicating edge

weights; color shows the correct tags of the vertices. (b): consider the vertex bounded

by a dotted square— only by including it in the red subgraph can the objective be opti-

mized. (c): subgraphs after partitioning.

We associate semantic similarity with the edges of a weighted undirected similarity

graph having a vertex for each salient instance, and an edge for each pair of salient in-

stances which are strongly similar. Edge weights give the similarity of a salient instance

pair. Tag-assignment thus becomes a graph partitioning process. The vertices are par-

titioned into C subsets, each representing a specific category; their vertices are tagged

accordingly. As salient instances in the same category have similar semantic content

and semantic features, a graph partitioning algorithm should ensure the vertices inside

a subset are strongly related while the vertices in different subsets should be as weakly

related as possible. We define the cohesiveness of a specific subgraph as the sum of

edge weights linking vertices inside the subgraph; the optimization target is to maxi-

mize the sum of cohesiveness over all categories. This graph partitioning problem can

be modeled as a mixed integer quadratic program (MIQP) problem as described later.

4.1 Construction of the Similarity Graph

Let the similarity graph of vertices, edges and weights be G = (V,E,W ). Initially, we

calculate the cosine similarity between every pair of features to determine W :
{

Wij =
fi·fj

‖fi‖‖fj‖
+ 1, i 6= j,

Wij = 0, i = j,
(5)

If every pair of vertices is related by an edge, G would be a dense graph, the number

of edges growing quadratically with the number of vertices, and in turn, cohesiveness

would be dominated by the number of vertices in the subset. In order to eliminate the

effect of the size of the subgraph, we turn G into a sparse graph by edge reduction,

so that each vertex retains only those k linked edges with the largest weights. In our

experiments, we set k = 3.

4.2 The Primary Graph Partitioning Algorithm

As described above, the cohesiveness of a subset i can be written in matrix form as

xT
i Wxi. As xi is a binary vector with length n, this formula simply sums the weights of
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edges between all vertices in subgraph i. To maximize cohesiveness over all categories,

we formulate the following optimization problem:

max
x

C
∑

i=1

xT
i Wxi, such that

s.t.
C
∑

i=1

xi = 1,

xij ∈

{

{0, 1} if i ∈ Kj

{0} otherwise.

(6)

To further explain this formulation, consider a salient instance, such as the vertex

bounded by dotted square in Figure 3(b), which belongs to category ia. Sharing similar

semantic content, the vertex representing this salient instance has strong similarity with

the vertices in subset ia. So the weights of edges between this vertex and subset ia are

larger than between it and any other subset, such as ib. The objective of the optimization

problem reaches a maximum if and only if this vertex is partitioned into subset ia,

meaning that the salient instance is assigned a correct tag.

This optimization problem can easily be transformed into a standard mixed integer

quadratic programing (MIQP) problem. Although this MIQP is nonconvex because of

its zero diagonal and nonnegative elements, it can easily be reformulated as a convex

MIQP, since all the variables are constrained to be 0 or 1. It can be solved by a branch-

and-bound method using IBM-CPLEX [3].

4.3 The Graph Partitioning with Attention and Noisy Vertices

The tag assignment problem in Section 4.2 identifies keywords for salient instances

using semantic relationships between the salient instances. However, the intrinsic prop-

erties of a salient instance are also important in tag assignment. As explained in Sec-

tion 3.1, the attention module predicts the probability pij that a salient instance j be-

longs to category i. In order to make use of the intrinsic characteristics of the salient

instances, we reformulate the optimization problem as:

max
x

C
∑

i=1

xT
i Wxi + βpixi, such that

C
∑

i=1

xi = 1,

xij ∈

{

{0, 1} if i ∈ Kj

{0} otherwise,

(7)

where the hyper-parameter β balances intrinsic instance information and global object

relationship information.



10 Ruochen Fan, Qibin Hou and Ming-Ming Cheng

As the salient instances are obtained by the class-agnostic S4Net, some salient in-

stances may fall outside the categories of the training set. We should thus further adjust

the optimization problem to reject such noisy vertices:

max
x

C
∑

i=1

xT
i Wxi + βpixi, such that

C
∑

i=1

xi ≤ 1,

∑

i=1j

xij = ⌊rn⌋,

xij ∈

{

{0, 1} if i ∈ Kj

{0} otherwise,

(8)

where the retention ratio r determines the number of vertices recognized as non-noisy.

5 Experiments

In this section, we show the efficacy of our method on the challenging PASCAL VOC

2012 semantic segmentation benchmark and at the same time conduct comparisons with

state-of-the-art methods. The results show that our proposed framework greatly outper-

forms all existing weakly-supervised methods. We also perform a series of experiments

to analyze the importance of each component in our method and discuss limitations

highlighted by the experiments. We furthermore present the first results of instance-

level segmentation for MS COCO.

5.1 Methodology

Datasets. We consider two training sets widely used in other work, the PASCAL VOC

2012 semantic segmentation dataset [11] plus an augmented version of this set [13].

As it has been widely used as a main training set [4, 23, 42], we also do so. We also

consider a simple dataset [19], all of whose images were automatically selected from

the ImageNet dataset [39]. We show the results of training on both sets individually,

as well as in combination. Details concerning the datasets can be found in Tab. 1b.

