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Abstract. We present a novel approach to solve dynamic programs
(DP), which are frequent in computer vision, on tree-structured graphs
with exponential node state space. Typical DP approaches have to enu-
merate the joint state space of two adjacent nodes on every edge of the
tree to compute the optimal messages. Here we propose an algorithm
based on Nested Benders Decomposition (NBD) that iteratively lower-
bounds the message on every edge and promises to be far more efficient.
We apply our NBD algorithm along with a novel Minimum Weight Set
Packing (MWSP) formulation to a multi-person pose estimation prob-
lem. While our algorithm is provably optimal at termination it operates
in linear time for practical DP problems, gaining up to 500x speed up
over traditional DP algorithm which have polynomial complexity.
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1 Introduction

Many vision tasks involve optimizing over large, combinatorial spaces, arising
for example from low-level detectors generating large numbers of competing hy-
potheses which must be compared and combined to produce an overall predic-
tion of the scene. A concrete example is multi-person pose estimation (MPPE),
which is a foundational image processing task that can feed into many down-
stream vision-based applications, such as movement science, security, and re-
habilitation. MPPE can be approached in a bottom-up manner, by generating
candidate detections of body parts using, e.g., a convolutional neural network
(CNN), and subsequently grouping them into people.

The ensuing optimization problems, however, can be difficult for non-specialized
approaches to solve efficiently. Relatively simple (tree-structured or nearly tree-
structured) parts-based models can use dynamic programming (DP) to solve
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object detection [6], pose estimation [17] and tracking [14] tasks. However, typi-
cal dynamic programming is quadratic in the number of states that the variables
take on; when this is large, it can quickly become intractable. In certain spe-
cial cases, such as costs based on Euclidean distance, tricks like the generalized
distance transform [7] can be used to compute solutions more efficiently, for ex-
ample in deformable parts models [6, 17], but are not applicable to more general
cost functions.

In this paper we examine a model for MPPE that is formulated as a minimum-
weight set packing problem, in which each set corresponds to an individual per-
son in the image, and consists of the collection of all detections associated with
that person (which may include multiple detections of the same part, due to noise
in the low-level detectors). We solve the set packing problem as an integer linear
program using implicit column generation, where each column corresponds to a
pose, or collection of part detections potentially associated with a single person.

Unfortunately, while this means that the structure of the cost function re-
mains tree-like, similar to single-pose parts models [6, 17], the number of states
that the variables take on in this model are extremely large – each part (head,
neck, etc.) can be associated with any number of detections in the image, mean-
ing that the variables take on values in the power set of all detections of that
part. This property renders a standard dynamic program on the tree intractable.

To address this issue, we apply a nested Benders decomposition (NBD) [13,
5] approach, that iteratively lower bounds the desired dynamic programming
messages between nodes. The process terminates with the exact messages for
optimal states of each node, while typically being vastly more efficient than
direct enumeration over all combinations of the two power sets.

We demonstrate the effectiveness of our approach on the MPII-Multiperson
validation set [2]. Contrary to existing primal heuristic solvers (e.g. [10]) for the
MPPE model, our formulation is provably optimal when the LP relaxation is
tight, which is true for over 99% of the cases in our experiments.

Our paper is structured as follows. We review related DP algorithms and
MPPE systems in Section 2. In Section 3 we formulate MPPE as a min-weight
set packing problem, which we solve via Implicit Column Generation (ICG) with
dynamic programming as the pricing method. In Section 4 we show how the pric-
ing step of ICG can be stated as a dynamic program. In Section 5 we introduce
our NBD message passing, which replaces traditional message passing in the DP.
Finally, in Section 6 we conduct experiments on the MPII-Multi-Person valida-
tion set, showing that our NBD based DP achieves up to 500x speed up over
dynamic programming on real MPPE problems, while achieving comparable av-
erage precision results to a state-of-the-art solver based on a primal heuristic
approach.

