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Abstract. 3D mask face presentation attack, as a new challenge in face
recognition, has been attracting increasing attention. Recently, remote
Photoplethysmography (rPPG) is employed as an intrinsic liveness cue
which is independent of the mask appearance. Although existing rPPG-
based methods achieve promising results on both intra and cross dataset
scenarios, they may not be robust enough when rPPG signals are con-
taminated by noise. In this paper, we propose a new liveness feature,
called rPPG correspondence feature (CFrPPG) to precisely identify the
heartbeat vestige from the observed noisy rPPG signals. To further over-
come the global interferences, we propose a novel learning strategy which
incorporates the global noise within the CFrPPG feature. Extensive ex-
periments indicate that the proposed feature not only outperforms the
state-of-the-art rPPG based methods on 3D mask attacks but also be
able to handle the practical scenarios with dim light and camera motion.

Keywords: Face presentation attack detection · 3D mask attack · Re-
mote photoplethysmography

1 Introduction

Face recognition technique has been widely deployed in a number of applica-
tion domains, especially the widespread access control of mobile devices and
e-commerce. Consequently, security issues of a face recognition system attract
increasing attention. Despite its practicability and convenience, face recognition
systems are also vulnerable to presentation attacks because one’s face can be ob-
tained and abused at very low costs with the booming of social networks. Prints
and screen are the two traditional medias to conduct face presentation attacks
and great effort has been devoted on detecting them in the last decades [1–16].
A wide variety of liveness cues have been studied and achieved promising re-
sults, such as texture [5,9,12,14], image quality [15], reflection patterns [13] and
context of presentation attack instrument [16], and motion cues including eyes
movement [8], mouth motion [17] and facial expression [9].

Recently, 3D mask attack attracts increasing attention with the rapid devel-
opment of 3D reconstruction and 3D printing techniques. One can easily cus-



2 Si-Qi Liu, Xiangyuan Lan, Pong C. Yuen

rPPG Correspondence Feature
(CFrPPG) for 3D Mask Face PAD

Classifier

Decision

Self-learned 
Spectrum Template

Hz Correspondence 
Feature

Filtering 

Response 

Local rPPG Signals

9

t

6

3

0

c,F

Hz

Local rPPG Signals

3 t

2

1 0

c,F

F−1

Global Noise

4 t
3
2
1 0

c,F

Hz

Input Video

Fig. 1. Block diagram of the proposed CFrPPG feature

tomize a 3D mask at an affordable price with a frontal face image1. Although
the texture based methods can achieve promising results on detecting Thatsmy-
face mask [18], Liu et al. point out the challenges of super-real masks and poor
generalization ability under practical cross dataset scenarios [19]. As such, they
propose a new liveness cue based on the facial heartbeat signals — remote pho-
toplethysmography (rPPG), which measures the blood pulse flow by modeling
the skin color variations caused by the heartbeat. Due to the low transmittance
of 3D mask material, such a liveness signal can only be observed on genuine faces
but not on masked faces. Since rPPG is not related to the appearance, this ap-
proach can detect super-real masks well and achieve encouraging performances
under both intra and cross dataset scenarios.

It is intuitive to extract liveness features by analyzing rPPG signals in the
frequency domain. Li et al. extract the rPPG signal from the center of the face
and design a spectrum feature [20]. Liu et al. propose the local rPPG solution
to obtain spatial structure information from facial rPPG signals. Provided that
the background noise is non-periodic and the subject’s face does not move much,
the cross-correlation operation can amplify the shared heartbeat frequency while
suppressing the random interferences [19].

However, existing methods implicitly assume that the maximum value of the
signal spectrum can reflect the heartbeat strength. Such an assumption is not
always valid in practical scenarios where noise can dominate the observed signal.
For instance, when there exists global noise such as camera motion, a mask may
be misclassified as a real face since the large periodicity appears on the signal
spectrum. The cross-correlation of rPPG signals from local facial regions [19]
may not work as well in this case since it not only boosts the pulse signal but
also amplifies the shared global noise. Moreover, the rPPG signals on a genuine
face can be noisy under dim light or with small facial resolution. A genuine face
may be wrongly rejected when the heartbeat strength is lower than that of the
environmental noise.

