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Abstract. We propose Convolutional Block Attention Module (CBAM),
a simple yet effective attention module for feed-forward convolutional
neural networks. Given an intermediate feature map, our module se-
quentially infers attention maps along two separate dimensions, channel
and spatial, then the attention maps are multiplied to the input feature
map for adaptive feature refinement. Because CBAM is a lightweight and
general module, it can be integrated into any CNN architectures seam-
lessly with negligible overheads and is end-to-end trainable along with
base CNNs. We validate our CBAM through extensive experiments on
ImageNet-1K, MS COCO detection, and VOC 2007 detection datasets.
Our experiments show consistent improvements in classification and de-
tection performances with various models, demonstrating the wide ap-
plicability of CBAM. The code and models will be publicly available.

Keywords: Object recognition, attention mechanism, gated convolu-
tion

1 Introduction

Convolutional neural networks (CNNs) have significantly pushed the perfor-
mance of vision tasks [1,2,3] based on their rich representation power. To en-
hance performance of CNNs, recent researches have mainly investigated three
important factors of networks: depth, width, and cardinality.

From the LeNet architecture [4] to Residual-style Networks [5,6,7,8] so far,
the network has become deeper for rich representation. VGGNet [9] shows that
stacking blocks with the same shape gives fair results. Following the same spirit,
ResNet [5] stacks the same topology of residual blocks along with skip connec-
tion to build an extremely deep architecture. GoogLeNet [10] shows that width
is another important factor to improve the performance of a model. Zagoruyko
and Komodakis [6] propose to increase the width of a network based on the
ResNet architecture. They have shown that a 28-layer ResNet with increased
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width can outperform an extremely deep ResNet with 1001 layers on the CI-
FAR benchmarks. Xception [11] and ResNeXt [7] come up with to increase the
cardinality of a network. They empirically show that cardinality not only saves
the total number of parameters but also results in stronger representation power
than the other two factors: depth and width.

Apart from these factors, we investigate a different aspect of the architec-
ture design, attention. The significance of attention has been studied extensively
in the previous literature [12,13,14,15,16,17]. Attention not only tells where to
focus, it also improves the representation of interests. Our goal is to increase
representation power by using attention mechanism: focusing on important fea-
tures and suppressing unnecessary ones. In this paper, we propose a new network
module, named “Convolutional Block Attention Module”. Since convolution op-
erations extract informative features by blending cross-channel and spatial infor-
mation together, we adopt our module to emphasize meaningful features along
those two principal dimensions: channel and spatial axes. To achieve this, we
sequentially apply channel and spatial attention modules (as shown in Fig. 1),
so that each of the branches can learn ‘what’ and ‘where’ to attend in the chan-
nel and spatial axes respectively. As a result, our module efficiently helps the
information flow within the network by learning which information to emphasize
or suppress.

In the ImageNet-1K dataset, we obtain accuracy improvement from various
baseline networks by plugging our tiny module, revealing the efficacy of CBAM.
We visualize trained models using the grad-CAM [18] and observe that CBAM-
enhanced networks focus on target objects more properly than their baseline
networks. We then conduct user study to quantitatively evaluate improvements
in interpretability of models. We show that better performance and better in-
terpretability are possible at the same time by using CBAM. Taking this into
account, we conjecture that the performance boost comes from accurate atten-
tion and noise reduction of irrelevant clutters. Finally, we validate performance
improvement of object detection on the MS COCO and the VOC 2007 datasets,
demonstrating a wide applicability of CBAM. Since we have carefully designed
our module to be light-weight, the overhead of parameters and computation is
negligible in most cases.

Contribution. Our main contribution is three-fold.

1. We propose a simple yet effective attention module (CBAM) that can be
widely applied to boost representation power of CNNs.

