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Abstract. We propose a novel method to detect an unknown number of articu-

lated 2D poses in real time. To decouple the runtime complexity of pixel-wise

body part detectors from their convolutional neural network (CNN) feature map

resolutions, our approach, called pose proposal networks, introduces a state-of-

the-art single-shot object detection paradigm using grid-wise image feature maps

in a bottom-up pose detection scenario. Body part proposals, which are repre-

sented as region proposals, and limbs are detected directly via a single-shot CNN.

Specialized to such detections, a bottom-up greedy parsing step is probabilisti-

cally redesigned to take into account the global context. Experimental results on

the MPII Multi-Person benchmark confirm that our method achieves 72.8% mAP

comparable to state-of-the-art bottom-up approaches while its total runtime using

a GeForce GTX1080Ti card reaches up to 5.6 ms (180 FPS), which exceeds the

bottleneck runtimes that are observed in state-of-the-art approaches.

Keywords: Human pose estimation · Object detection

(a) (b) (c) (d)

Fig. 1. Sample multi-person pose detection results by the ResNet-18-based PPN. Part bounding

boxes (b) and limbs (c) are directly detected from input images (a) using single-shot CNNs and

are parsed into individual people (d) (cf. § 3).
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1 Introduction

The problem of detecting humans and simultaneously estimating their articulated poses

(which we refer to as poses) as shown in Fig. 1 has become an important and highly

practical task in computer vision thanks to recent advances in deep learning. While this

task has broad applications in fields such as sports analysis and human-computer inter-

action, its test-time computational cost can still be a bottleneck in real-time systems.

Human pose estimation is defined as the localization of anatomical keypoints or land-

marks (which we refer to as parts) and is tackled using various methods, depending on

the final goals and the assumptions made:

– The use of single or sequential images as input;

– The use (or not) of depth information as input;

– The localization of parts in a 2D or 3D space; and

– The estimation of single- or multi-person poses.

This paper focuses on multi-person 2D pose estimation from a 2D still image. In partic-

ular, we do not assume that the ground truth location and scale of the person instances

are provided and, therefore, need to detect an unknown number of poses, i.e., we need

to achieve human pose detection. In this more challenging setting, referred to as “in the

wild,” we pursue an end-to-end, detection framework that can perform in real-time.

Previous approaches [1–13] can be divided into the following two types: one detects

person instances first and then applies single-person pose estimators to each detection

and the other detects parts first and then parses them into each person instance. These

are called as top-down and bottom-up approaches, respectively. Such state-of-the-art

methods show competitive results in both runtime and accuracy. However, the runtime

of top-down approaches is proportional to the number of people, making real-time per-

formance a challenge, while bottom-up approaches require bottleneck parts association

procedures that extract contextual cues between parts and parse part detections into

individual people. In addition, most state-of-the-art techniques are designed to predict

pixel-wise1 part confidence maps in the image. These maps force convolutional neural

networks (CNNs) to extract feature maps with higher resolutions, which are indispens-

able for maintaining robustness, and the acceleration of the architectures (e.g., shrinking

the architectures) is interfered depending on the applications.

In this paper, to decouple the runtime complexity of the human pose detection from

the feature map resolution of the CNNs and improve the performance, we rely on a

state-of-the-art single-shot object detection paradigm that roughly extracts grid-wise

object confidence maps in the image using relatively smaller CNNs. We benefit from

region proposal (RP) frameworks2 [14–17] and reframe the human pose detection as an

object detection problem, regressing from image pixels to RPs of person instances and

parts, as shown in Fig. 2. In addition, instead of the previous parts association designed

for pixel-wise part proposals, our framework directly detects limbs3 using single-shot

1 We also use the term “pixel-wise” to refer to the downsampled part confidence maps.
2 We use the term “RP frameworks” to refer broadly to CNN-based methods that predict a fixed

set of bounding boxes depending on the input image sizes.
3 We refer to part pairs as limbs for clarity, despite the fact that some pairs are not human limbs

(e.g., faces).
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Fig. 2. Pipeline of our proposed approach. Pose proposals are generated by parsing RPs of person

instances and parts into individual people with limb detections (cf. § 3).

