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Abstract. Despite the large number of both commercial and academic
methods for Automatic License Plate Recognition (ALPR), most existing
approaches are focused on a specific license plate (LP) region (e.g. Eu-
ropean, US, Brazilian, Taiwanese, etc.), and frequently explore datasets
containing approximately frontal images. This work proposes a complete
ALPR system focusing on unconstrained capture scenarios, where the LP
might be considerably distorted due to oblique views. Our main contribu-
tion is the introduction of a novel Convolutional Neural Network (CNN)
capable of detecting and rectifying multiple distorted license plates in a
single image, which are fed to an Optical Character Recognition (OCR)
method to obtain the final result. As an additional contribution, we also
present manual annotations for a challenging set of LP images from differ-
ent regions and acquisition conditions. Our experimental results indicate
that the proposed method, without any parameter adaptation or fine
tuning for a specific scenario, performs similarly to state-of-the-art com-
mercial systems in traditional scenarios, and outperforms both academic
and commercial approaches in challenging ones.

Keywords: License Plate · Deep learning · Convolutional Neural Net-
works

1 Introduction

Several traffic-related applications, such as detection of stolen vehicles, toll con-
trol and parking lot access validation involve vehicle identification, which is
performed by Automatic License Plate Recognition (ALPR) systems. The re-
cent advances in Parallel Processing and Deep Learning (DL) have contributed
to improve many computer vision tasks, such as Object Detection/Recognition
and Optical Character Recognition (OCR), which clearly benefit ALPR sys-
tems. In fact, deep Convolutional Neural Networks (CNNs) have been the lead-
ing machine learning technique applied for vehicle and license plate (LP) de-
tection [18,28,19,3,2,9,31,17]. Along with academic papers, several commercial
ALPR systems have been also exploring DL methods. They are usually allocated
in huge data-centers and work through web-services, being able to process thou-
sands to millions of images per day and be constantly improved. As examples



2 S. M. Silva and C. R. Jung

of these systems, we can mention Sighthound (https://www.sighthound.com/),
the commercial version of OpenALPR (http://www.openalpr.com/) and Ama-
zon Rekognition (https://aws.amazon.com/rekognition/).

Fig. 1: Examples of challenging oblique license plates present in the proposed
evaluation dataset.

Despite the advances in the state-of-the-art, most ALPR systems assume
a mostly frontal view of the vehicle and LP, which is common in applications
such as toll monitoring and parking lot validation, for instance. However, more
relaxed image acquisition scenarios (e.g. a law enforcement agent walking with
a mobile camera or smartphone) might lead to oblique views in which the LP
might be highly distorted yet still readable, as illustrated in Fig. 1, and for which
even state-of-the-art commercial systems struggle.

In this work we propose a complete ALPR system that performs well over a
variety of scenarios and camera setups. Our main contribution is the introduction
of a novel network capable of detecting the LP in many different camera poses
and estimate its distortion, allowing a rectification process before OCR. An
additional contribution is the massive use of synthetically warped versions of
real images for augmenting the training dataset, allowing the network to be
trained from scratch using less than 200 manually labeled images. The proposed
network and data augmentation scheme also led to a flexible ALPR system that
was able to successfully detect and recognize LPs in independent test datasets
using the same system parametrization.

We also generalized an existing OCR approach develpoed for Brazilian LPs [28].
Basically, we re-trained their OCR network using a new training set composed
by a mixture of real and artificially generated data using font-types similar to
the target regions. As a result, the re-trained network became much more robust
for detection and classification of real characters in the original Brazilian sce-
nario, but also for European and Taiwanese LPs, achieving very high precision
and recall rates. All the annotated data used for this work is publicly available1,
and the reference images can be obtained by downloading the Cars Dataset [16],
the SSIG Database [6], and the AOLP dataset [10].

1 Available at http://www.inf.ufrgs.br/∼crjung/alpr-datasets.

https://www.sighthound.com/
http://www.openalpr.com/
https://aws.amazon.com/rekognition/
http://www.inf.ufrgs.br/~crjung/alpr-datasets.
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The remainder of this work is organized as follows. In Section 2 we briefly
review related approaches toward ALPR. Details of the proposed method are
given in Section 3, where we describe the LP detection and unwarping network,
as well as the data augmentation process used to train our models. The over-
all evaluation and final results are presented in Section 4. Finally, Section 5
summarizes our conclusions and gives perspectives for some future work.

