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Abstract. Visualizing features in deep neural networks (DNNs) can
help understanding their computations. Many previous studies aimed to
visualize the selectivity of individual units by inding meaningful images
that maximize their activation. However, comparably little attention has
been paid to visualizing to what image transformations units in DNNs
are invariant. Here we propose a method to discover invariances in the
responses of hidden layer units of deep neural networks. Our approach
is based on simultaneously searching for a batch of images that strongly
activate a unit while at the same time being as distinct from each other
as possible. We ind that even early convolutional layers in VGG-19 ex-
hibit various forms of response invariance: near-perfect phase invariance
in some units and invariance to local difeomorphic transformations in
others. At the same time, we uncover representational diferences with
ResNet-50 in its corresponding layers. We conclude that invariance trans-
formations are a major computational component learned by DNNs and
we provide a systematic method to study them.

Keywords: Feature visualization, invariance, phase invariance, deep
neural networks, early visual system.

1 Introduction

As deep neural networks have gained popularity in many scientiic disciplines
and technological applications, there is a growing interest in understanding the
representations they learn and the computations they perform. One approach
towards achieving such understanding is to visualize the features that activate
the neurons in a network. There is a growing body of work that seeks to visualize
features by synthesizing images which maximally drive hidden layer units. While
this approach can give us a rough intuition about a unit’s selectivity, it provides
only a very incomplete picture of its computation. In addition to characterizing
feature detectors by the stimulus that elicits the largest response, it is important
to identify the nuisance parameters to which the neuron is invariant. As hidden
layers build up response invariances gradually with depth, it is not the image that
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most strongly drives a unit that is the most telling about this unit’s function,
but instead the set of images that elicit a strong response. While some previous
work has visualized multiple ‘facets’ of neurons’ selectivity, these eforts focused
mostly on the highest layers of the network and relied on initialization or random
sampling strategies to create multiple images for each unit. However, as we show
in the present paper, these approaches underestimate the true diversity of the
selectivity of even relatively low-level units. Additionally, these approaches have
not ofered insights about how the representations of diferent networks trained
on the same task compare. Our contributions are the following:

1. Motivated by the phase invariance of complex cells in the early visual system
of the brain, we show why visualizing invariance is as important as visualizing
selectivity for understanding the computations of even low-level units.

2. We develop a non-parametric approach to map the manifold of highly-
activating inputs as exhaustively as possible.

3. We show that even relatively low-level units exhibit a remarkable degree of
invariance in VGG-19 [28], which is not revealed by inding highly activating
stimuli from multiple optimization runs with random initializations.

4. We ind that in low to intermediate layers of VGG-19, at least two types of
invariances emerge: tolerance to local difeomorphic transformations tuned to
speciic features, and phase invariance, where units respond well to periodic
texture patterns and are insensitive to their phase. We additionally ofer a
way to quantify these invariances.

5. In contrast, we ind that low to intermediate layers of a network with skip
connections (ResNet-50 [11]) that was trained on the same task as VGG-
19 exhibit far less phase invariance, revealing representational diferences
between these two networks.

6. We showcase our visualization approach on a CNN trained to predict re-
sponses to natural images in primary visual cortex of the primate brain.

We provide the code to replicate our results. 1

2 Related work

One way to identify selectivity of hidden units is to look for image patches in
the dataset that drive them maximally [6, 33]. These image patches can some-
times hint at a unit’s selectivity, but it can be diicult to identify their common
features. Optimization-based techniques have proven more useful for feature vi-
sualization: a common approach is to search for pre-images that drive individual
neurons maximally via gradient ascent [6]. Most previous work focused on deep
layers, where inding natural-looking pre-images is challenging. For example, the
activation objective leads to adversarial-like patterns [20, 29]. As a consequence,
much of the follow-up work focused on developing regularization techniques to
obtain more natural pre-images, including penalties on high-frequency noise [16,
1 https://github.com/sacadena/diverse_feature_vis