CNNs and generates pose proposals from such detections via a novel, probabilistic

greedy parsing step in which the global context is taken into account. Part RPs are de-

fined as bounding box detections whose sizes are proportional to the person scales and

can be supervised using just the common keypoint annotations. The entire architecture

is constructed from a single, fully CNN with relatively lower-resolution feature maps

and is optimized end-to-end directly using a loss function designed for pose detection

performance; we call this architecture the pose proposal network (PPN).

2 Related work

We will briefly review some of the recent progress in single- and multi-person pose

estimations to put our contributions into context.

Single-person pose estimation. The majority of early classic approaches for single-

person pose estimation [18–23] assumed that the person dominates the image content

and that all limbs are visible. These approaches primarily pursued the modeling of struc-

tures together with the articulation of single-person body parts and their appearances

in the image under various concepts such as pictorial structure models [18, 19], hier-

archical models [22], and non-tree models [20, 21, 23]. Since the appearance of deep

learning-based models [24–26] that make the problem tractable, the benchmark results

have been successively updated by various base architectures, such as convolutional

pose machines (CPMs) [27], residual networks (ResNets) [28, 11], and stacked hour-

glass networks (SHNs) [29]. These models focus on strong part detectors that take into

account the large, detailed spatial context and are used as fundamental part detectors in

both state-of-the-art single- [30–33] and multi-person contexts [1, 2, 9].

Multi-person pose estimation. The performance of top-down approaches [2–4, 7, 10,

12] depends on human detectors and pose estimators; therefore, it has improved ac-

cording to the performance of these detectors and estimators. More recently, to achieve

efficiency and higher robustness, recent methods have tended to share convolutional
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layers between the human detectors and pose estimators by introducing spatial trans-

former networks [2, 34] or RoIAlign [4].

Conversely, standard bottom-up approaches [1, 6, 8, 9, 11, 13] rely less on human

detectors and instead detect poses by finding groups or pairs of part detections, which

occur in consistent geometric configurations. Therefore, they are not affected by the

limitations of human detectors. Recent bottom-up approaches use CNNs not only to

detect parts but also to directly extract contextual cues between parts from the image,

such as image-conditioned pairwise terms [6], part affinity fields (PAFs) [1], and asso-

ciative embedding (AE) [9].

The state-of-the-art methods in both top-down and bottom-up approaches achieve

real-time performance. Their “primitives” of the part proposals are pixel points. How-

ever, our method differs from such approaches in that our primitives are grid-wise

bounding box detections in which the part scale information is encoded. Our reduced

grid-wise part proposals allow shallow CNNs to directly detect limbs which can be

represented with at most a few dozen patterns for each part proposal. Specialized for

these detections, a greedy parsing step is probabilistically redesigned to encode the

global context. Therefore, our method does not need time-consuming, pixel-wise fea-

ture extraction or parsing steps, and its total runtime, as a result, exceeds the bottleneck

runtimes that are observed in state-of-the-art approaches.

3 Method

Human pose detection is achieved via the following steps.

1. Resize an input image to the input size of the CNN.

2. Run forward propagation of the CNN and obtain RPs of person instances and parts

and limb detections.

3. Perform non-maximum suppression (NMS) for these RPs.

4. Parse the merged RPs into individual people and generate pose proposals.

Fig. 2 depicts the pipeline of our framework. §3.1 describes RP detections of person

instances and parts and limb detections, which are used in steps 2 and 3. §3.2 describes

step 4.

3.1 PPNs

We take advantage of YOLO [15, 16], one of the RP frameworks, and apply its concept

to the human pose detection task. The PPNs are constructed from a single CNN and

produce a fixed-size collection of RPs for each detection target (person instances or

each part) over the input image. The CNN divides the input image into a H ×W grid,

each cell of which corresponds to an image block, and produces a set of RP detections

{Bi
k}k∈K for each grid cell i ∈ G = {1, . . . , H ×W}. Here, K = {0, 1, . . . ,K} is the

set of indices of the detection targets, and K is the number of parts. The index of the

class representing the overall person instances (the person instance class) is given by

k = 0 in K.
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Fig. 3. RP and limb detections by

the PPN. The blue arrow indicates a

limb (a directed connection) whose

confidence score is encoded by

p(C|k1, k2,x,x+∆x).