2 Related Work

In this section, we describe some of the relevant existing methodologies and ap-
plications of work which relate to our approach. Specifically, we discuss fast ex-
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act dynamic programming methodologies and combinatorial optimization based
models for MPPE.

2.1 Fast Dynamic Programming

The time complexity of dynamic programming (DP) grows linearly in the number
of variables in the tree and quadratically in the state space of the variables. For
applications in which the quadratic growth is a key bottleneck two relevant
papers should be considered. In [12] the pairwise terms between variables in
the tree are known in advance of the optimization and are identical across each
edge in the tree. Hence they can be pre-sorted before inference, so that for each
state of a variable the pairwise terms for the remaining variable are ordered. By
exploiting these sorted lists, one can compute messages by processing only the
lowest cost portion of the list and still guarantee optimality.

In a separate line of work [4], a column generation approach is introduced
which attacks the dual LP relaxation of the DP. Applying duality, pairwise
terms in the primal become constraints in the dual. Although finding violated
constraints exhaustively would require the exact same time complexity as solving
the DP with a more standard approach, by lower bounding the reduced costs
the exhaustive enumeration can be avoided. Similarly, the LP does not need to
be solved explicitly and instead can be solved as a DP.

In contrast to these lines of work our DP has significant structure in its
pairwise interactions, corresponding to a high tree width binary Ising model,
which we exploit. The previously cited work was not designed with domains
containing these types of structures in mind.

2.2 Multi-person Pose Estimation in Combinatorial Context

Our experimental work is closely related to the sub-graph multi-cut integer linear
programming formulation of [15, 8, 10], which we refer to as MC for shorthand.
MC models the problem of MPPE as partitioning detections into body parts (or
false positives) and clustering those detections into poses. The clustering process
is done according to the correlation clustering [3, 19, 1] criteria, with costs param-
eterized by the part associated with the detection. This formulation is notable
as it performs a type of non-maximum-suppression (NMS) by allowing poses to
be associated with multiple detections of a given body part. However, the opti-
mization problem of MC is often too hard to solve exactly and is thus attacked
with heuristic methods. Additionally, MC has no easy way of incorporating a
prior model on the number of poses in the image.

In contrast to MC, our model permits efficient inference with provable guar-
antees while modeling a prior using the cost of associating candidate detections
with parts in advance of optimization. Optimization need not associate each
such detection with a person, and can instead label it as a false positive. Asso-
ciating detections with parts in advance of optimization is not problematic in
practice, since the deep neural network nearly always produces highly unimodal
probability distributions on the label of a given detection.
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3 Multi-Person Pose Estimation as Minimum Weight Set

Packing

In this section we formulate the bottom-up MPPE task as a Minimum Weight
Set Packing (MWSP) problem and attack it with Implicit Column Generation.
We use the body part detector of [8], which, after post-processing (thresholding,
non max suppression (NMS), etc.), outputs a set of body part detections with
costs that we interpret as terms in a subsequent cost function. We use the terms
‘detection’ and ‘part detection’ interchangeably in the remainder of this paper.

Each detection is associated with exactly one body part. We use fourteen
body parts, consisting of the head and neck, along with right and left variants
of the ankle, knee, hip, wrist and shoulder. We use the post-processing system
of [8] which outputs pairwise costs that either encourage or discourage the joint
assignment of two part detections to a common pose. Each pose thus consists
of a selection of part detections; a pose can contain no detection of a body part
(corresponding to an occlusion), or multiple detections (NMS) of that part. Each
pose is associated with a cost that is a quadratic function of its members.

Given the set of poses and their associated costs we model the MPPE problem
as a MWSP problem, which selects a set of poses that are pairwise disjoint
(meaning that no two selected poses share a common detection) of minimum
total cost.

3.1 Problem Formulation

Detections and Parts Formally, we denote the set of part detections as D and
index it with d. Similarly, we use R to denote the set of body parts and index
it with r. We use Dr to denote the set of part detections of part r.