2. We validate the effectiveness of our attention module through extensive ab-
lation studies.

3. We verify that performance of various networks is greatly improved on the
multiple benchmarks (ImageNet-1K, MS COCO, and VOC 2007) by plug-
ging our light-weight module.
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Fig. 1: The overview of CBAM. The module has two sequential sub-modules:
channel and spatial. The intermediate feature map is adaptively refined through
our module (CBAM) at every convolutional block of deep networks.

2 Related Work

Network engineering. “Network engineering” has been one of the most impor-
tant vision research, because well-designed networks ensure remarkable perfor-
mance improvement in various applications. A wide range of architectures has
been proposed since the successful implementation of a large-scale CNN [19].
An intuitive and simple way of extension is to increase the depth of neural
networks [9]. Szegedy et al. [10] introduce a deep Inception network using a
multi-branch architecture where each branch is customized carefully. While a
naive increase in depth comes to saturation due to the difficulty of gradient
propagation, ResNet [5] proposes a simple identity skip-connection to ease the
optimization issues of deep networks. Based on the ResNet architecture, various
models such as WideResNet [6], Inception-ResNet [8], and ResNeXt [7] have been
developed. WideResNet [6] proposes a residual network with a larger number of
convolutional filters and reduced depth. PyramidNet [20] is a strict generalization
of WideResNet where the width of the network gradually increases. ResNeXt [7]
suggests to use grouped convolutions and shows that increasing the cardinality
leads to better classification accuracy. More recently, Huang et al. [21] propose
a new architecture, DenseNet. It iteratively concatenates the input features with
the output features, enabling each convolution block to receive raw information
from all the previous blocks. While most of recent network engineering methods
mainly target on three factors depth [19,9,10,5], width [10,22,6,8], and cardinal-

ity [7,11], we focus on the other aspect, ‘attention’, one of the curious facets of
a human visual system.

Attention mechanism. It is well known that attention plays an important
role in human perception [23,24,25]. One important property of a human visual
system is that one does not attempt to process a whole scene at once. Instead,
humans exploit a sequence of partial glimpses and selectively focus on salient
parts in order to capture visual structure better [26].

Recently, there have been several attempts [27,28] to incorporate attention
processing to improve the performance of CNNs in large-scale classification tasks.
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Wang et al. [27] propose Residual Attention Network which uses an encoder-
decoder style attention module. By refining the feature maps, the network not
only performs well but is also robust to noisy inputs. Instead of directly com-
puting the 3d attention map, we decompose the process that learns channel
attention and spatial attention separately. The separate attention generation
process for 3D feature map has much less computational and parameter over-
head, and therefore can be used as a plug-and-play module for pre-existing base
CNN architectures.

More close to our work, Hu et al. [28] introduce a compact module to exploit
the inter-channel relationship. In their Squeeze-and-Excitation module, they use
global average-pooled features to compute channel-wise attention. However, we
show that those are suboptimal features in order to infer fine channel attention,
and we suggest to use max-pooled features as well. They also miss the spatial
attention, which plays an important role in deciding ‘where’ to focus as shown in
[29]. In our CBAM, we exploit both spatial and channel-wise attention based on
an efficient architecture and empirically verify that exploiting both is superior to
using only the channel-wise attention as [28]. Moreover, we empirically show that
our module is effective in detection tasks (MS-COCO and VOC). Especially, we
achieve state-of-the-art performance just by placing our module on top of the
existing one-shot detector [30] in the VOC2007 test set.

Concurrently, BAM [31] takes a similar approach, decomposing 3D atten-
tion map inference into channel and spatial. They place BAM module at every
bottleneck of the network while we plug at every convolutional block.