Fig. 4. Parts association defined as bipartite match-

ing sub-problems. Matchings are decomposed and

solved for every pair of detection targets that con-

stitute limbs (e.g., they are separately computed

for (k0, k1) and for (k1, k2)).

Bi
k encodes the two probabilities taking into consideration the confidence of the

bounding box and the coordinates, width, and height of the bounding box, as shown in

Fig. 3, and is given by

Bi
k =

{

p(R|k, i), p(I|R, k, i), oix,k, o
i
y,k, w

i
k, h

i
k

}

, (1)

where R and I are binary random variables. Here, p(R|k, i) is a probability that rep-

resents the grid cell i “responsible” for detections of k. If the center of a ground truth

bounding box of k falls into a grid cell, that grid cell is “responsible” for detections of

k. p(I|R, k, i) is a conditional probability that represents how well the bounding box

predicted in i fits k and is supervised by the intersection over union (IoU) between the

predicted bounding box and the ground truth bounding box.

The
(

oix,k, o
i
y,k

)

coordinates represent the center of the bounding box relative to

the bounds of the grid cell with the scale normalized by the length of the cells. wi
k and

hi
k are normalized by the image width and height, respectively. The bounding boxes of

person instances can be represented as rectangles around the entire body or the head.

Unlike previous pixel-wise part detectors, parts are grid-wise detected in our method

and the box sizes are supervised proportional to the person scales, e.g., one-fifth of

the length of the upper body or half the head segment length. The ground truth boxes

supervise these predictions regarding the bounding boxes.

Conversely, for each grid cell i located at x, the CNN also produces a set of limb

detections, {Ck1k2
}(k1,k2)∈L, where L is a set of pairs of indices of detection targets

that constitute limbs. Ck1k2
encodes a set of probabilities that represents the presence of

each limb and is given by

Ck1k2
= {p(C|k1, k2,x,x+∆x)}

∆x∈X , (2)

where C is a binary random variable. p(C|k1, k2,x,x+∆x) encodes the presence of

a limb represented as a directed connection from the bounding box of k1 predicted in

x to that of k2 predicted in x+∆x, as shown in Fig. 3. Here, we assume that all the
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limbs from x reach only the local H ′ ×W ′ area centered on x and define X as a set of

finite displacements from x, which is given by

X = {∆x = (∆x,∆y)| |∆x| ≤ W ′ ∧ |∆y| ≤ H ′} . (3)

Here, ∆x is a position relative to x and, therefore, p(C|k1, k2,x,x+∆x) can be

independently estimated at each grid cell using CNNs thanks to their characteristic of

translation invariance.

Each of the above mentioned predictions corresponds to each channel in the depth

of the output 3D tensor produced by the CNN. Finally, the CNN outputs an H ×W ×
{6(K + 1) +H ′W ′|L|} tensor. During training, we optimize the following, multi-part

loss function:

λresp.

∑

i∈G

∑

k∈K

{

δik − p̂(R|k, i)
}2

+ λIoU

∑

i∈G

∑

k∈K

δik {(p(I|R, k, i)− p̂(I|R, k, i)}2

+ λcoor.

∑

i∈G

∑

k∈K

δik
{

(oix,k − ôix,k)
2 + (oiy,k − ôiy,k)

2
}

+ λsize

∑

i∈G

∑

k∈K

δik

{

(

√

wi
k −

√

ŵi
k

)2

+

(

√

hi
k −

√

ĥi
k

)2
}

+ λlimb

∑

i∈G

∑

∆x∈X

∑

(k1,k2)∈L

max(δik1
, δjk2

)
{

δik1
δjk2

− p̂(C|k1, k2,x,x+∆x)
}2

,

(4)

where δik ∈ {1, 0} is a variable that indicates if i is responsible for the k of only a single

person, j is the index of a grid cell located at x+∆x, and (λresp., λIoU, λcoor., λsize, λlimb)
are the weights for each loss.