We use Sr to denote the power set of detections of part r, and index it
with s. We describe mappings of detections to power set members using matrix
Sr ∈ {0, 1}|D|×|Sr| where Sr

ds = 1 if and only if detection d is associated with
configuration s. For convenience we explicitly define neck as part 0 and thus its
power set is S0.

Poses: We denote the set of all possible poses over D, i.e. the power set of D,
as P and index it with p. We describe mappings of detections to poses using a
matrix P ∈ {0, 1}|D|×|P|, and set Pdp = 1 if and only if detection d is associated
with pose p. Since P is the power set of D, it is too large to be considered
explicitly. Thus, our algorithm works by building a subset P̂ ⊆ P that captures
the relevant poses to the optimization (see Section 3.2).

Pairwise Disjoint Constraints: We describe a selection of poses using indi-
cator vector γ ∈ {0, 1}|P| where γp = 1 indicates that pose p ∈ P is selected,
and γp = 0 otherwise.

A solution γ is valid if and only if the selected poses are pairwise disjoint,
which is written formally as Pγ ≤ 1. The non-matrix version of the inequality
Pγ ≤ 1 is

∑
p∈P Pdpγp ≤ 1 for each d ∈ D.
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(a) augmented-tree graph (b) detections of a pose

Fig. 1: Graphical representation of our pose model. (a) We model a pose in the
image as an augmented-tree, in which each red node represents a body part,
green edges are connections of traditional pictorial structure, while red edges
are augmented connections from neck to all non-adjacent parts of neck. (b) Each
body part can be associated with multiple part detections, a red node represents
a body part while cyan nodes represent part detections of that part, blue edges
indicate assignment of part detections to certain part of a person while cyan
edges indicate pairwise costs among detections of the same part. The possible
states of a body part thus consists of the power set of part detections of that
part.

Cost Function: We express the total cost of a pose in terms of unary costs
θ ∈ R

|D|, where θd is the cost of assigning detection d to a pose, and pairwise
costs φ ∈ R

|D|×|D|, where φd1d2
is the cost of assigning detections d1 and d2 to

a common pose. We use Ω to denote the cost of instancing a pose, which serves
to regularize the number of people in an image. The cost of a pose is formally
defined as :

Θp = Ω +
∑

d∈D

θdPdp +
∑

d1∈D
d2∈D

φd1d2
Pd1pPd2p (1)

By enforcing some structure in the pairwise costs φ, we ensure that this
optimization problem is tractable as a dynamic program. Consider a graph G =
(V,E), where V = R, i.e. each node represents a body part, and (r̂, r) ∈ E if
pairwise terms between part r̂ and part r are non-zero. A common model in
computer vision is to represent the location of parts in the body using a tree-
structured model, for example in the deformable part model of [6, 17]; this forces
the pairwise terms to be zero between non-adjacent parts in the tree 5.

In our application we augment this tree model with additional edges from
the neck to all other non-adjacent body parts. This is illustrated in Fig 1. Then,

5 WLOG: we assume that φ is upper triangular and that detections are ordered by
part with the parent part being lower numbered than the child
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conditioned on neck configuration s from S0, the conditional model is tree-
structured and can be optimized using dynamic programming in O(|R|k2) time,
where k is the maximum number of detections per part.

Integer Linear Program: We now cast the problem of finding the lowest
cost set of poses as an integer linear program (ILP) subject to pairwise disjoint
constraints:

min
γ∈{0,1}|P|

Θ⊤γ (2)

s.t. Pγ ≤ 1

By relaxing the integrality constraints on γ, we obtain a linear program relax-
ation of the ILP, and convert the LP to its dual form using Lagrange multiplier

set λ ∈ R
|D|
0+ :

min
γ≥0
Pγ≤1

Θ⊤γ = max
λ≥0

Θ+P⊤λ≥0

−1⊤λ (3)