Diverse feature visualizations of early layers of CNNs 3

x + f(x)

Simple

Cells

Input

Image

Hubel & Wiesel

1

0

0 90 180

Phase (degrees)

A
c
ti
v
a
ti
o
n

270 360

Energy ModelA CB

Complex

Cell

Input

Image

Complex

Cell

Hubel & Wiesel

Energy Model

Simple Cell

x + f(x)

Fig. 1. Simple and complex cells, phase invariance. A. Energy model of complex cell.
B. Hubel & Wiesel model of complex cell. C. Neural response as a function of phase
of Gabor stimulus with optimal orientation and spatial frequency.

20] or the distance between the generated visualizations and natural images
patches [32], or performing gradient descent in the feature space of a deep gen-
erator network [19].

Goodfellow et al. [9] were the irst (to our knowledge) to study invariances
in deep networks. Their approach allows to quantify how invariant a unit is to
known transformations such as translation, (3D-) rotation or scaling, but it does
not allow to discover these transformations if they are unknown in advance.

Recent work proposes visualizing multiple ‘facets’ of the neuron’s selectivity
by obtaining multiple images from diferent random initializations [17], using a
diverse set of highly activating images as initializations [21], or using a generative
image model to sample highly-activating images [18].

These methods do not explicitly specify an objective to produce a diverse
set of images. In contrast, we optimize a batch of images to drive the neuron
of interest strongly while simultaneously being as distinct from each other as
possible. Recent concurrent work [22] introduces a similar idea, albeit with a
diferent loss function based on texture representations [7, 8].

3 Discovering invariances

3.1 Motivation: simple and complex cells

We illustrate our point by considering a toy example well known from early
vision in the brain (Fig. 1): simple and complex cells [12], which are found in
the primary visual cortex, an early stage of visual processing in the mammalian
brain. Simple cells can be approximated well by a linear ilter followed by a
thresholding nonlinearity (e.g. ReLU). The linear ilter usually resembles a Gabor
ilter. Complex cells are, like simple cells, selective for a speciic orientation and
spatial frequency. However, unlike simple cells they respond to Gabor patches
of arbitrary phases – they are phase-invariant. The standard model for this
phase invariance is the so-called energy model (Fig. 1A, [1]), which sums over
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the squared responses of two Gabor ilters phase-shifted by 90◦ (Fig. 1C, black).
This energy model has also been used to study rotation, scaling and more general
invariances in the context of unsupervised representation learning [2, 3, 15]

An alternative formulation was originally proposed by Hubel & Wiesel, who
discovered complex cells in the 1960ies in the primary visual cortex of cats [12].
Their model suggests that complex cells are the result of pooling over multiple
simple cells with a range of phase preferences (Fig. 1B). If the learned weights
and phase preferences exhibit some variability, the resulting phase invariance is
only approximate (Fig. 1C, blue).

Now, consider what happens when we study simple and complex cells us-
ing activity maximization. For a simple cell, we will recover its selectivity. For
a complex cell, however, all Gabor patches of optimal orientation and spatial
frequency will elicit a high response, irrespective of their phase. In the case of
the Energy Model, which is perfectly phase-invariant, we may obtain this set of
optimal images by starting with random initializations. However, for an imper-
fect model more likely to occur in reality (e. g. Hubel & Wiesel model, blue in
Fig. 1C), there is a unique maximum, which we will ind despite the fact that
activations are consistently above 80% of the maximum for all phases. Thus,
activity maximization will produce the same result for both simple and com-
plex cells (a single Gabor patch), but this result will miss the key aspect of the
complex cell’s computation: its phase invariance.