3.2 Pose proposal generation

Overview. Applying standard NMS using an IoU threshold for the RPs of each de-

tection target, we can obtain the fixed-size, merged RP subsets. Then, in the condition

where both true and false positives of multiple people are contained in these RPs, pose

proposals are generated by matching and associating the RPs between the detection tar-

gets that constitute limbs. This parsing step corresponds to a K-dimensional matching

problem that is known to be NP hard [35], and many relaxations exist.

In this paper, inspired by [1], we introduce two relaxations capable of real-time

generation of consistent matches. First, a minimal number of edges are chosen to ob-

tain a spanning tree skeleton of articulated poses, whose nodes and edges represent the

merged RP subsets of the detection targets and the limb detections between them, re-

spectively, rather than using the complete graph. This tree consists of directed edges

and, its root nodes belong to the person instance class. Second, the matching problem

is further decomposed into a set of bipartite matching sub-problems, and the matching

in adjacent tree nodes is determined independently, as shown in Fig. 4. Cao et al. [1]
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demonstrated that such a minimal greedy inference well approximates the global solu-

tion at a fraction of the computational cost and concluded that the relationship between

nonadjacent tree nodes can be implicitly modeled in their pairwise part association

scores, which the CNN estimates. In contrast to their approach, in order to use rela-

tively shallow CNNs whose receptive fields are narrow and reduce the computational

cost, we propose a probabilistic, greedy parsing algorithm that takes into account the

relationship between nonadjacent tree nodes.

Confidence scores. Given the merged RPs of the detection targets, we define a confi-

dence score for the detection of the n-th RP of k as follows:

Dn
k = p(R|k, n)p(I|R, k, n). (5)

Each probability on the right-hand side of Eq. (5) is encoded by Bi
k in Eq. (1). n ∈

N = {1, . . . , N}, where N is the number of merged RPs of each detection target. In

addition, the confidence score of the limb, i.e., the directed connection from the n1-th

RP of k1 predicted at x to the n2-th RP of k2 predicted at x+∆x, is defined by making

use of Eq. (2) as follows:

En1n2

k1k2
= p(C|k1, k2,x,x+∆x). (6)

Parts association. Parts association, which uses pairwise part association scores, can

be generally defined as an optimal assignment problem for the set of all the possible

connections,

Z =
{

Zn1n2

k1k2
|(k1, k2) ∈ L, n1 ∈ N1, n2 ∈ N2

}

, (7)

which maximizes the confidence score that approximates the joint probability over all

possible limb detections,

F =
∏

L

∏

N1

∏

N2

(

En1n2

k1k2

)Z
n1n2

k1k2 . (8)

Here, Zn1n2

k1k2
is a binary variable that indicates whether the n1-th RP of k1 and the n2-th

RP of k2 are connected and satisfies

∑

N1

Zn1n2

k1k2
= 1 ∧

∑

N2

Zn1n2

k1k2
= 1,

∀n1 ∈ N1, ∀n2 ∈ N2.

(9)

Using Eq. (9) ensures that no multiple edges share a node, i.e., that an RP is not con-

nected to different multiple RPs. In this graph-matching problem, the nodes of the graph

are all the merged RPs of the detection targets, the edges are all the possible connec-

tions between the RPs, which constitute the limbs, and the confidence scores of the limb

detections give the weights for the edges. Our goal is to find a matching in the bipartite

graph as a subset of the edges chosen with maximum weight.

In our improved parts association with the abovementioned two relaxations, person

instances are used as a root part, and the proposals of each part are assigned to person
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instance proposals along the route on the pose graph. Bipartite matching sub-problems

are defined for each respective pair (k1, k2) of detection targets that constitute the limbs

so as to find the optimal assignment for the set of connections between k1 and k2,

Zk1k2
=

{

Zn1n2

k1k2
|n1 ∈ N1, n2 ∈ N2

}

, (10)

where

{Zk1k2
}(k1,k2)∈L = Z. (11)

We obtain the optimal assignment Ẑk1k2
as follows:

Ẑk1k2
= arg max

Zk1k2

Fk1k2
, (12)

where

Fk1k2
=

∏

N1

∏

N2

(

Sn1n2

k1k2

)Z
n1n2

k1k2 . (13)

Here, the nodes of k1 are closer to those of the person instances on the route of the

graph than those of k2 and

Sn1n2

k1k2
=

{

Dn1

k1
En2n1

k2k1
Dn2

k2
if k1 = 0,

Sn̂0n1

k0k1
En2n1

k2k1
Dn2

k2
otherwise.