We have tested our method on both the PASCAL VOC 2012 validation set and test

set. For instance-level segmentation, the training process is performed on the standard

COCO trainval set; all pixel-level masks in the ground-truth are removed. We evaluate

the performance using the standard COCO evaluation metric. We use ImageNet as an

auxiliary dataset to pretrain all backbone models and the feature extractor.

Hyper-Parameters and Model Settings. In order to concentrate feature vectors for

salient instances in the same category, we use center loss. As suggested in [44], we set

λ = 10−3 and α = 0.5 to train center loss. However, unlike in the original version, cen-

ter loss is calculated by cosine distance instead of Euclidean distance for consistency
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Table 1: Ablation study for our proposed framework on three datasets. The best result

in each column is highlighted in bold. Subscripts represent growth relative to the value

above. Numbers of samples in the three datasets are also given.
mIoU (%)

Methods VOC SI VOC+SI

random 56.4 − 61.3

attention 62.0+5.6 − 62.7+1.4

GP w/o filtering 64.0+2.0 62.8 64.9+2.2

GP + filtering 64.5+0.5 63.9+1.1 65.6+0.7

(a) Ablation results ’Random’ refers to keywords of an

image being assigned randomly to the salient instances.

’Attention’ stands for the framework using only the at-

tention module. The results of the whole pipeline with

or without noisy salient instance filtering are also given.

dataset size

VOC 10, 582

SI 24, 000

VOC + SI 34, 582

(b) Size of each dataset In the

experiments, we use 10,582 im-

ages from the augmented PAS-

CAL VOC 2012 dataset, and

24,000 from the simple Ima-

geNet dataset.

Table 2: Influence of the hyper-parameters β and r on graph partitioning. The best result

for each hyper-parameter is highlighted in bold. This experiment is conducted on the

PASCAL VOC dataset.
β 0 3 10 30 90 300

mIoU (%) 63.2 63.9 64.1 64.5 63.6 62.9

(a) Influence of β The hyper-parameter β bal-

ances instance intrinsic information and global

object relationship information in the opti-

mization model. β = 0 means the graph is

partitioned solely using global relationship in-

formation.

r 1.00 0.95 0.90 0.85 0.80 0.75

mIoU (%) 63.8 64.5 64.1 63.4 62.3 60.9

(b) Influence of r The retention ratio r deter-

mines the proportion of salient instances la-

beled as valid during graph partitioning. r =

0 means a tag-assignment algorithm without

noisy instances filtering.

with the distance measure used in similarity graph construction. The semantic feature

extractor is trained on ImageNet using input images cropped and resized to 224 × 224
pixels. The attention module is implemented as a standard classifier and ResNet-50 is

used as the backbone model. We use all the training data (PASCAL VOC 2012 or sim-

ple ImageNet) to train this module. For the traditional fully supervised segmentation

CNNs in our framework, we train DeepLab using the following hyper-parameters: ini-

tial learning rate = 2.5 × 10−4), divided by a factor of 10 after 20k iterations, weight

decay = 5× 10−4, and momentum = 0.9. The mask-RCNN for instance-level segmen-

tation is trained using: initial learning rate = 2× 10−3, divided by a factor of 10 after 5

epochs, weight decay = 10−4, and momentum = 0.9.

5.2 Sensitivity Analysis

To analyze the importance of each component of our proposed framework, we perform

a series of ablation experiments using three datasets. Tab. 1a shows the results of the
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ablation study. As for existing works, the PASCAL VOC 2012 training set (VOC) [11]

is used in our experiments. Also, the simple ImageNet (SI) used important dataset in

our experiments. Unlike in PASCAL VOC 2012, in the simple ImageNet dataset every

image has only one keyword. The results in Tab. 1a are evaluated on PASCAL VOC

test set and the results in Tab. 2 are evaluated on PASCAL VOC val set.

Importance of each component of the framework Figure 1a shows that it is impos-

sible to obtain reasonable results by assign the image keywords to instances randomly,

indicating the necessity of tag assignment. One can observe from Tab. 1a that the pro-

posed graph partitioning operation brings 2.2% improvement compared to the single

attention module for the combined PASCAL VOC and simple ImageNet dataset. These

results indicate that global object relationship information across the whole dataset is

useful in tag-assignment. and clearly contributes to the final segmentation performance.

The results on the three datasets, especially for the simple ImageNet set which contains

more noisy salient instances, show that the noise filtering mechanism further improves

segmentation performance.

Balancing ratio β Graph partitioning depends on two key hyper-parameters: balancing

ratio β and retention ratio r, and they have great impact on the final performance of the

whole framework. The balancing ratio β balances information within salient instances

to global object relationship information across the whole dataset. If β is set to 0, graph

partitioning depends solely on the global relationship information; as β increases, the

influence of the intrinsic properties of the salient instances also increases. Tab. 2a shows

the influence of β. Even using only global relationship information (β = 0), reasonable

results can still be obtained. This verifies the effectiveness and importance of the global

relationship information. When β = 30, 1.3% performance gain is obtained as intrinsic

properties of the salient instances are also taken into consideration during graph par-

titioning. Too large a value of β decreases use of global relationship information and

may impair the final performance.