3 Convolutional Block Attention Module

Given an intermediate feature map F ∈ R
C×H×W as input, CBAM sequentially

infers a 1D channel attention map Mc ∈ R
C×1×1 and a 2D spatial attention

map Ms ∈ R
1×H×W as illustrated in Fig. 1. The overall attention process can

be summarized as:

F
′ = Mc(F)⊗ F,

F
′′ = Ms(F

′)⊗ F
′,

(1)

where ⊗ denotes element-wise multiplication. During multiplication, the atten-
tion values are broadcasted (copied) accordingly: channel attention values are
broadcasted along the spatial dimension, and vice versa. F′′ is the final refined
output. Fig. 2 depicts the computation process of each attention map. The fol-
lowing describes the details of each attention module.

Channel attention module. We produce a channel attention map by exploit-
ing the inter-channel relationship of features. As each channel of a feature map
is considered as a feature detector [32], channel attention focuses on ‘what’ is
meaningful given an input image. To compute the channel attention efficiently,
we squeeze the spatial dimension of the input feature map. For aggregating spa-
tial information, average-pooling has been commonly adopted so far. Zhou et al.
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Fig. 2: Diagram of each attention sub-module. As illustrated, the channel
sub-module utilizes both max-pooling outputs and average-pooling outputs with
a shared network; the spatial sub-module utilizes similar two outputs that are
pooled along the channel axis and forward them to a convolution layer.

[33] suggest to use it to learn the extent of the target object effectively and Hu et

al. [28] adopt it in their attention module to compute spatial statistics. Beyond
the previous works, we argue that max-pooling gathers another important clue
about distinctive object features to infer finer channel-wise attention. Thus, we
use both average-pooled and max-pooled features simultaneously. We empiri-
cally confirmed that exploiting both features greatly improves representation
power of networks rather than using each independently (see Sec. 4.1), showing
the effectiveness of our design choice. We describe the detailed operation below.

We first aggregate spatial information of a feature map by using both average-
pooling and max-pooling operations, generating two different spatial context de-
scriptors: Fc

avg and F
c
max, which denote average-pooled features and max-pooled

features respectively. Both descriptors are then forwarded to a shared network
to produce our channel attention map Mc ∈ R

C×1×1. The shared network is
composed of multi-layer perceptron (MLP) with one hidden layer. To reduce
parameter overhead, the hidden activation size is set to R

C/r×1×1, where r is
the reduction ratio. After the shared network is applied to each descriptor, we
merge the output feature vectors using element-wise summation. In short, the
channel attention is computed as:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F)))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))),

(2)

where σ denotes the sigmoid function, W0 ∈ R
C/r×C , and W1 ∈ R

C×C/r. Note
that the MLP weights, W0 and W1, are shared for both inputs and the ReLU
activation function is followed by W0.
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Spatial attention module. We generate a spatial attention map by utilizing
the inter-spatial relationship of features. Different from the channel attention,
the spatial attention focuses on ‘where’ is an informative part, which is com-
plementary to the channel attention. To compute the spatial attention, we first
apply average-pooling and max-pooling operations along the channel axis and
concatenate them to generate an efficient feature descriptor. Applying pooling
operations along the channel axis is shown to be effective in highlighting informa-
tive regions [34]. On the concatenated feature descriptor, we apply a convolution
layer to generate a spatial attention map Ms(F) ∈ R

H×W which encodes where
to emphasize or suppress. We describe the detailed operation below.

We aggregate channel information of a feature map by using two pooling
operations, generating two 2D maps: Fs

avg ∈ R
1×H×W and F

s
max ∈ R

1×H×W .
Each denotes average-pooled features and max-pooled features across the chan-
nel. Those are then concatenated and convolved by a standard convolution layer,
producing our 2D spatial attention map. In short, the spatial attention is com-
puted as:

Ms(F) = σ(f7×7([AvgPool(F);MaxPool(F)]))

= σ(f7×7([Fs
avg;F

s
max])),

(3)

where σ denotes the sigmoid function and f7×7 represents a convolution opera-
tion with the filter size of 7× 7.