(14)

k0 6= k2 indicates that another detection target is connected to k1. n̂0 is the index of the

RPs of k0, which is connected to the n1-th RP of k1 and satisfies

Zn̂0n1

k0k1
= 1. (15)

This optimization using Eq. (14) needs to be calculated from the parts connected to

the person instances. We can use the Hungarian algorithm [36] to obtain the optimal

matching. Finally, with all the optimal assignments, we can assemble the connections

that share the same RPs into full-body poses of multiple people.

The difference between F in Eq. (8) and Fk1k2
in Eq. (13) is that the confidence

scores for the RPs and the limb detections on the route from the nodes of the person

instances on the graph are considered in the matching using Eq. (12). This leads to a

global context for wider image regions than the receptive fields of the CNN is taken

into account in the parsing. In §4, we show detailed comparison results, demonstrating

that our improved parsing approximates the global solution well when using shallow

CNNs.

4 Experiments

4.1 Dataset

We evaluated our approach on the challenging, public “MPII Human Pose” dataset [37],

which includes approximately 25K images containing over 40K annotated people (three-

quarters of which are available for training). For a fair comparison, we followed the
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official evaluation protocol and used the publicly available evaluation scripts4 for self-

comparison on the validation set used in [1].

First, the “Single-Person” subset, containing only sufficiently separated people, was

used to evaluate the pure performance of the proposed part RP representation. This

subset contains a set of 6908 people, and the approximate locations and scales of each

person are available. For the evaluation on this subset, we used the standard “Percentage

of Correct Keypoints” evaluation metric (PCKh) whose matching threshold is defined

as half the head segment length.

Second, to evaluate the full performance of the PPN for human pose detection in

the wild, we used the “Multi-Person” subset, which contains a set of 1758 groups of

multiple overlapping people in highly articulated poses with a variable number of parts.

These groups are taken from the test set as outlined in [11]. In this subset, even though

the regions that each group occupies and the mean scales of all the people in each

group are available, no information is provided concerning the number of people or the

scales of the individual people. For the evaluation on this subset, we used the evaluation

metric outlined by Pishchulin et al. [11], calculating the average precision (AP) of the

part detections.

4.2 Implementation

Setting of the RPs. As shown in Fig. 2, the RPs of person instances and those of parts

are defined as square detections centered on the head and on each part, respectively.

These lengths are defined as twice the head segment length for person instances and

as half the head segment length for parts. Therefore, all ground truth boxes can be

computed from two given head keypoints. For limb detections, the two head keypoints

are defined as being connected to person instances and the other connections are defined

similar to those in [1]. Therefore, |L| is set to 15.

Architecture. As the base architecture, we use an 18-layer standard ResNet pre-trained

on the ImageNet 1000-class competition dataset [38]. The average-pooling layer and

the fully connected layer in this architecture are replaced with three additional new

convolutional layers. In this setting, the output grid cell size of the CNN on the image,

which is described in § 3.1, corresponds to 32 × 32 px2 and (H,W ) = (12, 12) for

the normalized 384 × 384 input size of the CNN used in the training. This grid cell

size on the image is fairly large compared to those of previous pixel-wise part detectors

(usually 4× 4 px2 or 8× 8).

The last added convolutional layer uses a linear activation function and the other

added layers use the following leaky rectified linear activation:

φ(u) =

{

u if u > 0,

0.1u otherwise.
(16)

All the added layers use a 1-px stride, and the weights are all randomly initialized.

The first layer in the added layers uses batch normalization. The filter sizes and the

number of filters of the added layers other than the last layer are set to 3 × 3 and 512,

4 http://human-pose.mpi-inf.mpg.de
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respectively. In the last layer, the filter size is set to 1 × 1, and, as described in § 3.1,

the number of filters is set to 6(K + 1) +H ′W ′|L| = 1311, where (H ′,W ′) is set to

(9, 9). K is set to 15, which is similar to the values used in [1].