2 Related Work

ALPR is the task of finding and recognizing license plates in images. It is com-
monly broken into four subtasks that form a sequential pipeline: vehicle detec-
tion, license plate detection, character segmentation and character recognition.
For simplicity, we refer to the combination of the last two subtasks as OCR.

Many different ALPR systems or related subtasks have been proposed in the
past, typically using image binarization or gray-scale analysis to find candidate
proposals (e.g. LPs and characters), followed by handcrafted feature extraction
methods and classical machine learning classifiers [1,4]. With the rise of DL,
the state-of-the-art started moving to another direction, and nowadays many
works employ CNNs due to its high accuracy for generic object detection and
recognition [23,24,21,25,8,11].

Related to ALPR are Scene Text Spotting (STS) and number reading in the
wild (e.g. from Google Street View images [22]) problems, which goals are to
find and read text/numbers in natural scenes. Although ALPR could be seen as
a particular case of STS, the two problems present particular characteristics: in
ALPR, we need to learn characters and numbers (without much font variabil-
ity) with no semantic information, while STS is focused on textual information
containing high font variability, and possibly exploring lexical and semantic in-
formation, as in [30]. Number reading does not present semantic information,
but dealing only with digits is simpler than the ALPR context, since it avoids
common digit/letter confusions such as B-8, D-0, 1-I, 5-S, for instance.

As the main contribution of this work is a novel LP detection network, we
start this section by reviewing DL-based approaches for this specific subtask, as
well as a few STS methods that can handle distorted text and could be used for
LP detection. Next, we move to complete ALPR DL-based systems.

2.1 License Plate Detection

The success of YOLO networks [23,24] inspired many recent works, targeting
real-time performance for LP detection [28,9,31,17]. A slightly modified version
of the YOLO [23] and YOLOv2 [24] networks were used by Hsu et al. [9], where
the authors enlarged the networks output granularity to improve the number of
detections, and set the probabilities for two classes (LP and background). Their
network achieved a good compromise between precision and recall, but the paper
lacks a detailed evaluation over the bounding boxes extracted. Moreover, it is
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known that YOLO networks struggle to detect small sized objects, thus further
evaluations over scenarios where the car is far from the camera is needed.

In [31], a setup of two YOLO-based networks was trained with the goal of
detecting rotated LPs. The first network is used to find a region containing
the LP, called “attention model”, and the second network captures a rotated
rectangular bounding-box of the LP. Nonetheless, they considered only on-plane
rotations, and not more complex deformations caused by oblique camera views,
such as the ones illustrated in Fig. 1. Also, as they do not present a complete
ALPR system, it is difficult to evaluate how well an OCR method would perform
on the detected regions.

License plate detectors using sliding window approaches or candidate filtering
coupled with CNNs can also be found in the literature [3,2,27]. However, they
tend to be computationally inefficient as a result of not sharing calculations like
in modern meta-architectures for object detection such as YOLO, SSD [21] and
Faster R-CNN [25].

Although Scene Text Spotting (STS) methods focus mostly on large font
variations and lexical/semantic information, but it is worth mentioning a few
approaches that deal with rotated/distorted text and could be explored for LP
detection in oblique views. Jaderberg and colleagues [13] presented a CNN-based
approach for text recognition in natural scenes using an entirely synthetic dataset
to train the model. Despite the good results, they strongly rely on N-grams,
which are not applicable to ALPR. Gupta et al. [7] also explored synthetic
dataset by realistically pasting text into real images, focusing mostly on text
localization. The output is a rotated bounding box with around the text, which
finds limitations for off-plane rotations common in ALPR scenarios.

More recently, Wang et al. [29] presented an approach to detect text in a
variety of geometric positions, called Instance Transformation Network (ITN).
It is basically a composition of three CNNs: a backbone network to compute
features, a transformation network to infer affine parameters where supposedly
exists text in the feature map, and a final classification network whose input
is built by sampling features according to the affine parameters. Although this
approach can (in theory) handle off-plane rotations, it is not able to correctly
infer the transformation that actually maps the text region to a rectangle, since
there is no physical (or clear psychological) bounding region around the text
that should map to a rectangle in an undistorted view. In ALPR, the LP is rect-
angular and planar by construction, and we explore this information to regress
the transformation parameters, as detailed in Section 3.2.