3.2 Mapping invariances

Objective. The idea behind our approach is to ind a batch of images in which
each image maximally drives a speciic unit while the images are maximally
diferent from one another. Starting with a batch of n images {x1, · · · , xn},
initialized as white noise, we maximize the following objective using gradient
ascent:

L =
n∑

i=1

y
(l)
ik + α

n∑

i=1

logP (xi) + λmin
i,j

d(xi, xj). (1)

Here, y(l)ik is the output activation of unit k in layer l for the ith image in the batch,
P (xi) is the likelihood of the image under a generative model of natural images
and d(xi, xj) is a distance between two images, The likelihood and distance
measures are speciied below. Note that we set the image size to the receptive
ield size of units in the layer to be visualized, such that the outputs y

(l)
ik are

1×1 spatially and we can omit the indices over space. We constrain the norm of
the synthesized images to be equal to half the average norm of natural images
patches of the same size taken from the ImageNet dataset2, where we assume
that zero in each color channel corresponds to the average value of this channel
2 Using half the average norm is a heuristic that we use because the synthesized images

tend to be localized to the center of the patch.
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across the ImageNet training set. For visualization, we add this mean and clip
the values between 0 and 255. Very few pixels fall outside this range.

The irst and the second term in the objective are similar to previous work,
encouraging the optimization to ind natural images that strongly activate the
unit. The third term forces all images in the batch to be as distinct as possible
from all other images, since we penalize the minimum distance between any
pair of images. This objective presents a trade-of: we allow for some degree of
non-maximal responses if this allows us to increase the set of strongly activating
pre-images substantially.

It is important to use the minimum distance in the objective rather than the
average. Maximizing the average distance does not necessarily lead to coverage
of the invariant subspace. Consider the Energy Model: assuming we generate
an even number of n images, the optimal solution maximizing the average L2

distance is to place all images at either of two distinct phases separated by 180◦.
Now we fail to generate a diverse set of images but the average distance is high
(90◦). In contrast, the desired solution of images evenly separated by 360◦/n will
give a smaller average distance for n > 4 and can be obtained when maximizing
the minimum distance.

It has also some advantages to consider a single unit within a feature map
compared to considering the entire feature map. When maximizing the activa-
tion of the entire feature map, the resulting image will be shift-invariant by
construction and properties such as phase invariance of individual units cannot
be detected.

Natural image prior. We use PixelCNN++ [27] as a natural image prior,
as it allows directly evaluating and optimizing the likelihood of an image patch
of arbitrary size. In a nutshell, PixelCNN++ improves upon PixelCNN [23] and
earlier autoregressive models [24, 30, 31] that attempt to capture the distribution
of natural images by expressing the joint distribution of all pixels as the product
of the distributions of individual pixels conditioned on a causal neighborhood.
We use the model pre-trained on Cifar-100 provided by OpenAI3 which is state-
of-the-art in terms of likelihood on natural images.

Distance metric. To evaluate the distance between two images, we use a fea-
ture space given by the neural network to encourage diversity on perceptually
interesting image properties. For an output unit yk in layer l, we compute the
Euclidean distance in the feature space of the preceding convolutional layer:

d(xi, xj) = ∥y(l−1)
i − y(l−1)

j ∥2; i ̸= j (2)

where y(l−1)
i and y(l−1)

j are vectors of activations in the preceding layer lattened
over space and channels.

3 https://github.com/openai/pixel-cnn
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Fig. 2. Mapping invariances as a trade-of between diversity and maximizing activation.
A. Trade-of between activation and image diversity. For a complex cell, images can
be made quite diverse while keeping the activation level high. When λ gets too large
(λ > 2), there is a qualitative change. B. Set of images for three diferent λ. C.
Distribution of phases of synthesized Gabor patches, showing that with the optimal
λ = 2 we get equally spaced images, i.e. cover the invariant subspace well.

Optimization. We optimize the objective deined in Eq. (1) using the Adam
optimizer [13] with a learning rate of 0.1 until the objective converges (maximum
of 1000 steps). Similar to Olah et al. [22], we precondition the gradient to reduce
the efect of high frequencies by dividing each frequency component by

√
f .