Arrangement of attention modules. Given an input image, two attention
modules, channel and spatial, compute complementary attention, focusing on
‘what’ and ‘where’ respectively. Considering this, two modules can be placed
in a parallel or sequential manner. We found that the sequential arrangement
gives a better result than a parallel arrangement. For the arrangement of the
sequential process, our experimental result shows that the channel-first order
is slightly better than the spatial-first. We will discuss experimental results on
network engineering in Sec. 4.1.

4 Experiments

We evaluate CBAM on the standard benchmarks: ImageNet-1K for image clas-
sification; MS COCO and VOC 2007 for object detection. In order to per-
form better apple-to-apple comparisons, we reproduced all the evaluated net-
works [5,6,7,35,28] in the PyTorch framework [36] and report our reproduced
results in the whole experiments.

To thoroughly evaluate the effectiveness of our final module, we first perform
extensive ablation experiments. Then, we verify that CBAM outperforms all the
baselines without bells and whistles, demonstrating the general applicability of
CBAM across different architectures as well as different tasks. One can seam-
lessly integrate CBAM in any CNN architectures and jointly train the combined
CBAM-enhanced networks. Fig. 3 shows a diagram of CBAM integrated with a
ResBlock in ResNet [5] as an example.
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Fig. 3: CBAM integrated with a ResBlock in ResNet[5]. This figure shows
the exact position of our module when integrated within a ResBlock. We apply
CBAM on the convolution outputs in each block.

4.1 Ablation studies

In this subsection, we empirically show the effectiveness of our design choice. For
this ablation study, we use the ImageNet-1K dataset and adopt ResNet-50 [5] as
the base architecture. The ImageNet-1K classification dataset [1] consists of 1.2
million images for training and 50,000 for validation with 1,000 object classes.
We adopt the same data augmentation scheme with [5,37] for training and apply
a single-crop evaluation with the size of 224×224 at test time. The learning rate
starts from 0.1 and drops every 30 epochs. We train the networks for 90 epochs.
Following [5,37,38], we report classification errors on the validation set.

Our module design process is split into three parts. We first search for the
effective approach to computing the channel attention, then the spatial attention.
Finally, we consider how to combine both channel and spatial attention modules.
We explain the details of each experiment below.

Channel attention. We experimentally verify that using both average-pooled
and max-pooled features enables finer attention inference. We compare 3 vari-
ants of channel attention: average pooling, max pooling, and joint use of both
poolings. Note that the channel attention module with an average pooling is the
same as the SE [28] module. Also, when using both poolings, we use a shared
MLP for attention inference to save parameters, as both of aggregated channel
features lie in the same semantic embedding space. We only use channel attention
modules in this experiment and we fix the reduction ratio to 16.

Description Parameters GFLOPs Top-1 Error(%) Top-5 Error(%)

ResNet50 (baseline) 25.56M 3.86 24.56 7.50
ResNet50 + AvgPool (SE [28]) 25.92M 3.94 23.14 6.70

ResNet50 + MaxPool 25.92M 3.94 23.20 6.83
ResNet50 + AvgPool & MaxPool 25.92M 4.02 22.80 6.52

Table 1: Comparison of different channel attention methods. We observe
that using our proposed method outperforms recently suggested Squeeze and
Excitation method [28].
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Description Param. GFLOPs Top-1 Error(%) Top-5 Error(%)

ResNet50 + channel (SE [28]) 28.09M 3.860 23.14 6.70

ResNet50 + channel 28.09M 3.860 22.80 6.52
ResNet50 + channel + spatial (1x1 conv, k=3) 28.10M 3.862 22.96 6.64
ResNet50 + channel + spatial (1x1 conv, k=7) 28.10M 3.869 22.90 6.47
ResNet50 + channel + spatial (avg&max, k=3) 28.09M 3.863 22.68 6.41
ResNet50 + channel + spatial (avg&max, k=7) 28.09M 3.864 22.66 6.31

Table 2: Comparison of different spatial attention methods. Using the
proposed channel-pooling (i.e. average- and max-pooling along the channel axis)
along with the large kernel size of 7 for the following convolution operation
performs best.