2.2 Complete ALPR Methods

The works of Silva and Jung [28] and Laroca et al. [17] presented complete ALPR
systems based on a series of modified YOLO networks. Two distinct networks
were used in [28], one to jointly detect cars and LPs, and another to perform
OCR. A total of five networks were used in [17], basically one for each ALPR
subtask, being two for character recognition. Both reported real-time systems,
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but they are focused only on Brazilian license plates and were not trained to
capture distortion, only frontal and nearly rectangular LPs.

Selmi et al. [27] used a series of pre-processing approaches based on mor-
phological operators, Gaussian filtering, edge detection and geometry analysis
to find LP candidates and characters. Then, two distinct CNNs were used to
(i) classify a set of LP candidates per image into one single positive sample;
and (ii) to recognize the segmented characters. The method handles a single LP
per image, and according to the authors, distorted LPs and poor illumination
conditions can compromise the performance.

Li et al. [19] presented a network based on Faster R-CNN [25]. Shortly, a
Region Proposal Network is assigned to find candidate LP regions, whose corre-
sponding feature maps are cropped by a RoI Pooling layer. Then, these candi-
dates are fed into the final part of the network, which computes the probability
of being/not being an LP, and performs OCR through a Recurrent Neural Net-
work. Despite promising, the evaluation presented by the authors shows a lack
of performance in most challenging scenarios containing oblique LPs.

Commercial systems are good reference points to the state-of-the-art. Al-
though they usually provide only partial (or none) information about their ar-
chitecture, we still can use them as black boxes to evaluate the final output.
As mentioned in Section 1, examples are Sighthound, OpenALPR (which is an
official NVIDIA partner in the Metropolis platform2) and Amazon Rekognition
(a general-purpose AI engine including a text detection and recognition module
that can be used for LP recognition, as informed by the company).

3 The Proposed Method

The proposed approach is composed by three main steps: vehicle detection, LP
detection and OCR, as illustrated in Fig. 2. Given an input image, the first
module detects vehicles in the scene. Within each detection region, the proposed
Warped Planar Object Detection Network (WPOD-NET) searches for LPs and
regresses one affine transformation per detection, allowing a rectification of the
LP area to a rectangle resembling a frontal view. These positive and rectified
detections are fed to an OCR Network for final character recognition.

3.1 Vehicle Detection

Since vehicles are one of the underlying objects present in many classical de-
tection and recognition datasets, such as PASCAL-VOC [5], ImageNet [26], and
COCO [20], we decided to not train a detector from scratch, and instead chose
a known model to perform vehicle detection considering a few criteria. On one
hand, a high recall rate is desired, since any miss detected vehicle having a visi-
ble LP leads directly to an overall LP miss detection. On the other hand, high

2 NVIDIA platform for video analysis in smart cities (https://www.nvidia.com/en-us/
autonomous-machines/intelligent-video-analytics-platform/).

https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-analytics-platform/
https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-analytics-platform/


6 S. M. Silva and C. R. Jung

MLC3543

MLC3534

MLC3511

CAR DETECTION

(YOLOv2)

LICENSE PLATE

DETECTION

(WPOD-NET)

RECTIFICATION
OCR

(OCR-NET)

INPUT

IMAGE

Fig. 2: Illustration of the proposed pipeline.

precision is also desirable to keep running times low, as each falsely detected
vehicle must be verified by WPOD-NET. Based on these considerations, we de-
cided to use the YOLOv2 network due to its fast execution (around 70 FPS)
and good precision and recall compromise (76.8% mAP over the PASCAL-VOC
dataset). We did not perform any change or refinement to YOLOv2, just used
the network as a black box, merging the outputs related to vehicles (i.e. cars and
buses), and ignoring the other classes.

The positive detections are then resized before being fed to WPOD-NET.
As a rule of thumb, larger input images allow the detection of smaller objects
but increase the computational cost [12]. In roughly frontal/rear views, the ratio
between the LP size and the vehicle bounding box (BB) is high. However, this
ratio tends to be much smaller for oblique/lateral views, since the vehicle BB
tends to be larger and more elongated. Hence, oblique views should be resized
to a larger dimension than frontal ones to keep the LP region still recognizable.