3.2 Implicit Column Generation

In this section we describe how to optimize the LP relaxation of Eq. (3). As
discussed previously, the major difficulty to optimize Eq. (3) is the intractable
size of P. Instead, we incrementally construct a sufficient subset P̂ ⊆ P so as
to avoid enumerating P while still solving Eq. (3) exactly. This algorithm is
called Implicit Column Generation(ICG) in the operations research literature,
and is described formally in Alg. 1. Specifically, we alternate between finding
poses with negative reduced costs (line 6) and re-optimizing Eq. (3) (line 3).
Finding poses with negative reduced costs is achieved by conditioning on every
neck configuration s0 ∈ S

0, and then identifying the lowest reduced cost pose
among all the poses consistent with s0 which we denote as Ps0 .

Algorithm 1 Implicit Column Generation

1: P̂ ← {}
2: repeat
3: λ← Maximize dual in Eq. (3) over column set P̂
4: Ṗ ← {}
5: for s0 ∈ S

0 do
6: p∗ ← argminp∈Ps0 Θp +

∑
d∈D

λdPdp

7: if Θp∗ +
∑

d∈D
λdPdp∗ < 0 then

8: Ṗ ← [Ṗ ∪ p∗]
9: end if
10: end for
11: P̂ ← [P̂, Ṗ]
12: until |Ṗ| = 0
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4 Pricing via Dynamic Programming

A key step of Alg 1 is finding the pose with lowest reduced cost given dual
variables λ (line 6):

min
p∈Ps0

Θp +
∑

d∈D

λdPdp (4)

In the operations research literature, solving Eq. (4) is often called pricing.
Formally, let us assume the graph depicted in Fig. 1 (a) is conditioned on

neck configuration, s0, and thus becomes a tree graph. We define the the set of
children of part r as {r →}. We also define µr

ŝ as the cost-to-go, or the message

of part r with its parent r̂ associated with state ŝ:

µr
ŝ = min

s∈Sr

∑

d̂∈Dr̂

d∈Dr

S r̂

d̂ŝ
Sr
dsφd̂d + νrs (5)

where the first term computes pairwise costs between part r and its parent
r̂. νrs accounts for the cost of the sub-tree rooted at part r with state s, and is
defined as:

νrs = ψr
s +

∑

r̄∈{r→}

µr̄
s (6)

ψr
s =

∑

d∈Dr

(θd + λd)S
r
ds +

∑

d1∈Dr

d2∈Dr

φd1d2
Sr
d1s
Sr
d2s

+
∑

d1∈D0

d2∈Dr

φd1d2
S0
d1s0

Sr
d2s

Thus solving Eq. (4) involves computing and passing messages from leaf
nodes (wrists and ankles) along the (conditional) tree graph G = (V,E) to root
node (head); Eq. (5) for root node equals to Eq (4) minus Ω. To compute µr

ŝ for
every ŝ ∈ S r̂, a node r need to pass through its states for each state of its parent
node, thus resulting in polynomial time algorithm. If we have |Dr| = |Dr̂| = 15,
then we have roughly 30k states for r and r̂, DP would then enumerate the
joint space of 9×108 states, which becomes prohibitively expensive for practical
applications.

5 Nested Benders Decomposition

In this section we present a near linear time algorithm (w.r.t |Sr|) in practice
that computes the message terms µr̄

s in Eq. (6). The key idea of this algorithm is
to apply Nested Benders Decomposition (NBD), so that for every parent-child
edge (r, r̄), ∀r̄ ∈ {r →}, we iteratively construct a small sufficient set of affine
functions of Dr; the maximum of these functions lower bounds messages µr̄

s.
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Essentially, each of these sets forms a lower envelope of messages, making them
dependent on the maximum of the lower envelopes instead of child state s̄; if the
cardinality of the set is a small constant (relative to |S r̄|), then we can compute
the message on an edge for any parent state in O(1) instead of O(|S r̄|), and
thus computing messages for every state s ∈ Sr would take O(|Sr|) instead of
O(|Sr| × |S r̄|).