Description Top-1 Error(%) Top-5 Error(%)

ResNet50 + channel (SE [28]) 23.14 6.70

ResNet50 + channel + spatial 22.66 6.31

ResNet50 + spatial + channel 22.78 6.42
ResNet50 + channel & spatial in parallel 22.95 6.59

Table 3: Combining methods of channel and spatial attention. Using both
attention is critical while the best-combining strategy (i.e. sequential, channel-
first) further improves the accuracy.

Experimental results with various pooling methods are shown in Table 1. We
observe that max-pooled features are as meaningful as average-pooled features,
comparing the accuracy improvement from the baseline. In the work of SE [28],
however, they only exploit the average-pooled features, missing the importance
of max-pooled features. We argue that max-pooled features which encode the de-
gree of the most salient part can compensate the average-pooled features which
encode global statistics softly. Thus, we suggest to use both features simulta-
neously and apply a shared network to those features. The outputs of a shared
network are then merged by element-wise summation. We empirically show that
our channel attention method is an effective way to push performance further
from SE [28] without additional learnable parameters. As a brief conclusion, we
use both average- and max-pooled features in our channel attention module with
the reduction ratio of 16 in the following experiments.

Spatial attention. Given the channel-wise refined features, we explore an effec-
tive method to compute the spatial attention. The design philosophy is symmet-
ric with the channel attention branch. To generate a 2D spatial attention map,
we first compute a 2D descriptor that encodes channel information at each pixel
over all spatial locations. We then apply one convolution layer to the 2D descrip-
tor, obtaining the raw attention map. The final attention map is normalized by
the sigmoid function.

We compare two methods of generating the 2D descriptor: channel pooling

using average- and max-pooling across the channel axis and standard 1× 1 con-
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volution reducing the channel dimension into 1. In addition, we investigate the
effect of a kernel size at the following convolution layer: kernel sizes of 3 and 7.
In the experiment, we place the spatial attention module after the previously
designed channel attention module, as the final goal is to use both modules
together.

Table 2 shows the experimental results. We can observe that the channel
pooling produces better accuracy, indicating that explicitly modeled pooling
leads to finer attention inference rather than learnable weighted channel pooling
(implemented as 1 × 1 convolution). In the comparison of different convolution
kernel sizes, we find that adopting a larger kernel size generates better accuracy
in both cases. It implies that a broad view (i.e. large receptive field) is needed
for deciding spatially important regions. Considering this, we adopt the channel-
pooling method and the convolution layer with a large kernel size to compute
spatial attention. In a brief conclusion, we use the average- and max-pooled
features across the channel axis with a convolution kernel size of 7 as our spatial
attention module.

Arrangement of the channel and spatial attention. In this experiment,
we compare three different ways of arranging the channel and spatial attention
submodules: sequential channel-spatial, sequential spatial-channel, and parallel
use of both attention modules. As each module has different functions, the order
may affect the overall performance. For example, from a spatial viewpoint, the
channel attention is globally applied, while the spatial attention works locally.
Also, it is natural to think that we may combine two attention outputs to build
a 3D attention map. In the case, both attentions can be applied in parallel, then
the outputs of the two attention modules are added and normalized with the
sigmoid function.

Table 3 summarizes the experimental results on different attention arrang-
ing methods. From the results, we can find that generating an attention map
sequentially infers a finer attention map than doing in parallel. In addition, the
channel-first order performs slightly better than the spatial-first order. Note that
all the arranging methods outperform using only the channel attention indepen-
dently, showing that utilizing both attentions is crucial while the best-arranging
strategy further pushes performance.

4.2 Image Classification on ImageNet-1K

We perform ImageNet-1K classification experiments to rigorously evaluate our
module. We follow the same protocol as specified in Sec. 4.1 and evaluate our
module in various network architectures including ResNet [5], WideResNet [6],
and ResNext [7].