Although 3D pose estimation methods such as [32] might be used to deter-
mine the resize scale, this work presents a simple and fast procedure based on the
aspect ratio of the vehicle BB. When it is close to one, a smaller dimension can
be used, and it must be increased as the aspect ratio gets larger. More precisely,
the resizing factor fsc is given by

fsc =
1

min{Wv, Hv}
min

{

Dmin

max(Wv, Hv)

min(Wv, Hv)
, Dmax

}

, (1)

where Wv and Hv are the width and height of the vehicle BB, respectively.
Note that Dmin ≤ fsc min(Wv, Hv) ≤ Dmax, so that Dmin and Dmax delimit
the range for the smallest dimension of the resized BB. Based on experiments
and trying to keep a good compromise between accuracy and running times, we
selected Dmin = 288 and Dmax = 608.

3.2 License Plate Detection and Unwarping

License plates are intrinsically rectangular and planar objects, which are at-
tached to vehicles for identification purposes. To take advantage of its shape, we
proposed a novel CNN called Warped Planar Object Detection Network. This
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network learns to detect LPs in a variety of different distortions, and regresses
coefficients of an affine transformation that “unwarps” the distorted LP into a
rectangular shape resembling a frontal view. Although a planar perspective pro-
jection could be learned instead of the affine transform, the division involved in
the perspective transformation might generate small values in the denominator,
and hence leading to numerical instabilities.

The WPOD-NET was developed using insights from YOLO, SSD and Spatial
Transformer Networks (STN) [14]. YOLO and SSD perform fast multiple object
detection and recognition at once, but they do not take spatial transformations
into account, generating only rectangular bounding boxes for every detection. On
the opposite, STN can be used for detecting non-rectangular regions, however
it cannot handle multiple transformations at the same time, performing only a
single spatial transformation over the entire input.

Affine parameters

Object Probabilities

WPOD

Network

(m,n)

(m,n) cell
=T

(M,N,6)
(1,1,6)

Input
Feedforward

Output
feature map

Object high
probability cell

Square to object
transformation

AFFINE

Fig. 3: Fully convolutional detection of planar objects (cropped for better visu-
alization).

The detection process using WPOD-NET is illustrated in Fig. 3. Initially, the
network is fed by the resized output of the vehicle detection module. The feed-
forwarding results in an 8-channel feature map that encodes object/non-object
probabilities and affine transformation parameters. To extract the warped LP,
let us first consider an imaginary square of fixed size around the center of a cell
(m,n). If the object probability for this cell is above a given detection threshold,
part of the regressed parameters is used to build an affine matrix that transforms
the fictional square into an LP region. Thus, we can easily unwarp the LP into
a horizontally and vertically aligned object.

Network Architecture The proposed architecture has a total of 21 convolu-
tional layers, where 14 are inside residual blocks [8]. The size of all convolutional
filters is fixed in 3 × 3. ReLU activations are used throughout the entire net-
work, except in the detection block. There are 4 max pooling layers of size 2× 2
and stride 2 that reduces the input dimensionality by a factor of 16. Finally,
the detection block has two parallel convolutional layers: (i) one for inferring
the probability, activated by a softmax function, and (ii) another for regressing
the affine parameters, without activation (or, equivalently, using the identity
F (x) = x as the activation function).
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Fig. 4: Detailed WPOD-NET architecture.

Loss Function Let pi = [xi, yi]
T , for i = 1, · · · , 4, denote the four corners of

an annotated LP, clockwise starting from top-left. Also, let q1 = [−0.5,−0.5]T ,
q2 = [0.5,−0.5]T , q3 = [0.5, 0.5]T , q4 = [−0.5, 0.5]T denote the corresponding
vertices of a canonical unit square centered at the origin.

For an input image with height H and width W , and network stride given
by Ns = 24 (four max pooling layers), the network output feature map consists
of an M × N × 8 volume, where M = H/Ns and N = W/Ns. For each point
cell (m,n) in the feature map, there are eight values to be estimated: the first
two values (v1 and v2) are the object/non-object probabilities, and the last six
values (v3 to v8) are used to build the local affine transformation Tmn given by:

Tmn(q) =

[

max(v3, 0) v4

v5 max(v6, 0)

]

q +

[

v7
v8

]

, (2)

where the max function used for v3 and v6 was adopted to ensure that the
diagonal is positive (avoiding undesired mirroring or excessive rotations).

To match the network output resolution, the points pi are re-scaled by the
inverse of the network stride, and re-centered according to each point (m,n) in
the feature map. This is accomplished by applying a normalization function

Amn(p) =
1

α

(

1

Ns

p−

[

n
m

])

, (3)

where α is a scaling constant that represents the side of the fictional square. We
set α = 7.75, which is the mean point between the maximum and minimum LP
dimensions in the augmented training data divided by the network stride.