1 www.thatsmyface.com
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Therefore, how to precisely identify the heartbeat information from the ob-
served noisy rPPG signals is critical for rPPG-based face presentation attack
detection (PAD). To achieve this, we propose a novel rPPG-based 3D mask PAD
feature based on the property that the local facial regions share the same heart-
beat pattern [21]. For an input video, we first learn the heartbeat as a verification
template using the rPPG signal spectrums extracted from local facial regions.
Then we use the correspondence between the learned spectrum template and
the local rPPG signals as the verification response to construct the novel live-
ness feature, namely rPPG Correspondence Feature (CFrPPG). The proposed
CFrPPG can reflect the liveness evidence more precisely since the template es-
timation summarizes the shared heartbeat component from multiple references.
Besides, the correspondence not only contains the amplitude of the signal at
heartbeat frequency but also encodes the detailed spectrum information. Since
the spectrum template estimation is designed to extract the commonality, the
global noise is also maintained in practice. To address this issue, we further take
the global interference extracted from the background into account and propose
a novel learning strategy to incorporate it into the spectrum template estimation.
The block diagram of CFrPPG is illustrated in Fig. 1.

In summary, the main contributions of this paper are: (1) A rPPG corre-
spondence feature (CFrPPG) for 3D mask PAD is proposed to precisely identify
the heartbeat vestige from the observed noisy rPPG signals. (2) A novel learn-
ing strategy which incorporates the global noise with CFrPPG is proposed to
further overcome the global interferences in practical scenarios. To evaluate the
discriminability and robustness of the proposed CFrPPG, we conduct extensive
experiments on two 3D mask attack datasets and a replay attack dataset with
continuous camera motion and different lighting conditions. The results indicate
that CFrPPG not only outperforms the state-of-the-art rPPG based methods
on 3D mask attacks but also be able to handle the real environment with poor
lighting and camera motion.

2 Related Work

Face presentation attack detection (PAD) has been studied for decades and
existing methods can be mainly divided into three categories according to the
liveness cues employed: appearance-based approach, motion-based approach and
rPPG-based approach.

Appearance-based Approach. The appearance-based approach uses the ar-
tifacts of the attacking media to detect face presentation attack. Texture-based
methods have been used for face anti-spoofing and achieve encouraging result-
s [5,9,14,22]. Maatta et al. use multi-scale LBP (MS-LBP) to mine the detailed
texture differences. Agarwal et al. analyze the input image from different scales
using redundant discrete wavelet transform [22].Although they perform well on
both traditional presentation attack and 3D mask attack detection [18], they
expose limited generalization ability under different camera settings or lighting
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conditions [13, 19]. The color texture analysis (CTA) [14] improves the discrim-
inability and generalizability of MS-LBP by employing the characteristic of dif-
ferent color space (HSV and YCbCr), while it may fail on 3D mask attack as the
color defects of masks can be different or small [23]. The image quality analy-
sis [15] based approach identifies quality defects of attacking instrument, such as
the reflectance pattern [13] and the moiré patterns [24], using different kinds of
image quality measurement features. Although better generalizability is validat-
ed on traditional presentation attacks, this approach may not work on 3D masks
since they do not contain the quality defects like videos or images. Deep features
have been adopted in face PAD recently with the booming of deep learning
and exhibit promising discriminability [25, 26]. However, the over-fitting prob-
lem due to the intrinsic data-driven nature remains unsolved. Recently, studies
indicate that the mask can be well detected with invisible light,e.g., infrared or
thermal cameras [27]. However, it requires additional devices which may not be
economical for existing face recognition systems using RBG camera.

Motion-based Approach. Facial motion is effective in detecting photo at-
tack using the patterns like eye-blink [8], mouth movement [9] based on human-
computer interaction (HCI), or unconscious subtle facial muscle motion [28].
However, these methods may not work on 3D mask attack since the aforemen-
tioned motion can be well preserved on masks that expose eyes and mouth [29].
In addition, the motion patterns of non-rigid 3D genuine faces and 2D planar
attacking media are different and can be modeled using optical flow field [30] or
the correlation of background region [31]. Similarly, these cues can hardly per-
form well against 3D mask attacks since 3D masks preserve both the geometric
and appearance properties of genuine faces. Moreover, the soft silicone gel mask
is able to preserve the subtle movement of the facial skin, which make the motion
based approach less reliable.