We manually set the hyperparameter α, which controls the strength of the
natural image prior, based on qualitative inspection of the resulting images in
an exploratory experiment. We used α = 0.0005 for all experiments.

We sweep a range of values for λ (0.02, 0.04, 0.08, ... 20.48) and for each
unit pick the largest such λ that the average activation level remains above a
threshold. This threshold is 80% of the maximum for the complex cell model
and 90% for VGG-19 and ResNet-50. See Fig. 2A and Fig. 4 for a qualitative
justiication of these thresholds.

3.3 Application to complex cell models

Before applying our approach to a deep neural network, we verify that it works
when the units are only approximately invariant to some transformation. To
this end, we use the Hubel & Wiesel model of a complex cell outlined above
(Fig. 1B), which does not produce perfect phase invariance, but still responds
strongly to Gabor patches of all phases.

Indeed, our approach can visualize the entire invariant subspace spanning the
full range of phases (Fig. 2). Without the diversity term (λ = 0), the optimization
tends to converge to the same pre-image (Fig. 2B). Four out of six solutions
correspond to the globally most strongly driving image (see also Fig. 1C, top).
In contrast, with an appropriate choice of λ, the images distribute uniformly
(Fig. 2B, C). If we increase λ too much, however, the diversity penalty becomes
too large and the optimization will converge to solutions including non-optimal
images. Thus, to visualize the invariant subspace, we should pick the largest λ
that leads to only a small decrease in activation level. This point depends on how
‘clean’ the invariance of the cell is. For the Hubel & Wiesel model considered
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Fig. 3. Invariant subspace of two example units in conv3_2 (feature maps 9 and 26).
A. Invariance/activation trade-of B. Pre-images obtained for diferent values of λ.

here, this drop in activation occurs when the average activation falls below 80%
of the maximum, which corresponds to the response range for images within the
approximately invariant subspace (see Fig. 1C, blue line).

Note that for the simple cell, which does not exhibit any such response in-
variance, the curve looks qualitatively diferent (Fig. 2A, red line). Thus, we
can quantify response invariance of units in a DNN by computing the minimum
distance between any two images in the batch at the optimal λ.

4 Invariances in VGG-19

We asked to what extent deep neural networks trained on large-scale object
recognition (ImageNet [25]) exhibit response invariances in their convolutional
layers. Previous work focused mostly on higher layers and did not ind much
invariance in low and intermediate layers. However, in neuroscience it is well-
known that low- and mid-level neurons in the brain – like complex cells – can
exhibit a substantial degree of response invariance. Moreover, there is evidence
for a considerable degree of similarity between neural representations in DNNs
trained on object recognition and the primate visual system [14, 10, 4, 5]. In par-
ticular, we have shown [4] that the convolutional layers of VGG-19 [28] around
layer conv3_1 best predict neural activity in primary visual cortex, including
that of many complex cells. Therefore we would expect that these layers in the
VGG-19 network should also exhibit some degree of invariance to phase and
potentially other transformations.

4.1 Convolutional layers of VGG-19 exhibit response invariances

We start by considering two example units from layer conv3_2 (Fig. 3) of VGG-
19. As in the complex cell example, we can increase the diversity of generated
images quite substantially while maintaining a high activation level (Fig. 3A).
Only when we increase λ too much, the activation level drops substantially and
the images start deteriorating (Fig. 3B, top row). Overall, the trade-of between
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Fig. 5. VGG units are more invariant than expected
from random weights. A. All 256 units in conv3_1
(colored lines) are more invariant than units in a net-
work with the same architecture but random weights
(black lines). B. Histogram of the diversity terms
for the optimal λ relative to their value for λ = 0
(black: random weights; purple: trained conv3_1).
This means that for the least invariant units we can
increase the diversity of the images two-fold while
maintaining the average activation above 90% of the
maximum obtained with λ = 0.

image diversity and activation level looks qualitatively similar to the complex
cell example above.