Table 4 summarizes the experimental results. The networks with CBAM
outperform all the baselines significantly, demonstrating that the CBAM can
generalize well on various models in the large-scale dataset. Moreover, the models
with CBAM improve the accuracy upon the one of the strongest method – SE [28]



10 Woo, Park, Lee, Kweon

Architecture Param. GFLOPs Top-1 Error (%) Top-5 Error (%)

ResNet18 [5] 11.69M 1.814 29.60 10.55
ResNet18 [5] + SE [28] 11.78M 1.814 29.41 10.22
ResNet18 [5] + CBAM 11.78M 1.815 29.27 10.09

ResNet34 [5] 21.80M 3.664 26.69 8.60
ResNet34 [5] + SE [28] 21.96M 3.664 26.13 8.35
ResNet34 [5] + CBAM 21.96M 3.665 25.99 8.24

ResNet50 [5] 25.56M 3.858 24.56 7.50
ResNet50 [5] + SE [28] 28.09M 3.860 23.14 6.70
ResNet50 [5] + CBAM 28.09M 3.864 22.66 6.31

ResNet101 [5] 44.55M 7.570 23.38 6.88
ResNet101 [5] + SE [28] 49.33M 7.575 22.35 6.19
ResNet101 [5] + CBAM 49.33M 7.581 21.51 5.69

WideResNet18 [6] (widen=1.5) 25.88M 3.866 26.85 8.88
WideResNet18 [6] (widen=1.5) + SE [28] 26.07M 3.867 26.21 8.47
WideResNet18 [6] (widen=1.5) + CBAM 26.08M 3.868 26.10 8.43

WideResNet18 [6] (widen=2.0) 45.62M 6.696 25.63 8.20
WideResNet18 [6] (widen=2.0) + SE [28] 45.97M 6.696 24.93 7.65
WideResNet18 [6] (widen=2.0) + CBAM 45.97M 6.697 24.84 7.63

ResNeXt50 [7] (32x4d) 25.03M 3.768 22.85 6.48
ResNeXt50 [7] (32x4d) + SE [28] 27.56M 3.771 21.91 6.04
ResNeXt50 [7] (32x4d) + CBAM 27.56M 3.774 21.92 5.91

ResNeXt101 [7] (32x4d) 44.18M 7.508 21.54 5.75
ResNeXt101 [7] (32x4d) + SE [28] 48.96M 7.512 21.17 5.66
ResNeXt101 [7] (32x4d) + CBAM 48.96M 7.519 21.07 5.59

* all results are reproduced in the PyTorch framework.

Table 4: Classification results on ImageNet-1K. Single-crop validation er-
rors are reported.

which is the winning approach of the ILSVRC 2017 classification task. It implies
that our proposed approach is powerful, showing the efficacy of new pooling

method that generates richer descriptor and spatial attention that complements
the channel attention effectively.

We also find that the overall overhead of CBAM is quite small in terms of both
parameters and computation. This motivates us to apply our proposed module
CBAM to the light-weight network, MobileNet [35]. Table 5 summarizes the
experimental results that we conducted based on the MobileNet architecture.
We have placed CBAM to two models, basic and capacity-reduced model(i.e.
adjusting width multiplier(α) to 0.7). We observe similar phenomenon as shown
in Table 4. CBAM not only boosts the accuracy of baselines significantly but also
favorably improves the performance of SE [28]. This shows the great potential
of CBAM for applications on low-end devices.