Assuming that there is an object (LP) at cell (m,n), the first part of the loss
function considers the error between a warped version of the canonical square
and the normalized annotated points of the LP, given by

faffine(m,n) =

4
∑

i=1

‖Tmn(qi)−Amn(pi)‖1. (4)
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The second part of the loss function handles the probability of having/not
having an object at (m,n). It is similar to the SSD confidence loss [21], and
basically is the sum of two log-loss functions

fprobs(m,n) = logloss(Iobj, v1) + logloss(1− Iobj, v2), (5)

where Iobj is the object indicator function that returns 1 if there is an object at
point (m,n) or 0 otherwise, and logloss(y, p) = −y log(p). An object is considered
inside a point (m,n) if its rectangular bounding box presents an IoU larger than
a threshold γobj (set empirically to 0.3) w.r.t. another bounding box of the same
size and centered at (m,n).

The final loss function is given by a combination of the terms defined in
Eqs. (4) and (5):

loss =

M
∑

m=1

N
∑

n=1

[Iobjfaffine(m,n) + fprobs(m,n)]. (6)

Training Details For training the proposed WPOD-NET, we created a dataset
with 196 images, being 105 from the Cars Dataset, 40 from the SSIG Dataset
(training subset), and 51 from the AOLP dataset (LE subset). For each image, we
manually annotated the 4 corners of the LP in the picture (sometimes more than
one). The selected images from the Cars Dataset include mostly European LPs,
but there are many from the USA as well as other LP types. Images from SSIG
and AOLP contain Brazilian and Taiwanese LPs, respectively. A few annotated
samples are shown in Fig. 5.

Fig. 5: Examples of the annotated LPs in the training dataset.

Given the reduced number of annotated images in the training dataset, the
use of data augmentation is crucial. The following augmentation transforms are
used:

– Rectification: the entire image is rectified based on the LP annotation, as-
suming that the LP lies on a plane;

– Aspect-ratio: the LP aspect-ratio is randomly set in the interval [2, 4] to
accommodate sizes from different regions;
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– Centering: the LP center becomes the image center;
– Scaling: the LP is scaled so its width matches a value between 40px and

208px (set experimentally based on the readability of the LPs). This range
is used to define the value of α used in Eq. (3);

– Rotation: a 3D rotation with randomly chosen angles is performed, to ac-
count for a wide range of camera setups;

– Mirroring: 50% chance;
– Translation: random translation to move the LP from the center of the image,

limited to a square of 208× 208 pixels around the center;
– Cropping: considering the LP center before the translation, we crop a 208×

208 region around it;
– Colorspace: slight modifications in the HSV colorspace;
– Annotation: the locations of the four LP corners are adjusted by applying

the same spatial transformations used to augment the input image.

From the chosen set of transformations mentioned above, a great variety of
augmented test images with very distinct visual characteristics can be obtained
from a single manually labeled sample. For example, Fig. 6 shows 20 different
augmentation samples obtained from the same image.

Fig. 6: Different augmentations for the same sample. The red quadrilateral rep-
resents the transformed LP annotation.

We trained the network with 100k iterations of mini-batches of size 32 using
the ADAM optimizer [15]. The learning rate was set to 0.001 with parameters
β1 = 0.9 and β2 = 0.999. The mini-batches were generated by randomly choosing
and augmenting samples from the training set, resulting in new input tensors of
size 32× 208× 208× 3 at every iteration.

3.3 OCR

The character segmentation and recognition over the rectified LP is performed
using a modified YOLO network, with the same architecture presented in [28].
However, the training dataset was considerably enlarged in this work by using
synthetic and augmented data to cope with LP characteristics of different regions
around the world (Europe, United States and Brazil)3.

3 We also used Taiwanese LPs, but could not find information in English about the
font type used by this country in order to include in the artificial data generation.
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Fig. 7: Artificial LP samples with the proposed generation pipeline (bottom).

The artificially created data consist of pasting a string of seven characters
onto a textured background and then performing random transformations, such
as rotation, translation, noise, and blur. Some generated samples and a short
overview of the pipeline for synthetic data generation are shown in Fig. 7. As
shown in Section 4, the use of synthetic data helped to greatly improve the
network generalization, so that the exact same network performs well for LPs of
different regions around the world.