Moreover, the images generated with the optimal λ look signiicantly more
diverse than those obtained by random initialization at λ = 0 (Fig. 3B, middle
and bottom rows). Indeed, most units showed quite some degree of invariance:
we can increase the image diversity considerably while maintaining activation
levels above 90% of the maximum (Fig. 4 for conv3_1; see Sect. 1 in the Supp.
for additional convolutional layers). Below, we therefore use the largest such λ
that maintains the average activation level above 90% of the maximum.

4.2 Response invariances are a learned property of the network

Is this invariance a learned property of the network or does it arise trivially from
the network architecture? We repeated the analysis on a network with the same
architecture as VGG-19 but random weights. To keep the two networks compa-
rable, we normalized both the activations and the distances between images such
that they are equal to one for λ = 0. We found that units in the random network
are substantially less invariant than those of VGG-19 (Fig. 5A), suggesting that
the neurons’ response invariance is indeed a learned property. Remarkably, by
introducing the diversity term into the pre-image search, we could increase the
minimum distance between any two images in a batch by a factor of at least two
and up to 100-fold without ‘sacriicing’ more than 10% of the unit’s activation
level (Fig. 5B), a property that the random network does not exhibit.
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Fig. 6. Examples of invariant subspaces of texture-like and shape-like detectors of
feature maps 13 (left) and 22 (right) in conv3_1.

4.3 Types of invariance: texture vs. shape detectors

We now investigate the types of invariance learned by diferent units in the
network. We start by considering two example units from layer conv3_1 (Fig. 6).
The irst unit responds to a dark grid on brighter background of arbitrary color.
In addition to this selectivity, it appears to be entirely phase- and rotation-
invariant: the location of the grid lines and their orientation is irrelevant for the
unit’s activation, but their general spatial scale and the foreground color are
important. We refer to units that exhibit this property as texture detectors.

The second unit, in contrast, detects a circular feature in the lower half of
its receptive ield. While it is sensitive to the location of this pattern within its
receptive ield, it exhibits a substantial degree of color and scale invariance: the
contours have a sinusoidal cross-section whose local phase varies across images,
such that by using linear combinations of multiple of these images one can obtain
the circular pattern in various diferent sizes and color combinations. We refer to
such units as shape detectors: they are sensitive to location but allow for some
degree of local difeomorphic transformation.

The two units shown here are representative of a larger number of units in
various layers of VGG-19 (see Fig. 7 and Sect. 2 from Supp. for more examples).
As we will quantitatively show below, they lie on two extremes of a spectrum
along which we can characterize low- and intermediate-level units.

4.4 Quantiication of phase invariance (textures)

So far, we have described texture and shape units only qualitatively. We therefore
developed metrics to quantify these properties more systematically. We start by
quantifying phase invariance, the property that characterizes texture detectors.

While shift equivariance is built into CNNs, phase invariance of individual
units has to our knowledge not been reported. A perfectly phase-invariant unit
would maintain a high activation when presented with shifted versions of its
preferred texture. Therefore, to quantify phase invariance, we optimize an im-
age twice as large as the unit’s receptive ield such that the average activation
of all possible windowed crops from this image is maximized (Fig. 8A, 1–4).
Indeed, for a decent number of units we had qualitatively labeled as ‘texture
detectors,’ the crops generated in this way (Fig. 8A, 3) resemble the templates
we synthesized earlier (Fig. 8A, 4) and elicit similarly high activations (Fig. 8C).
On the other hand, ‘shape-selective’ units expect certain structures in speciic
locations within their receptive ield. Generating a texture where arbitrary crops
are highly activating is not possible for these units (Fig. 8B).
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Fig. 7. Invariant subspaces of a selection of units in convolutional layers conv1_2 to
conv3_4 of VGG-19. Each horizontal block of six images represents one unit. It contains
the six maximally diverse images resulting in an activation of the unit above 90% of its
maximum. Images for higher layers are scaled up slightly to improve visibility, but the
pixel sizes are not matched across layers (lower layers have comparably larger pixels).