5.1 Benders Decomposition Formulation

We now rigorously define our Benders Decomposition formulation for a specific
parent-child edge pair (r, r̄) which we denote as e ∈ E for shorthand. We define
the set of affine functions that lower bounds the message µr̄

s as Ze which we
index by z, and parameterize the zth affine function as (ωez

0 , ω
ez
1 , . . . , ω

ez
|Dr|). For

simplicity of notation we drop the e superscript in the remaining of the paper.
If Ze indeed forms lower envelopes of µr̄

s then we have:

µr̄
s = max

z∈Ze

ωz
0 +

∑

d∈Dr

ωz
dS

r
sd, e = (r, r̄) ∈ E (7)

In the context of Benders Decomposition one affine function in Ze is called
a Benders row. For an edge e, we start with nascent set Że with a single row in
which ω0

0 = −∞, ω0
d = 0, d ∈ Dr and iteratively add new Benders rows into Że.

We define a lower bound on the message of edge (r, r̄) as:

µr̄−
s = max

z∈Że

ωz
0 +

∑

d∈Dr

ωz
dS

r
sd, e = (r, r̄) ∈ E (8)

which satisfies µr̄−
s ≤ µr̄

s. The two terms become equal for s∗ = argmins∈Sr µr̄
s

if the lower bound is tight.

5.2 Producing new Benders rows

Until now we define parent-child pair as (r, r̄) in the context of Eq. (6). In this
section we describe how to generate new Benders rows in the context of Eq. (5),
where parent-child pair is denoted as (r̂, r).

Given current set Że of an edge (r̂, r) ∈ E, with r̂ associated with state ŝ,
we check if there exist a new Benders row that can increase current lower bound
µr−
ŝ . This is computed by:

min
s∈Sr

∑

d̂∈Dr̂

d∈Dr

S r̂

d̂ŝ
Sr
dsφd̂d + νr−s (9)

where:
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νr−s = ψr
s +

∑

r̄∈{r→}

µr̄−
s

(10)

Integer Linear Program Here we reformulate Eq. (9) as an integer linear

program. We use indicator vectors x ∈ {0, 1}|D
r|, y ∈ {0, 1}|D

r̂|×|Dr|, where
xs = 1 if and only if s ∈ Sr is selected and y

d̂d
= S r̂

d̂ŝ
(
∑

s∈Sr xsS
r
ds):

min
x∈{0,1}|Sr|

y∈{0,1}|Dr̂|×|Dr|

∑

s∈Sr

νr−s xs +
∑

d∈Dr

d̂∈Dr̂

φ
d̂d
y
d̂d

(11)

s.t.
∑

s∈Sr

xs = 1

− y
d̂d

+ S r̂

d̂ŝ
+

∑

s∈Sr

xsS
r
ds ≤ 1, ∀d̂ ∈ Dr̂, d ∈ Dr

y
d̂d
≤ S r̂

d̂ŝ
, ∀d̂ ∈ Dr̂, d ∈ Dr

y
d̂d
≤

∑

s∈Sr

xsS
r
ds, ∀d̂ ∈ Dr̂, d ∈ Dr

We then relax x, y to be non-negative. In the supplement we provide proof
that this relaxation is always tight. We express the dual of the relaxed LP below

with dual variables δ0 ∈ R, and δ1, δ2, δ3 each lie in R
|Dr̂|×|Dr|
0+ which is indexed

by d̂, d:

max
δ0∈R

(δ1,δ2,δ3)≥0

δ0 −
∑

d̂∈Dr̂

d∈Dr

δ1
d̂d

+
∑

d̂∈Dr̂

d∈Dr

(δ1
d̂d
− δ2

d̂d
)S r̂

d̂ŝ
(12)

s.t. νr−s − δ0 +
∑

d̂∈Dr̂

d∈Dr

(δ1
d̂d
− δ3

d̂d
)Sr

ds ≥ 0, ∀s ∈ Sr

φ
d̂d
− δ1

d̂d
+ δ2

d̂d
+ δ3

d̂d
≥ 0, ∀d̂ ∈ Dr̂, d ∈ Dr

Observe Eq. (12) is an affine function of Dr̂, thus when dual variables are
optimal Eq. (12) represents a new Benders row that we can add to Że, e = (r̂, r).
Let us denote the new Benders row as z∗, then we construct this row from dual
variables as:

ωz∗

0 = δ0 −
∑

d̂∈Dr̂

d∈Dr

δ1
d̂d

(13)

ωz∗

d̂
=

∑

d∈Dr

δ1
d̂d
− δ2

d̂d
, ∀d̂ ∈ Dr̂ (14)
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Note that if all lower bounds on child messages µr̄−
s∗ , ∀r̄ ∈ {r →} are tight

for s∗ ∈ Sr that minimizes Eq. (9) , then the new Benders row z∗ forms a tight
lower bound on message µr

ŝ for the specified parent state ŝ.

Solving Dual LP One could directly solve (12) in closed form, or via an off-
the-shelf LP solver, both of which gives maximum lower bound for one parent
state ŝ. However, ideally we want this new Benders row to also give a good lower
bound to other parent states ŝ ∈ S r̂, so that we can use as few rows as possible
to form a tight lower bound on the messages.

We achieve this by adding an L1 regularization with tiny negative magnitude
weight to prefer smaller values of δ1, δ2. This technique is referred to as a Pareto
optimal cut or a Magnanti-Wong cut [11] in the operations research literature.
We give detailed derivations as for why such regularization gives better overall
lower bounds in the supplement.

5.3 Nested Benders Decomposition for Exact Inference

Algorithm 2 Nested Benders Decomposition

1: G = (R, E), G is a tree-structured graph
2: Że ← single row with ω0 = −∞, ωd̂ = 0, ∀d ∈ Dr̂, ∀e = (r̂, r) ∈ E

3: s∗r ← ∅, ∆
r ← 0, ∀r ∈ R

4: repeat
5: for r ∈ R proceeding from leaves to root do
6: for z ∈ Że, e = (r̂, r), r ∈ {r̂ →} do
7: Update δ0 via Eq. (15)
8: Update ωz

0 via Eq. (13)
9: end for
10: end for
11: s∗r ← argmins∈Sr νr−

s , where r is root
12: for r ∈ R from children of root to leaves do
13: s∗r ← argmins∈Sr

∑
d̂∈D

r̂

d∈D
r

Sr̂

d̂ŝ
Sr
dsφd̂d + νr−

s , where ŝ = s∗r̂

14: ∆r ←
∑

d̂∈D
r̂

d∈D
r

Sr̂

d̂ŝ
Sr
dsφd̂d + νr−

s − maxz∈Że ω
z
0 +

∑
d̂∈Dr̂ ω

z

d̂
Sr̂

d̂ŝ
, where s =

s∗r , ŝ = s∗r̂ , e = (r̂, r), r ∈ {r̂ →}
15: end for
16: r∗ ← argmaxr∈R ∆r

17: Że ← Że ∪ z∗ where z∗ is the new Benders row for e = (r̂, r∗), r∗ ∈ {r̂ →}
18: until |∆r| < ǫ, ∀r ∈ R
19: RETURN pose p corresponding {s∗r , ∀r ∈ R}

Given the basic Benders Decomposition technique described in previous sec-
tions, we now introduce the Nested Benders Decomposition algorithm which is
described as Alg 2. The algorithm can be summarized in four steps:
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Update Old Benders Rows (line 5-10) The NBD algorithm repeatedly up-
dates the lower bounds on the messages between nodes, which makes Że become
less tight when messages from child nodes change. Instead of constructing Że

from scratch every iteration, we re-use δ terms produced by previous iterations,
fixing δ1, δ2, δ3 and only update δ0 to produce valid Benders rows given new
child messages in νr−s :