4.3 Network Visualization with Grad-CAM [18]

For the qualitative analysis, we apply the Grad-CAM [18] to different networks
using images from the ImageNet validation set. Grad-CAM is a recently proposed
visualization method which uses gradients in order to calculate the importance
of the spatial locations in convolutional layers. As the gradients are calculated
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Architecture Parameters GFLOPs Top-1 Error (%) Top-5 Error (%)

MobileNet [35] α = 0.7 2.30M 0.283 34.86 13.69
MobileNet [35] α = 0.7 + SE [28] 2.71M 0.283 32.50 12.49
MobileNet [35] α = 0.7 + CBAM 2.71M 0.289 31.51 11.48

MobileNet [35] 4.23M 0.569 31.39 11.51
MobileNet [35] + SE [28] 5.07M 0.570 29.97 10.63
MobileNet [35] + CBAM 5.07M 0.576 29.01 9.99

* all results are reproduced in the PyTorch framework.

Table 5: Classification results on ImageNet-1K using the light-weight
network, MobileNet [35]. Single-crop validation errors are reported.

with respect to a unique class, Grad-CAM result shows attended regions clearly.
By observing the regions that network has considered as important for predicting
a class, we attempt to look at how this network is making good use of features.
We compare the visualization results of CBAM-integrated network (ResNet50 +
CBAM) with baseline (ResNet50) and SE-integrated network (ResNet50 + SE).
Fig. 4 illustrate the visualization results. The softmax scores for a target class
are also shown in the figure.

In Fig. 4, we can clearly see that the Grad-CAM masks of the CBAM-
integrated network cover the target object regions better than other methods.
That is, the CBAM-integrated network learns well to exploit information in
target object regions and aggregate features from them. Note that target class
scores also increase accordingly.

Fig. 5: Example of question image for the user study.

Survey choice Votes
Seems equal 295
Baseline better 288
CBAM better 667

Table 6: Results of user study.

4.4 Quantitative evaluation of improved interpretability

Following the Sec.5.1 in Grad-CAM paper, we conduct a user study based on
Grad-CAM visualizations. We randomly selected 50 images which are correctly
classified with both methods(i.e.baseline and CBAM) from ImageNet valida-
tion set. The user study is conducted on the Google Forms platform. For each
question, randomly shuffled visualizations are shown to the respondents. For the
visualizations, regions of the image with Grad-CAM values of 0.6 or greater are
shown. In practice, respondents were given full input image, ground-truth label,
and two image regions from each methods(see Fig 5). The comparison criterion
is “Given class label, which region seems more class-discriminative?”. The re-
spondents can choose that either one is better, or both are similar. There are 50
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Fig. 4: Grad-CAM [18] visualization results. We compare the visualiza-
tion results of CBAM-integrated network (ResNet50 + CBAM) with baseline
(ResNet50) and SE-integrated network (ResNet50 + SE). The grad-CAM visu-
alization is calculated for the last convolutional outputs. The ground-truth label
is shown on the top of each input image and P denotes the softmax score of each
network for the ground-truth class.
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question sets of images and 25 respondents, resulting in a total of 1250 votes.
The results are shown in the Table 6. We can clearly see that CBAM outperforms
baseline, showing the improved interpretability.

4.5 MS COCO Object Detection

We conduct object detection on the Microsoft COCO dataset [3]. This dataset
involves 80k training images (“2014 train”) and 40k validation images (“2014
val”). The average mAP over different IoU thresholds from 0.5 to 0.95 is used
for evaluation. According to [39,40], we trained our model using all the training
images as well as a subset of validation images, holding out 5,000 examples for
validation. Our training code is based on [41] and we train the network for 490K
iterations for fast performance validation. We adopt Faster-RCNN [42] as our
detection method and ImageNet pre-trained ResNet50 and ResNet101 [5] as our
baseline networks. Here we are interested in performance improvement by plug-
ging CBAM to the baseline networks. Since we use the same detection method in
all the models, the gains can only be attributed to the enhanced representation
power, given by our module CBAM. As shown in the Table 7, we observe signifi-
cant improvements from the baseline, demonstrating generalization performance
of CBAM on other recognition tasks.