To quantify this intuitive argument, we deined shift invariance as the ratio
between the average activation of all crops from the larger texture and the aver-
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Fig. 8. Quantiication of invariances in VGG19. For layer conv3_1, examples of tex-
ture (A) and shape (B) units. Left: Phase invariance. We optimize a texture (1) to
maximize the average activation of all windowed (2) crops (3). The mask has the form
exp

(

− (r/σ)4
)

where r =
√

x2 + y2. We picked σ so that the ratio between the unit’s
receptive ield and σ is ∼ 2.5. (4): individual images maximizing the unit’s activation.
Right: Invariance to local deformations is supported by features that locally form
quadrature pairs. Linear combinations (5) of templates (4) produce images with high
activations. C. Histogram of the phase invariance (examples from A+B labeled). D.
Histogram of metric measuring invariance to local deformations. E. Scatter plot of the
two metrics (shift invariant index and linear combination index) for all units at each
convolutional layer of VGG19.

age activation of the diverse templates produced earlier (see example histogram
in Fig. 8C, for conv3_1). Indeed, the units labeled as phase-invariant (Fig. 8A),
maintain a high activations despite arbitrary phase shifts, while the activation
of the shape-selective units (Fig. 8B) drops substantially (Fig. 8C).

Note that synthesizing a larger image by maximizing all crops is similar to
maximizing an entire channel’s activity (i. e. feature map) for a suiciently large
input image, an approach other authors have taken for feature visualization [22].
Although insightful in many occasions, the drawback is that this procedure often
occludes shape selectivity. For instance, the irst unit in Fig. 8B is selective to
a circular pattern in the top-right with rays pointing towards the bottom-left
when maximized individually. However, the resulting texture looks like a ield of
oriented edges, thus missing the crucial pattern that drives this unit.

4.5 Tolerance to local deformations (shapes)

The second invariance we identify is tolerance to local deformations. A closer look
at some examples (e. g. Fig 6, right; Fig. 8B, top) reveals that some of the units
have local tolerance for phase changes. The patterns these units are tuned for
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Fig. 9. Toy example (A) where linear combinations (C) of highly activating images (B)
are also highly activating. It detects a top-left corner by combining two complex cells.

can be locally built by spatially arranging multiple complex-cell-like quadrature
pairs. This would suggest, that – although mapped into a nonlinear feature space
– linear combinations of the ‘template’ images spanning the invariant subspace
should highly activate these units as well. We illustrate this seemingly counter-
intuitive hypothesis with a toy example and then show how it applies to CNNs.

Consider the following example comprised of two complex cells arranged
such that they detect a top-left corner (Fig. 9). The unit allows for individually
shifting up or down the horizontal edge, and left or right the vertical edge. Each
of the two edges is detected by an energy model of a complex cell (Fig. 9A), each
at a deined location within the receptive ield. Accordingly, the highly activating
template images are made up of combinations of odd and even Gabors (Fig. 9B)
and any linear combination of them is again a highly activating image (Fig. 9C).

To quantify whether the same property holds for VGG units, we computed
the average activation level of linear combinations of the maximally activat-
ing images. Speciically, we took the averages (in pixel space) of all 15 pairs of
templates (Fig. 8A.5), renormalized them to the same norm as the templates
and compared their average activation to that of the templates. For ‘texture-
selective’ units this procedure deteriorates the clear texture patterns revealed
by the templates (see for instance Fig. 8A.5). Accordingly, the unit’s activation
level to these images drops substantially (Fig. 8D, red+orange). We quantify
this drop by computing a linear combination index, deined as the ratio be-
tween the average activation of average-image pairs and the average activation
of the diverse templates. Units tuned to shape patterns that are tolerant to
local transformations give average-pairs that are fairly similar to the original
templates, producing a high linear combination index.