δ0 ← min
s∈Sr

νr−s +
∑

d̂∈Dr̂

d∈Dr

(δ1
d̂d
− δ3

d̂d
)Sr

ds (15)

Compute Optimal State and Gaps for Each Node (line 11-15) Next
we proceed from root to leaves and compute optimal state of each node, given
current lower bounds on messages. Given current state estimates of a node r and
its parent r̂, we measure the gap between the message estimated by itself and
the message estimated by its parent, and denote this gap as ∆r (line 14). Note
∆ for root is always 0 since root does not have a parent.

Find the Node that Gives Maximum Gap (line 16) We find the node r
on which the gap ∆r is largest across all nodes, and denote this node as r∗.

Compute and Add New Benders Row (line 17) We produce a new Ben-
ders row z∗ for r∗, by solving Eq. (12)-(14). This row z∗ is then added to the
corresponding set Że where e = (r̂, r∗), r∗ ∈ {r̂ →}.

We terminate when the gap ∆ of every node in the graph is under a desired
precision ǫ (0 in our implementation), and return the optimal state of every
node. In the following we prove that Alg 2 terminates with optimal total cost at
root part (which we denote here as part 1) as computed by DP.

Lemma 1. At termination of Alg 2, ν1−s∗
1

has cost equal to cost of the pose

corresponding to configurations of nodes {s∗r , ∀r ∈ R}

Proof. At termination of Alg 2 the following is established for each r ∈ R with
states s = s∗r , ŝ = s∗r̂ :

∆r = 0 =
∑

d̂∈Dr̂

d∈Dr

S r̂

d̂ŝ
Sr
dsφd̂d + νr−s − max

z∈Że

ωz
0 +

∑

d̂∈Dr̂

ωz

d̂
S r̂

d̂ŝ
(16)

By moving the −maxz∈Że ω
z
0 +

∑
d̂∈Dr̂

ωz

d̂
S r̂

d̂
to the other side we establish

the following.

∑

d̂∈Dr̂

d∈Dr

S r̂

d̂ŝ
Sr
dsφd̂d + νr−s = max

z∈Że

ωz
0 +

∑

d̂∈Dr̂

ωz

d̂
S r̂

d̂ŝ
= µr−

ŝ (17)
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We now substitute µr̄−
s terms in Eq. (10) with Eq. (17)

ν r̂−ŝ = ψr̂
ŝ +

∑

d̂∈Dr̂

d∈Dr

S r̂

d̂ŝ
Sr
dsφd̂d + νr−s (18)

Note at the leaves νr−s = ψr
s , ∀s ∈ S

r. From ν1−s , we recursively expand the ν−

terms and establish the following:

ν1−s∗
1

=
∑

r∈R

ψs∗
r

+
∑

(r̂,r)∈E

∑

d̂∈Dr̂

d∈Dr

S r̂

d̂s∗
r̂

Sr
ds∗

r

φ
d̂d

(19)

Which is the summation of all unary and pairwise terms chosen by solution
{s∗r , ∀r ∈ R}.

Lemma 2. At termination of Alg 2, ν1−s∗
1

has cost equal to mins1∈R1 ν1s1

Proof. We prove this by contradiction. Suppose ν1−s∗
1

6= mins1∈R1 ν1s1 , according

to Lemma 1 this must mean ν1−s∗
1

> mins1∈R1 ν1s1 . If lower bounds on the mes-

sages from children of the root are tight, then it means ν1−s∗
1

is not tight,∆1 would

have been non-zero and Alg 2 would have not terminated, thus creating a contra-
diction. On the other hand, if lower bounds on certain message(s) from children
is not tight, then the ∆ value for that child node would have been non-zero and
the algorithm would have continued running, still creating a contradiction.