4.6 VOC 2007 Object Detection

We further perform experiments on the PASCAL VOC 2007 test set. In this ex-
periment, we apply CBAM to the detectors, while the previous experiments (Ta-
ble 7) apply our module to the base networks. We adopt the StairNet [30] frame-
work, which is one of the strongest multi-scale method based on the SSD [40].
For the experiment, we reproduce SSD and StairNet in our PyTorch platform
in order to estimate performance improvement of CBAM accurately and achieve
77.8% and 78.9% mAP@.5 respectively, which are higher than the original accu-
racy reported in the original papers. We then place SE [28] and CBAM right be-
fore every classifier, refining the final features which are composed of up-sampled
global features and corresponding local features before the prediction, enforcing
model to adaptively select only the meaningful features. We train all the models
on the union set of VOC 2007 trainval and VOC 2012 trainval (“07+12”), and
evaluate on the VOC 2007 test set. The total number of training epochs is 250.
We use a weight decay of 0.0005 and a momentum of 0.9. In all the experiments,
the size of the input image is fixed to 300 for the simplicity.

The experimental results are summarized in Table 8. We can clearly see
that CBAM improves the accuracy of all strong baselines with two backbone
networks. Note that accuracy improvement of CBAM comes with a negligible
parameter overhead, indicating that enhancement is not due to a naive capacity-
increment but because of our effective feature refinement. In addition, the result
using the light-weight backbone network [35] again shows that CBAM can be
an interesting method to low-end devices.
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Backbone Detector mAP@.5 mAP@.75 mAP@[.5, .95]

ResNet50 [5] Faster-RCNN [42] 46.2 28.1 27.0
ResNet50 [5] + CBAM Faster-RCNN [42] 48.2 29.2 28.1

ResNet101 [5] Faster-RCNN [42] 48.4 30.7 29.1
ResNet101 [5] + CBAM Faster-RCNN [42] 50.5 32.6 30.8

* all results are reproduced in the PyTorch framework.

Table 7: Object detection mAP(%) on the MS COCO validation set. We
adopt the Faster R-CNN [42] detection framework and apply our module to the
base networks. CBAM boosts mAP@[.5, .95] by 0.9 for both baseline networks.

Backbone Detector mAP@.5 Parameters (M)

VGG16 [9] SSD [40] 77.8 26.5
VGG16 [9] StairNet [30] 78.9 32.0
VGG16 [9] StairNet [30] + SE [28] 79.1 32.1
VGG16 [9] StairNet [30] + CBAM 79.3 32.1

MobileNet [35] SSD [40] 68.1 5.81
MobileNet [35] StairNet [30] 70.1 5.98
MobileNet [35] StairNet [30] + SE [28] 70.0 5.99
MobileNet [35] StairNet [30] + CBAM 70.5 6.00

* all results are reproduced in the PyTorch framework.

Table 8: Object detection mAP(%) on the VOC 2007 test set. We adopt
the StairNet [30] detection framework and apply SE and CBAM to the detectors.
CBAM favorably improves all the strong baselines with negligible additional
parameters.

5 Conclusion

We have presented the convolutional block attention module (CBAM), a new
approach to improve representation power of CNN networks. We apply attention-
based feature refinement with two distinctive modules, channel and spatial, and
achieve considerable performance improvement while keeping the overhead small.
For the channel attention, we suggest to use the max-pooled features along with
the average-pooled features, leading to produce finer attention than SE [28].
We further push the performance by exploiting the spatial attention. Our final
module (CBAM) learns what and where to emphasize or suppress and refines
intermediate features effectively. To verify its efficacy, we conducted extensive
experiments with various state-of-the-art models and confirmed that CBAM
outperforms all the baselines on three different benchmark datasets: ImageNet-
1K, MS COCO, and VOC 2007. In addition, we visualize how the module exactly
infers given an input image. Interestingly, we observed that our module induces
the network to focus on target object properly. We hope CBAM become an
important component of various network architectures.
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