4.6 Characterization of invariances across layers

We have identiied two metrics that quantify two diferent forms of invariance in
VGG units. Our examples from Fig. 8 suggest that these two types of invariance
are anticorrelated. As this does not have to be the case a priori – a complex cell
would score high on both metrics – we asked whether this was just due to our
selection of examples or whether it holds more generally across layers. Indeed,
shift invariance and tolerance to local deformations appear to be anticorrelated
across a wide range of layers (Fig. 8E; conv3 in particular). We also observe that
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Fig. 10. ResNet-50 results. A, Example units of block conv2_3 (compare to Fig.8). We
noticed that maximizing windowed crops (2) of a big texture (1) are largely diferent
from the maximizing templates (3). 15 template-pair averages (4) are on the other
hand highly activating and similar to the templates. B, Scatter plot of the two metrics
proposed for said layers of ResNet-50.

higher layers tend to be less shift-invariant than lower ones (e. g. compare within
conv3 in Fig. 8E).

5 Diverse visualizations of early layers of ResNet-50

To test whether our results so far are properties of VGG-19 or apply more
generally to CNNs trained on ImageNet, we also applied our methods to ResNet-
50 [11]. We considered its early layers up to conv3_1 (fourth block), which
have receptive ield sizes comparable to the layers we studied in VGG-19. We
irst synthesized diverse image batches with diferent diversity penalties and
found a similar trade-of between activation and diversity as found before (see
Sect. 3 in Suppl. Material). However, for the λ that evoked at least 90% of the
maximal responses we observed on average a smaller diversity compared to that
of VGG-19 units. We then ran our analysis to identify both phase and shape
invariance and surprisingly found a much reduced number of phase-invariant
units compared to VGG-19 (Fig. 10): there are basically no ResNet-50 units
for which the crops from the optimal texture look like the optimized templates
(e.g. Fig. 10A,2+3). On the other hand, template-pair averages do not appear
to qualitatively deviate from the synthesized templates (Fig. 10A,4) indicating
a strong presence of tolerance to local changes. The two metrics introduced
above conirm this observation quantitatively: the distribution of shift invariance
indices is shifted towards zero in ResNet-50 layers (Fig. 10B) with respect to
those in VGG-19.

This is a very interesting inding, because it shows that the diferent archi-
tectures learn quite diferent features in their early layers despite both being
trained on ImageNet and achieving comparable classiication accuracy. Thus,
our novel approach to feature visualization helped us identify strong represen-
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Templates Complex Cells Templates Simple Cells

Fig. 11. Subspaces of V1 cells. Complex (left) and simple (right) cells

tational diferences in the canonical directions between two architectures that
would not have been observed with conventional activity maximization

6 Phase invariance in Primary visual cortex (V1)

As a inal practical use case, we applied our method to a three-layer CNN that
has been trained to predict neural responses in V1 when monkeys are shown
natural images (data from [4]; see also their Fig. 3). Our method unveils the
known cell types – simple: phase-selective and complex: phase-invariant (Fig 11).
Although complex cells can also be identiied using speciically designed stimuli
or analysis methods relying on quadratic features (e. g. spike-triggered covariance
[26]), our non-parametric approach could in principle also uncover other types
of invariance that are not captured by quadratic features. Given that we see no
such additional invariances, there are likely no other major features V1 cells are
invariant to – a conclusion that could not be drawn using parametric approaches.

7 Conclusion

Motivated by early vision in the brain, we investigated the response invariances
in the early to intermediate convolutional layers of DNNs. We found that units
in early layers of VGG-19 show invariance to global texture-preserving transfor-
mations and invariance to local shape-preserving transformations. In contrast,
ResNet-50 does not exhibit the same degree of shift invariance. This diference
could explain why practitioners working on texture synthesis and style transfer
observe that the features of VGG work substantially better than those of more
modern architectures such as residual networks.

We conclude that these methods not only give new insights into the com-
putations performed by DNNs and how they compare with other architectures,
but also constitutes an important step towards a uniied language for describing
neural representations in both biological and computer vision.
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