rPPG-based Approach. rPPG is a new research topic in the biomedical com-
munity and few methods have been proposed in recent years [32–35]. Because
of the non-contact property, rPPG has broad application prospects in clinic,
health care and emotion analysis [34]. The use of rPPG for 3D mask face PAD
has been explored in previous work [19, 20]. Li et al. extract the global rPPG
signal (green channel) from the center region of a face and quantify it using the
maximum value of the spectrum and the signal to noise ratio (SNR) [20]. Since
the global signal lacks spatial information, Liu et al. propose a local solution [19]
with the rPPG signals extracted from local facial regions using CHROM [33].
To suppress the random environmental noise, they apply cross-correlation of
each two signals and concatenate the maximum spectrum value as the final
feature. Although they achieve encouraging results on 3DMAD [18] and HKBU-
MARsV1 [19], the assumption that the maximum value of the signal spectrum
can represent the heartbeat may not be valid in real applications. In addition,
the cross-correlation will boost the periodic global noises as they also share simi-
lar frequencies on different local facial regions. Ewa et al. use background rPPG
to overcomes this [36]. However, the direct use of spectrum may not generalize
well since the rPPG signal strength varies under different settings.
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Fig. 2. Three typical rPPG signal patterns in 3D mask presentation attack detection
(PAD). Ideally, the difference of rPPG signals from genuine face and masked face is
significant. However, the rPPG signal is fragile to interference in practical scenario

3 Analysis of rPPG based Face PAD

This section revisits and analyzes the pros and cons of rPPG-based approach for
face presentation attack detection.

The rPPG originates from PPG, a biomedical technique that uses a pulse
oximeter to illuminate the skin and measure the changes in light absorption
caused by the pumping of blood to the dermis and subcutaneous tissue during
cardiac cycles [37]. Different from contact PPG, rPPG measures the heartbeat
caused skin color variations remotely through a conventional RGB camera under
an environmental light. When applying rPPG on face PAD, 3D masks that cover
the live faces block the heartbeat signal so that attacks can be detected by
identifying whether the signals can be observed or not (Fig. 2). Following this
principle, a rPPG-based solution not only can be effective in 3D mask detection
but also works on traditional presentation attacks such as the prints and screen
attacks, because these materials block the heartbeat signals in the same way [20].

Ideally, the rPPG based solution can achieve high performance under intra
and cross dataset scenarios since the observed heartbeat signal is independent
of the appearance of the attacking media. Most of existing methods measure
the heartbeat strength by directly using the maximum amplitude of the rPPG
signal spectrum in frequency domain [19, 20]. Although these methods achieve
promising results on existing 3D mask attack datasets, we found two critical
drawbacks: (1) The assumption that the maximum amplitude can reflect the
heartbeat strength may not be valid in real applications. Due to the principle
of rPPG is measuring the subtle color variation caused by heartbeat, the rPPG
signal is fragile in practical scenarios. For instance, the heartbeat amplitude can
be hardly be observed under poor lighting conditions since the signal strength
relies on the amount of light that reaches the blood vessels [19]. When there
exist global noise such camera motion, the observed rPPG signals is easy to get
contaminated [34] As such, there may be more than one dominant peaks in the
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rPPG signal spectrum and the one with maximum amplitude may not reflect the
heartbeat in some cases (see Fig. 2(c)). In addition, strong peaks caused by noise
may also appear on rPPG signals extracted from masked faces and lead to false
acceptance error. Although Liu et al. use cross-correlation of local rPPG signals
to suppress random noise [19], it may still fail when there exists global noise
such as handhold caused camera motion since the cross-correlation will not only
enhance the heartbeat component but also amplify noises that share similar
frequencies. (2) Even when the assumption is valid, the detailed information
contained in the distribution of signal spectrum is missing. For instance, on a
genuine face, the harmonic peaks of the heartbeat frequency hiding among the
noise can be used to boost the discriminability.

4 rPPG Correspondence Feature for 3D Mask PAD

To overcome the limitations of existing rPPG-based 3D mask PAD methods,
this paper proposes a novel rPPG correspondence feature (CFrPPG) that can
precisely identify the liveness evidence from the observed noisy rPPG signals.