Training. During training, in order to have normalized 384 × 384 input samples, we

first resized the images to make the samples roughly the same scale (w.r.t. 200 px person

height) and cropped or padded the image according to the center positions and the rough

scale estimations provided in the dataset. Then, we randomly augmented the data with

rotation degrees in [−40, 40], an offset perturbation, and horizontal flipping in addition

to scaling with factors in [0.35, 2.5] for the multi-person task and in [1.0, 2.0] for the

single-person task.

(λresp., λIoU, λcoor., λsize) in Eq. (4) are set to (0.25, 1, 5, 5), and λlimb is set to 0.5 in

the multi-person task and to 0 in the single-person task. The entire network is trained

using SGD for 260K iterations in the multi-person task and for 130K iterations in the

single-person task with a batch size of 22, a momentum of 0.9, and a weight decay of

0.0005 on two GPUs. 260K iterations on two GPUs roughly correspond to 422 epochs

of the training set. The learning rate l is linearly decreased depending on the number of

iterations, m, calculated as follows:

l = 0.007(1−m/260, 000). (17)

Training takes approximately 1.8 days using a machine with two GeForce GTX1080Ti

cards, a 3.4 GHz Intel CPU, and 64 GB RAM.

Testing. During the testing of our method, the images were resized such that the mean

scales for the target people corresponded to 1.43 in the multi-person task and to 1.3 in

the single-person task. Then, they were cropped around the target people. The accura-

cies of previous approaches are taken from the original papers or are reproduced using

their publicly available evaluation codes. During the timings of all the approaches in-

cluding the baselines, the images were resized with each of the mean resolutions used

when they were evaluated. The timings are reported using the same single GPU card

and deep learning framework (Caffe [39]) on the machine described above averaged

over the batch sizes with which each method performs the fastest. Our detection steps

other than forward propagation by CNNs are run on the CPU.

4.3 Human part detection

We compare part detections by the PPN with several, pixel-wise part detectors used by

state-of-the-art methods in both single-person and multi-person contexts. Predictions

with pixel-wise detectors and those of the PPN are the maximum activating locations of

the heatmap for a given part and the locations of the maximum activating RPs of each

part, respectively.

Tables 1 and 2 compare the PCKh performance and the speeds of the PPN and

other detectors on the single-person test set and lists the properties of the networks

used in each approach. Note that [6] proposes part detectors while dealing with multi-

person pose estimation. They use the same ResNet-based architecture as the PPN, which

is several times deeper (152 layers) than ours and is different from ours only in that

the network is massive to produce pixel-wise part proposals. We found that the speed
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and FLOP count (multiply-adds) of our detector overwhelm all others and are at least

11 times faster even when considering its slightly (several percent) lower PCKh. In

particular, the fact that the PPN achieves a comparable PCKh to that of the ResNet-

based part detector [6] using the same architecture as ours demonstrates that the part

RPs effectively work as the part primitives when exploring the speed/accuracy trade-off.

4.4 Human pose detection

Tables 3 and 4 compare the mean AP (mAP) performance between the full implemen-

tation of the PPN and previous approaches on the same subset of 288 testing images, as

in [11], and on the entire multi-person test set. An illustration of the predictions made

by our method can be seen in Fig. 7. Note that [1] is trained using unofficial masks

of unlabeled persons (reported as w/ or w/o masks in Fig. 6) and ranks with a favor-

able margin of a few percent mAP according to the original paper and that our method

can be adjusted by replacing the base architecture with the 50- and 101-layer ResNets.

Despite rough part detections, the deepest mode of our method (reported as w/ ResNet-

101) achieves the top performance for upper body parts. The total runtime of this fast

PPN reaches up to 5.6 ms (180 FPS) that exceeds the state-of-the-art bottleneck runtime

described below. The runtime of the forward propagation with the CNN and the pars-

ing step are 4 ms and 0.3 ms, respectively. The remaining runtime (1.3 ms) is mostly

consumed by part proposal NMS.