Experimentally we observe that the total time consumed by steps in NBD is
ordered from greatest to least as [1,2,4,3]. Note that the step solving the LP is
the second least time consuming step of NBD.

6 Experiments

We evaluate our approach against a naive dynamic programming based formula-
tion on MPII-Multi-person validation set [2], which consists of 418 images. The
terms φ, θ are trained using the code of [8], with the following modifications:

1. We set φd1d2
= ∞ for each pair of unique neck detections d1, d2; as a side

effect this improves inference speed also since we need not explore the entire
power set of neck detections.

2. We hand set Ω to a single value for the entire data set.
3. We limit the number of states of a given part/node to 50,000. We construct

this set as follows: we begin with the state corresponding to zero detections
included, then add in the group of states corresponding to one detection
included; then add in the group of states corresponding to two detections
included etc. If adding a group would have the state space exceed 50,000
states for the variable we don’t add the group and terminate.
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(a) (b)

Fig. 2: Timing comparison and speed-ups achieved by NBD. (a) Accumulated
running time over problem instances for NBD and DP, respectively. (b) Factor
of speed-up of NBD relative to DP, as a function of computation time spent for
DP pricing. Note that in general the factor of speed-up grows as the problem
gets harder for DP.

We compare solutions found by NBD and DP at each step of ICG; for all problem
instances and all optimization steps, NBD obtains exactly the same solutions as
DP (up to a tie in costs). Comparing total time spent doing NBD vs DP across
problem instances we found that NBD is 44x faster than DP, and can be up to
500x faster on extreme problem instances. Comparison of accumulated running
time used by NBD and DP over all 418 instances are shown in Fig. 2. We
observe that the factor speed up provided by NBD increases as a function of the
computation time of DP.

With regards to cost we observe that the integer solution produced over P̂
is identical to the LP value in over 99% of problem instances thus certifying
that the optimal integer solution is produced. For those instances on which LP
relaxation fails to produce integer results, the gaps between the LP objectives
and the integer solutions are all within 1.5% of the LP objectives. This is achieved
by solving the ILP in Eq 2 over P̂.

Part Head Shoulder Elbow Wrist Hip Knee Ankle mAP(UBody) mAP time (s/frame)

Ours 90.6 87.3 79.5 70.1 78.5 70.5 64.8 81.8 77.6 1.95

[10] 93.0 88.2 78.2 68.4 78.9 70.0 64.3 81.9 77.6 0.136

Table 1: We display average precision of our approach versus [10]. Running times
are measured on an Intel i7-6700k quad-core CPU.
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For the sake of completeness, we also report MPPE accuracy in terms of av-
erage precisions (APs) and compare it against a state-of-the-art primal heuristic
solver [10] (Fig. 1). We note that compared to [10], we excel in hard-to-localize
parts such as wrists and ankles, but fails at parts close to neck such as head and
shoulder; this could be a side effect of the fact that costs from [8] are trained
on power set of all detections including neck, thus pose associated with multi-
ple neck detections could be a better choice for certain cases. In a more robust
model, one could make a reliable head/neck detector, restricting each person to
have only one head/neck.

Fig. 3: Example output of our system.

7 Conclusion

We have described MPPE as MWSP problem which we address using ICG with
corresponding pricing problem solved by NBD. For over 99% of cases we find
provably optimal solutions, which is practically important in domains where
knowledge of certainty matters, such as interventions in rehabilitation. Our pro-
cedure for solving the pricing problem vastly outperforms a baseline dynamic
programming approach. We expect that NBD will find many applications in
machine learning and computer vision, especially for solving dynamic programs
with over high tree-width graphs. For example we could formulate sub-graph
multi-cut tracking [16] as a MWSP problem solved with ICG with pricing solved
via NBD. Moreover, for general graphs that main contain cycles, our NBD is
directly applicable with dual decomposition algorithms [9, 18], which decompose
the graph into a set of trees that are solvable by dynamic programs.
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