4.1 CFrPPG

Before the identification of liveness information, we first need to figure out what
is the real heartbeat component in the observed rPPG signals. Based on the
property that the local facial skin shares same heartbeat frequency, we propose
to extract the heartbeat by summarizing the commonality of the local rPPG
signals. Instead of directly extracting its signal form from the observed rPPG,
we propose to model the heartbeat as a template using the correlation filter
framework and use it as a detector to identify the liveness component of the
local rPPG signals. Specifically, the proposed CFrPPG is constructed by taking
the correspondence between the local rPPG signal spectrum and the template
learned on themselves.

Learning Spectrum Template. Intuitively, we want to train a template that
summarizes the commonality of local rPPG signals which reflects the heartbeat
information. As shown in Fig. 1, for an input face video, local rPPG signals are
extracted from the local region of interests defined based on facial landmarks.
To reduce random noise, we perform cross-correlation of local rPPG signals
as preprocessing and obtain their frequency spectra s1, s2, . . . , sN (details can
be found in Sect. 4.3). Then the spectrum template is learned by solving the
following ridge regression problem:

min
w

N∑

i=1

‖Siw − y‖2
2
+ λ‖w‖2

2
(1)

Note that the learned spectrum template is denoted by the vector w. The square
matrix Si ∈ R

n×n contains all circulant shifts of the local rPPG signal spectrum
si and the regression target y is the vector of 1D Gaussian with variance σ.
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The objective function in Eq. 1 is strictly convex and has a unique global
minimum. By taking its derivative and setting it equal to zero, we can obtain
the close form solution for the learned spectrum template.

w = (

N∑

i=1

S
⊺

i Si + λI)−1

N∑

i=1

S
⊺

i y (2)

Since Si is circulant, we have Si = F diag(ŝi)F
H and S

⊺

i = F diag(ŝ∗i )F
H,

where s∗ is conjugate, F is the DFT matrix, ŝ is Discrete Fourier Transform
(DFT)

√
nFs and H is Hermitian transposition. The matrix inversion of Eq. 2

can be solved efficiently in the Fourier domain [38]. The DFT of the spectrum
template w in Eq. 2 can be obtained efficiently by the element-wise operation ⊙
in frequency domain as shown in Eq. 3, and then by taking inverse Fast Fourier
Transformation (FFT), the spectrum template w can be obtained.

ŵ =

∑N

i=1
ŝi

∗ ⊙ ŷ
∑N

i=1
ŝi

∗ ⊙ ŝi + λ
(3)

Constructing Correspondence Feature. Given the self-learned spectrum
template w, the correspondence between local rPPG signals and learned spec-
trum template can be obtained by convolving w with local rPPG signal si, i.e.:

r̂i = ŝi ⊙ ŵ (4)

Given the convolution output array, the correspondence can be reflected by
the peak value. Since correlation filters are designed to detect the target with the
sharp peaks, we use the peak sharpness to measure the correspondence to achieve
better discrimination properties. One of the most commonly used peak sharpness
metrics is the peak-to-sidelobe ratio (PSR) defined as r̂i = (peakr̂i

− µr̂i
)σr̂i

where peakr̂i
, µr̂i

and σr̂i
is the center value, average and standard deviation

of the response, respectively. Finally, we construct the liveness feature as the
concatenation of local responses: x = [r̂1, r̂2, . . . , r̂N ].

Comparing with the maximum amplitude of the frequency spectra, the pro-
posed CFrPPG can reflect the liveness sign more accurately since the learned
spectrum template summarizes the heartbeat component from local rPPG sig-
nals. By taking the correspondence between the learned template and local rPPG
themselves (Eq. 4), both the response of heartbeat frequency and the detailed
spectrum information are employed in CFrPPG. Besides, our CFrPPG is robust
to random noise since the template estimation of the input local rPPG spec-
trums (Eq. 1) explicitly suppress the diversity that reflects the random noise.
Consequently, rPPG signals on a genuine face share the commonality from the
heartbeat so that these signals and learned spectrum template could yield strong
correspondence. For a masked face, observed signals are less consistent and the
response shall be faint correspondingly. The computation of CFrPPG is fast s-
ince the main cost lies on DFT and IDFT. The computational complexity is
is O(NDlogD), where N is the number of local rPPG signals and D is the
dimension of each signal spectrum si.
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4.2 Noise-Aware Robust CFrPPG