Fig. 5 is a scatterplot that visualizes the mAP performances and speeds of our

method and the top-3 approaches reported using their publicly available implemen-

tation or from the original papers. The colored dot lines, each of which corresponds to

one of previous approaches, denote limits of speed in total processing as speed for pro-

cessing other than the forward propagation of CNNs such as resizing of CNN feature

maps [1, 2, 9], grouping of parts [1, 9], and NMS in human detection [2] or for part pro-

posals [1, 9] (The colors represent each method). Such bottleneck steps were optimized

or were accelerated by GPUs to a certain extent. Improving the base architectures with-

out the loss of accuracy will not help each state-of-the-art approach exceed their speed

Table 1. Pose estimation results on the MPII Single-Person test set.

Method Architecture Head Shoulder Elbow Wrist Hip Knee Ankle PCKh

Ours ResNet-18 97.9 95.3 89.1 83.5 87.9 82.7 76.2 88.1

SHN [29] Custom 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

DeeperCut [6] ResNet-152 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5

CPM [27] Custom 97.7 94.5 88.3 83.4 87.9 81.9 78.3 87.9

Table 2. The properties of the networks on the MPII Single-Person test set.

Method PCKh Architecture Input size Output size FLOPs Num. param. FPS

Ours 88.1 ResNet-18 384× 384 12× 12 6G 16M 388

SHN [29] 90.9 Custom 256× 256 64× 64 30G 34M 19

DeeperCut [6] 88.5 ResNet-152 344× 344 43× 43 37G 66M 34

CPM [27] 87.9 Custom 368× 368 46× 46 175G 31M 9
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Fig. 5. Accuracy versus speed on the MPII

Multi-Person test set. See text for details.

Fig. 6. Accuracy versus speed on the MPII

Multi-Person validation set.

limits without leaving redundant pixel-wise or top-down strategies. It is also clear that

all CNN-based methods significantly degrade when their accelerated speed reaches the

speed limits. Our method is more than an order of magnitude faster compared with the

state-of-the-art methods on average and can pass through the abovementioned bottle-

neck speed limits.

In addition, to compare our method with state-of-the-art methods in more detail, we

reproduced the state-of-the-art bottom-up approach [1] based on its publicly available

evaluation code and accelerated it by adjusting the number of multi-stage convolutions

Table 3. Pose estimation results of a subset of 288 images on the MPII Multi-Person test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle U.Body L.Body mAP

Ours w/ ResNet-18 94.0 91.6 80.7 68.1 75.0 65.5 61.3 83.6 67.8 76.6

Ours w/ ResNet-50 95.6 92.5 82.4 73.6 76.2 71.1 64.1 86.0 71.5 79.4

Ours w/ ResNet-101 95.2 92.2 83.2 73.8 74.8 71.3 63.4 86.1 71.3 79.1

ArtTrack [5] 92.2 91.3 80.8 71.4 79.1 72.6 67.8 83.9 73.2 79.3

PAF [1] 92.9 91.3 82.3 72.6 76.0 70.9 66.8 84.8 72.2 79.0

RMPE [2] 89.4 88.5 81.0 75.4 73.7 75.4 66.5 83.6 73.5 78.6

DeeperCut [6] 92.1 88.5 76.4 67.8 73.6 68.7 62.3 81.2 68.9 75.6

AE [9] 91.5 87.2 75.9 65.4 72.2 67.0 62.1 80.0 67.9 74.5

Table 4. Pose estimation results on the entire MPII Multi-Person test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle U.Body L.Body mAP

Ours w/ ResNet-18 93.2 89.0 74.9 62.4 72.2 62.6 55.4 79.9 63.6 72.8

Ours w/ ResNet-50 93.7 90.1 78.0 68.0 74.9 67.2 59.3 82.5 67.5 75.9

Ours w/ ResNet-101 93.9 90.2 79.0 68.7 74.8 68.7 60.5 83.0 68.6 76.6

AE [9] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 82.5 71.3 77.5

RMPE [2] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 81.0 71.8 76.7

PAF [1] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 80.8 68.7 75.6

ArtTrack [5] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 79.2 67.9 74.3

KLj*r [8] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 76.6 62.4 70.6

DeeperCut [6] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 75.9 62.4 70.0
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Fig. 7. Qualitative pose estimation results by the ResNet-18-based PPN on MPII test images.

and scale search. Fig. 6 is a scatterplot that visualizes the mAP performance and speeds

of both our method and the method proposed in [1], which is adjusted with several

patterns. In general, we observe that our method achieves faster and more accurate

predictions on an average. The above comparisons with previous approaches indicate

that our method can minimize the computational cost of the overall algorithm when

exploring the speed/accuracy trade-off.