3.4 Evaluation Datasets

One of our goals is to develop a technique that performs well in a variety of un-
constrained scenarios, but that should also work well in controlled ones (such as
mostly frontal views). Therefore, we chose four datasets available online, namely
OpenALPR (BR and EU)4, SSIG and AOLP (RP), which cover many different
situations, as summarized in the first part of Table 1. We consider three distinct
variables: LP angle (frontal and oblique), distance from vehicles to the camera
(close, intermediate and far), and the region where the pictures were taken.

Table 1: Evaluation datasets.

Database (subset) LP angle Vehicle Dist. #images Region

OpenALPR 5 (EU) mostly frontal close 104 Europe
OpenALPR (BR) mostly frontal close 108 Brazil
SSIG (test-set) mostly frontal medium,far 804 Brazil
AOLP (Road Patrol) frontal + oblique close 611 Taiwan

Proposed (CD-HARD) mostly oblique close,medium,far 102 Various

The more challenging dataset currently used in terms of LP distortion is
the AOLP Road Patrol (RP) subset, which tries to simulate the case where a
camera is installed in a patrolling vehicle or hand-held by a person. In terms of

4 Available at https://github.com/openalpr/benchmarks.

https://github.com/openalpr/benchmarks
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distance from the camera to the vehicles, the SSIG dataset appears to be the
most challenging one. It is composed of high-resolution images, allowing that
LPs from distant vehicles might still be readable. None of them present LPs
from multiple (simultaneous) vehicles at once.

Although all these databases together cover numerous situations, to the best
of our knowledge there is a lack of more general-purpose dataset with challenging
images in the literature. Thus, an additional contribution of this work is the
manual annotation of a new set of 102 images (named as CD-HARD) selected
from the Cars Dataset, covering a variety of challenging situations. We selected
mostly images with strong LP distortion but still readable for humans. Some of
these images (crops around the LP region) are shown in Fig. 1, which was used
to motivate the problem tackled in this work.

4 Experimental Results

This section covers the experimental analysis of our full ALPR system, as well
as comparisons with other state-of-the-art methods and commercial systems.
Unfortunately, most academic ALPR papers focus on specific scenarios (e.g.
single country or region, environment conditions, camera position, etc.). As a
result, there are many scattered datasets available in the literature, each one
evaluated by a subset of methods. Moreover, many papers are focused only on
LP detection or character segmentation, which limits even more the comparison
possibilities for the full ALPR pipeline. In this work, we used four independent
datasets to evaluate the accuracy of the proposed method in different scenarios
and region layouts. We also show comparisons with commercial products and
papers that present full ALPR systems.

The proposed approach presents three networks in the pipeline, for which we
empirically set the following acceptance thresholds: 0.5 for vehicle (YOLOv2)
and LP (WPOD-NET) detection, and 0.4 for character detection and recognition
(OCR-NET). Also, it is worth noticing that characters “I” and “1” are identical
for Brazilian LPs. Hence, they were considered as a single class in the evaluation
of the OpenALPR BR and SSIG datasets. No other heuristic or post-processing
was applied to the results produced by the OCR module.

We evaluate the system in terms of the percentage of correctly recognized
LPs, where an LP is considered correct if all characters were correctly recognized,
and no additional characters were detected. It is important to note that the exact
same networks were applied to all datasets: no specific training procedure was
used to tune the networks for a given type of LP (e.g. European or Taiwanese).
The only slight modification performed in the pipeline was for the AOLP Road
Patrol dataset. In this dataset, the vehicles are very close to the camera (causing
the vehicle detector to fail in several cases), so that we directly applied the LP
detector (WPOD-NET) to the input images.

To show the benefits of including fully synthetic data in the OCR-NET train-
ing procedure, we evaluated our system using two sets training data: (i) real aug-
mented data plus artificially generated ones; and (ii) only real augmented data.
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Table 2: Full ALPR results for all 5 datasets.

OpenALPR SSIG AOLP Proposed Average
EU BR Test RP CD-HARD

Ours 93.52% 91.23% 88.56% 98.36% 75.00% 89.33%
Ours (no artf.) 92.59% 88.60% 84.58% 93.29% 73.08% 86.43%
Ours (unrect.) 94.44% 90.35% 87.81% 84.61% 57.69% 82.98%

Commercial systems

OpenALPR 96.30% 85.96% 87.44% 69.72%* 67.31% 81.35%
Sighthound 83.33% 94.73% 81.46% 83.47% 45.19% 77.64%
Amazon Rekog. 69.44% 83.33% 31.21% 68.25% 30.77% 56.60%

Literature

Laroca et al. [17] - - 85.45% - - -

Li et al. [18] - - - 88.38% - -

Li et al. [19] - - - 83.63% - -

Hsu et al. [10] - - - 85.70%** - -

*OpenALPR struggled to understand the “Q” letter in Taiwanese LPs.