As mentioned in Sect. 3, global interferences have a big impact on rPPG-based
face PAD. For instance, facial expression or motion may contaminate the heart-
beat signal of a genuine face and leads to false rejection. Also, the periodic noise
such as handhold caused camera motion may be regarded as heartbeat and intro-
duces false acceptance error. Therefore, we take the global noise extracted from
background regions into account and incorporate it into the spectrum template
learning (see Fig. 1). In addition, since rPPG signal quality varies with different
facial regions [21], we use signals extracted from larger reliable regions to learn
robust global spectrum template. To maintain sufficient spatial information in
the final CFrPPG feature, the rPPG signals for the calculation of correspondence
are extracted from finer regions (see Fig. 1).

For an input face video, we extractM and N local rPPG signals and use their
spectrum sti ∈ R

n and slj ∈ R
n to train the global spectrum template and obtain

the final liveness feature respectively. K rPPG signal spectrum snk ∈ R
n are ac-

quired from the background within similar region size to model the global noise.
Detailed region selection strategy can be found in Sect. 4.3. Their correspond-
ing circulant matrix are St

i ∈ R
n×n, Sl

j ∈ R
n×n and Sn

k ∈ R
n×n, respectively.

The background noise spectrum can be regarded as the hard negative samples
during the template learning. Our objective is to learn a filter w ∈ R

n that
yields high response for heartbeat signals while nearly zero response for global
noise. To achieve this, we formulate the global noise suppression as a regularizer
controlled by the parameter γ into Eq. 1:

min
w

M∑

i=1

‖St
iw − y‖2

2
+ λ‖w‖2

2
+ γ

K∑

k=1

‖Sn
kw‖2

2
(5)

It is noted that the summary of K noise signals implicitly picks up the shared
global noise and reduce the others so that the learned template will not be
suppressed by random noise.

Similarly, since the objective function Eq. 5 is also strictly convex, the closed-
form solution can be obtained by setting the gradient to zero:

w = (

M∑

i=1

S
t⊺
i St

i + λI + γ

K∑

k=1

S
n⊺
k Sn

k )
−1

M∑

i=1

S
t⊺
i y (6)

Then, w can be calculated efficiently in frequency domain through FFT due to
the circulant property of St

i and Sn
k :

ŵ =

∑M

i=1
ŝti

∗

⊙ ŷ
∑M

i=1
ŝti

∗

⊙ ŝti + λ+ γ
∑K

k=1
ŝnk

∗ ⊙ ŝnk

(7)

Provided the learned template w, we calculate correspondence between local
rPPG signals spectrum by r̂j = ŝ

l
j ⊙ ŵ, j = 1, . . . , N . Then we concatenate the

PSR as the final liveness feature: x = [r1, r̂2, . . . , r̂N ].
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4.3 Implementation Details

rPPG Signals Extraction. Given an input video, we first extract and track 68
points facial landmarks using CLNF proposed in [39] to ensure that each local
region can be precisely located. The rPPG signals used for template training
and the construction of correspondence feature are different. As shown in the
above image in Fig. 1, we extract rPPG signals from larger facial regions to
learn a robust rPPG signal spectrum template. As shown in the bottom image
in Fig. 1, rPPG signals used in the correspondence feature are extracted from
finer overlapped regions to obtain sufficient spatial structural information. Since
the proposed feature relies on rPPG signals extracted from small facial regions,
we select the CHROM [33] that allows the varying size of the input region as the
rPPG sensor. To ease the effect of random noise, we perform the cross-correlation
operation used in [19] on the raw rPPG signals for preprocessing.

Global Noise Extraction. Since it has been demonstrated that the global noise
from the background and the facial region share similar patterns [36], we model
the global noise by extracting rPPG signals using CHROM [33] from background
regions. To obtain stable locations under camera motion, facial landmarks are
used as the reference to locate the rectangular background regions around the
check (see Fig. 1). Empirically, the number and size of these regions are set to
be similar to the facial regions used for template estimation as shown in Fig. 1.