Table 5 lists the mAP performances of several different versions of our method.

First, when p(I|R, k, i) in Eq. (1), which is not estimated by the pixel-wise part de-

tectors, is ignored in our approach (i.e., when p(I|R, k, i) is replaced by 1), and when

our NMS follows the previous pixel-wise scheme that finds the maxima on part confi-

dence maps (reported as w/o scale), the performance deteriorates from that of the full

implementation (reported as Full.). This indicates that the speed/accuracy trade-off is

improved by additional information regarding the part scales obtained from the fact that

the part proposals are bounding boxes. Second, when only the local context is taken into

account in parts association (reported as w/o glob.), i.e., Sn̂0n1

k0k1
is replaced by Dn1

k1
in

Table 5. Quantitative comparison for different versions of the proposed method on the MPII

Multi-Person validation set.

Method Architecture Head Shoulder Elbow Wrist Hip Knee Ankle mAP

Full. 92.8 90.7 78.8 66.9 77.0 63.5 58.4 75.5

w/o scale ResNet-18 88.6 88.0 75.6 64.6 74.2 60.8 55.3 72.4

w/o glob. 91.8 90.1 77.7 63.9 76.7 61.5 51.7 73.3

Full. 93.8 91.9 81.4 71.5 77.6 69.8 60.3 78.1

w/o scale ResNet-50 91.1 89.4 79.4 68.9 75.8 67.1 59.7 75.9

w/o glob. 93.3 92.2 81.4 69.7 77.8 70.2 58.1 77.5

Full. 93.4 91.2 81.8 72.2 78.8 70.5 62.9 78.7

w/o scale ResNet-101 91.6 90.0 80.1 70.4 78.5 68.8 62.9 77.5

w/o glob. 93.2 91.6 81.8 71.0 79.6 70.5 61.4 78.4
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(a) (b) (c) (d)

Fig. 8. Common failure cases: (a) rare pose or appearance, (b) false parts detection, (c) missing

parts detection in crowded scenes, and (d) wrong connection associating parts from two persons.

Eq. (14), the performance of our shallowest architecture, i.e., ResNet-18, deteriorates

further than the deepest one, i.e., ResNet-101 (−2.2% vs −0.3%). This indicates that

our context-aware parse works effectively for shallow CNNs.

4.5 Limitations

Our method can predict one RP for each detection target for every grid cell, and there-

fore this spatial constraint limits the number of nearby people that our model can predict

within each grid cell. This causes our method to struggle with groups of people, such as

crowded scenes, as shown in Fig. 8(c). Specifically, we observe that our approach will

perform poorly on the “COCO” dataset [40] that contains large scale variations such as

small people in close proximity. Even though a solution to this problem is to enlarge

the input size of the CNN, this in turn causes the speed/accuracy trade-off to degrade,

depending on its applications.

5 Conclusions

We proposed a method to detect people and simultaneously estimate their 2D articu-

lated poses from a 2D still image. Our principal innovations to improve speed/accuracy

trade-offs are to introduce a state-of-the-art single-shot object detection paradigm to a

bottom-up pose detection scenario and to represent part proposals as RPs. In addition,

limbs are detected directly with CNNs, and a greedy parsing step is probabilistically

redesigned for such detections to encode the global context. Experimental results on

the MPII Human Pose dataset confirm that our method has comparable accuracy to

state-of-the-art bottom-up approaches and is much faster, while providing an end-to-

end training framework5. In future studies, to improve the performance for the spatial

constraints caused by rough grid-wise predictions, we plan to explore an algorithm to

harmonize the high-level and low-level features obtained from state-of-the-art architec-

tures in both part detection and parts association.

5 For the supplementary material and videos, please visit: http://taikisekii.com
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