**In [10] the authors provided an estimative, and not the real evaluation.

These two versions are denoted by “Ours” and “Ours (no artf.)”, respectively, in
Table 2. As can be observed, the addition of fully synthetic data improved the
accuracy in all tested datasets (with a gain ≈ 5% for the AOLP RP dataset).
Moreover, to highlight the improvements of rectifying the detection bounding
box, we also present the results of using a regular non-rectified bounding box,
identified as “Ours (unrect.)” in Table 2. As expected, the results do not vary
much in the mostly frontal datasets (being even slightly better for ALPR-EU),
but there was a considerable accuracy drop in datasets with challenging oblique
LPs (AOLP-RP and the proposed CD-HARD).

Table 2 also shows the results of competitive (commercial and academic)
systems, indicating that our system achieved recognition rates comparable to
commercial ones in databases representing more controlled scenarios, where the
LPs are mostly frontal (OpenALPR EU and BR, and SSIG). More precisely, it
was the second best method in both OpenALPR datasets, and top one in SSIG.
In the challenging scenarios (AOLP RP and the proposed CD-HARD dataset),
however, our system outperformed all compared approaches by a significant mar-
gin (over 7% accuracy gain when compared to the second best result).

It is worth mentioning that the works of Li et al. [18,19], Hsu et al. [10] and
Laroca et al. [17] are focused on a single region or dataset. By outperforming
them, we demonstrate a strong generalization capacity. It is also important to
note that the full LP recognition rate for the most challenging datasets (AOLP-
RP and CD-HARD) was higher than directly applying the OCR module to the
annotated rectangular LP bounding boxes (79.21% for AOLP-RP and 53.85%
for CD-HARD). This gain is due to the unwarping allowed by WPOD-NET,
which greatly helps the OCR task when the LP is strongly distorted. To illus-
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trate this behavior, we show in Fig. 8 the detected and unwarped LPs for the
images in Fig. 1, as well as the final recognition result produced by OCR-NET.
The detection score of the top right LP was below the acceptance threshold,
illustrating a false negative example.

ZCAA30 GNO6BGV C24JBH ACAC1350 MXH4622

AURI318 J2II3 06U564 VZ60MLB KK4504 HBDD1111

*missed*

Fig. 8: Detected/unwarped LPs from images in Fig. 1 and final ALPR results.

The proposed WPOD-NET was implemented using TensorFlow framework,
while the initial YOLOv2 vehicle detection and OCR-NET were created and
executed using the DarkNet framework. A Python wrapper was used to inte-
grate the two frameworks. The hardware used for our experiments was an Intel
Xeon processor, with 12Gb of RAM and an NVIDIA Titan X GPU. With that
configuration, we were able to run the full ALPR system with an average of 5
FPS (considering all datasets). This time is highly dependent of the number of
vehicles detected in the input image. Hence, incrementing the vehicle detection
threshold will result in higher FPS, but lower recall rates.

5 Conclusions and Future Work

In this work, we presented a complete deep learning ALPR system for uncon-
strained scenarios. Our results indicate that the proposed approach outperforms
existing methods by far in challenging datasets, containing LPs captured at
strongly oblique views while keeping good results in more controlled datasets.

The main contribution of this work is the introduction of a novel network
that allows the detection and unwarping of distorted LPs by generating an affine
transformation matrix per detection cell. This step alleviates the burden of the
OCR network, as it needed to handle less distortion.

As an additional contribution, we presented a new challenging dataset for
evaluating ALPR systems in captures with mostly oblique LPs. The annotations
for the dataset will be made publicly available so that the dataset might be used
as a new challenging LP benchmark.

For future work, we want to extend our solution to detect motorcycle LPs.
This poses new challenges due to differences in aspect ratio and layout. Moreover,
we intend to explore the obtained affine transformations for automatic camera
calibration problem in traffic surveillance scenarios.

Acknowledgements. The authors would like to thank the funding agencies
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