5 Experiments

We conduct experiments on the 3D Mask Attack Dataset (3DMAD) [29] and
the HKBU Mask Attack with Real World Variations Dataset Version 2 (HKBU-
MARsV2) [23], and their combination to evaluate the effectiveness of our pro-
posed CFrPPG feature. To further validate the robustness to global noise, we
select the Replay Attack Dataset (RAD) [40] which includes more challeng-
ing and practical cases, such as the continuous handhold camera motion and
different lighting conditions. The experiment is conducted under intra-dataset
and cross-dataset testing protocols. Three appearances-based methods and two
rPPG-based methods are selected as the baseline methods.

5.1 Baseline Methods and Implementation

Baseline Methods. The MS-LBP is selected as a baseline due to the promising
performance reported on 3DMAD [18]. We extracted a set of LBP from a nor-
malized face image to form an 833-dimensional feature vector following settings
in [18]. The color texture analysis (CTA) that uses LBP in HSV and YCbCr col-
or spaces is also compared, following the setting in [41]. Inspired by the success
of deep learning, we also add a deep feature extractor (CNN for short), which
uses a pre-trained VGGNet [42] to obtain a 4096-dimensional feature vector.
For the state-of-the-art rPPG-based methods, the LrPPG [19] and GrPPG [20]
are selected for comparison. Since the face PAD can be regarded as a two-class
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Fig. 3. Average ROC curves of three datasets under intra-dataset protocol

classification problem, SVM with their original kernel settings is used as the
classifier for all the baseline methods.

Parameter Settings. As shown in Fig. 1, for all evaluation, we select 3 facial
regions and 4 background regions for the spectrum template learning. The cor-
respondence feature is obtained from rPPG signals extracted from 9 overlapped
regions in smaller sizes. Each of these regions is the combination of 4 unit regions
and they are half overlapped. Details are described in supplementary material.
We set the parameter {σ, λ, γ} as {0.1, 0.5, 0.4},{1, 0.5, 0.4} and {0.1, 20, 0.1}
on 3DMAD, HKBU-MARsV2 and RAD, respectively. SVM with linear kernel is
used for classification.

Evaluation Criteria. AUC, EER, Half Total Error Rate (HTER) [18], and
False Fake Rate (FFR) when False Liveness Rate (FLR) equals 0.1 and 0.01 are
used as the evaluation criteria. For the intra-dataset evaluation, HTER on the
development set (HTER dev) and testing set (HTER test) is measured, respec-
tively. ROC curves with FFR and FLR are plotted for qualitative comparisons.

5.2 Intra-dataset Evaluation

The intra-dataset experiments are conducted on 3DMAD, HKBU-MARsV2, and
Combined dataset.

3DMAD The 3DMAD dataset contains 17 subjects with the Custom Wearable
Masks made from Thatsmyface.com, which has been proven to be able to spoof
popular face recognition system [29]. The dataset is recorded at 640×480, 30fps
using Kinect under controlled lighting condition. We follow the leave-one-out-
cross-validation (LOOCV) protocol settings in [19] with random subject index on
3DMAD. Specifically, after leaving one subject out as the testing set, 8 subjects
are selected as the training set and the rest 8 are used as the development
set. Due to the random subject index, we conduct 20 rounds of LOOCV (each
contains 17 iterations) and results are summarized in Table. 1 and Fig. 3(a).
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Table 1. Comparison results under intra dataset protocol on 3DMAD

HTER dev(%) HTER test(%) EER(%) AUC
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [18] 1.25 ± 1.9 4.22 ± 10.3 2.71 99.7 1.28 3.62

CTA [41] 2.78 ± 3.6 4.40 ± 9.7 4.24 99.3 1.60 11.8

CNN 4.28 ± 3.5 6.07 ± 11.3 6.63 98.9 2.98 18.5

GrPPG [20] 13.5 ± 4.3 13.3 ± 13.3 14.4 92.2 16.4 36.0

LrPPG [19] 9.06 ± 4.4 8.57 ± 13.3 9.64 95.5 9.51 14.8

CFrPPG 5.95 ± 3.3 6.82 ± 12.1 7.44 96.8 6.51 13.6

HKBU-MARsV2 To evaluate the performance under more realistic scenarios,
we also carry out the experiment on HKBU-MARsV2 dataset, a subset of the
HKBU-MARs [23] dataset that contains 12 subjects with two types of masks:
6 Thatsmyface masks and 6 high-quality masks from REAL-f 2. This dataset
is recorded under room light using a web-camera Logtech C920 at 1280 × 720,
25fps. We conduct 20 rounds of LOOCV where each iteration contains 5 subjects
for training and the rest 6 subjects for developing after leaving 1 testing subject
out. The experimental results are summarized in Table. 2 and Fig. 3(b).