Retention ratio r The other key hyper-parameter, the retention ratio r, determines

the proportion of salient instances to be regarded as valid in graph partitioning, as a

proportion (1 − r) of the instances are rejected as noise. Tab. 2b shows the influence

of r on PASCAL VOC val set. Eliminating a proper number of salient instances having

low confidence improves the quality of the proxy-ground-truth and benefits the final

segmentation results, but too small a retention ratio leads to a performance decline.

5.3 Comparison with Existing Work

We compare our proposed method with existing state-of-the-art weakly supervised se-

mantic segmentation approaches. Tab. 3 shows results based on the PASCAL VOC 2012

‘val’ and ‘test’ sets. We can see that our framework achieves the best results for both

‘val’ and ‘test’ sets. Specifically, our approach improves on the baseline result presented

in Mining Pixels [19] by 6.0% points for the ‘test’ set and 5.8% for the ‘val’ set. It is
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Table 3: Pixel-level segmentation results on the PASCAL VOC 2012 ‘val’ and ‘test’

sets compared to those from existing state-of-the-art approaches. The default training

dataset is VOC 2012 for our proposed framework, while ‘†’ indicates experiments using

both VOC 2012 and the simple ImageNet dataset. The best keyword-based result in each

column is highlighted in bold.

Method Publication
Supervision Dataset

keywords scribbles points val test

CCNN [33] ICCV’15 ✓ 35.3% -

EM-Adapt [32] ICCV’15 ✓ 38.2% 39.6%

MIL [34] CVPR’15 ✓ 42.0% -

SEC [23] ECCV’16 ✓ 50.7% 51.7%

AugFeed [36] ECCV’16 ✓ 54.3% 55.5%

STC [43] PAMI’17 ✓ 49.8% 51.2%

Roy et al. [38] CVPR’17 ✓ 52.8% 53.7%

Oh et al. [31] CVPR’17 ✓ 55.7% 56.7%

AS-PSL [42] CVPR’17 ✓ 55.0% 55.7%

WebS-i2 [22] CVPR’17 ✓ 53.4% 55.3%

DCSP-VGG16 [4] BMVC’17 ✓ 58.6% 59.2%

Mining Pixels [19] EMMCVPR’17 ✓ 58.7% 59.6%

ours-VGG16 (Ours) - ✓ 61.3% 62.1%

ours-ResNet101 - ✓ 63.6% 64.5%

ours-VGG16† (Ours) - ✓ 61.9% 63.1%

ours-ResNet101† - ✓ 64.5% 65.6%

ScribbleSup [26] CVPR’16 ✓ ✓ 63.1% -

Bearman et al. [2] ECCV’16 ✓ ✓ 49.1% -

Table 4: Instance segmentation results on the COCO test-dev set compared to those

of existing approaches. The training set for our weakly supervised framework is the

COCO training set without pixel level annotations (masks).

Method weakly fully AP AP50 AP75 APS APM APL

FCIS [25] ✓ 29.2% 49.5% - 7.1% 31.3% 50.0%

MNC [7] ✓ 24.6% 44.3% 24.8% 4.7% 25.9% 43.6%

Mask-RCNN [14] ✓ 37.1% 60.0% 39.6% 35.3% 35.3% 35.3%

ours ✓ 13.7% 25.5% 13.5% 00.7% 15.7% 26.1%

further worth noting that our framework even outperforms the methods with additional

supervision in the form of scribbles and points.

In addition to the semantic segmentation results, we present results for instance-

level segmentation under weak supervision using only keyword annotations. Tab. 4
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compares our results to those from state-of-the-art fully supervised methods. Using

only original RGB images with keywords, our method achieves results within 36.9% of

the best fully supervised method.

5.4 Efficiency Analysis

We use IBM-CPLEX [3] to solve the MIQP in graph partitioning process. Because our

academic version CPLEX restricts the maximum number of variables to be optimized,

we use batches of 400 salient instances in implementation. To assign tags for 18878
salient instances extracted from VOC dataset, ⌈18878/400⌉ = 48 batches are processed

sequentially, which takes 226M memory and 22.14s on an i7 4770HQ CPU.

6 Conclusions

We have proposed a novel weakly supervised segmentation framework, focusing on

generating accurate proxy-ground-truth based on salient instances extracted from the

training images and tags assigned to them. In this paper, we introduce salient instances

to weakly supervised segmentation, significantly simplifying the object discrimina-

tion operation in existing work and enabling our framework to conduct instance-level

segmentation. We regard the tag-assignment task as a network partitioning problem

which can be solved by a standard approach. In order to improve the accuracy of tag-

assignment, both the information from individual salient instances, and from the rela-

tionships between all objects in the whole dataset are taken into consideration. Experi-

ments show that our method achieves new state-of-the art results on the PASCAL VOC

2012 semantic segmentation benchmark and demonstrated for the first time weakly su-

pervised results on the MS COCO instance-level segmentation task using only keyword

annotations.
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