Table 2. Comparison results under intra dataset protocol on HKBU-MARsV2

HTER dev(%) HTER test(%) EER(%) AUC
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [18] 20.5 ± 8.9 24.0 ± 25.6 22.5 85.8 48.6 95.1

CTA [41] 22.4 ± 10.4 23.4 ± 20.5 23.0 82.3 53.7 89.2

CNN 13.7 ± 10.8 14.8 ± 22.2 15.2 91.4 25.1 93.5

GrPPG [20] 15.4 ± 6.7 16.1 ± 20.5 16.4 89.4 18.6 32.9

LrPPG [19] 8.43 ± 2.9 8.67 ± 8.8 9.07 97.0 8.51 38.9

CFrPPG 3.24 ± 1.9 4.42 ± 5.1 4.04 99.3 1.24 17.8

Combined Dataset To further evaluate the performance under various appli-
cation scenarios, we enlarge the diversity of existing 3D mask attacks dataset
by merging the 3DMAD and HKBU-MARsV2 as the Combined dataset. The
combined dataset contains 29 subjects, 2 types of masks, 2 camera settings, and
2 lighting conditions. We conduct 20 rounds LOOCV with random subject index
on the combined dataset. In each iteration, we randomly select 8 subjects for
training and the rest 20 for developing after leaving 1 testing subject out. The
experimental results are summarized in Table. 3 and Fig. 3(c).

It is noted that the proposed CFrPPG feature outperforms the state-of-the-
art rPPG based methods on the three mask attack datasets and achieves the best
on HKBU-MARsV2 and the Combined. In particular, the CFrPPG outperforms

2 http://real-f.jp

http://real-f.jp
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Table 3. Comparison results under intra dataset protocol on the Combined dataset

HTER dev(%) HTER test(%) EER(%) AUC
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [18] 15.7 ± 4.2 16.2 ± 22.6 16.6 91.0 25.4 64.2

CTA [41] 18.4 ± 5.8 19.5 ± 21.5 18.9 87.7 42.9 95.7

CNN 13.5 ± 5.9 14.6 ± 20.6 14.5 93.5 21.2 71.5

GrPPG [20] 15.3 ± 2.9 15.5 ± 18.5 15.2 91.1 17.2 42.8

LrPPG [19] 8.69 ± 1.5 9.16 ± 11.9 9.21 95.7 8.79 29.4

CFrPPG 6.22 ± 1.4 6.62 ± 11.0 6.54 97.6 5.18 15.5

the LrPPG in a larger gap on HKBU-MARsV2 and the Combined dataset. This
is because the HKBU-MARsV2 is recorded under uncontrolled room lights (com-
pared with 3DMAD) which leads to noisy rPPG signals. The proposed CFrPPG
can extract the heartbeat information more precisely under severe environment
so that it can exhibit better robustness compared with existing methods.

On the other hand, the appearance based methods reach the best perfor-
mances on 3DMAD since the distinguishable quality defects of texture of Thatsmy-
face masks. However, they can hardly detect the hyper real RAEL-f masks on
HKBU-MARsV2 and fail on adapting to the variation of mask types and light-
ings on the Combined dataset. It is noted that the CNN exceeds MS-LBP on gen-
eralizability due to the property of deep features. But it also exposes the weak-
ness of appearance-based approach on HKBU-MARsV2 and Combined dataset
that contain more diversity. In contrast, the rPPG signal is independent of the
mask appearances so the rPPG-based methods can generalize better in practical
scenarios.

5.3 Cross-dataset Evaluation

To evaluate the generalization ability across different datasets, we conduct the
cross-dataset experiments by training and testing with different datasets. When
training on 3DMAD and testing on HKBU-MARsV2, 3DMAD→HKBUMARsV2
for short, we randomly select 8 subjects from 3DMAD for training, use the re-
maining 9 subjects from 3DMAD for development, and use the entire of HKBU-
MARsV2 for testing. For HKBUMARsV2→3DMAD, training on HKBU-MARsV2
and testing on 3DMAD, we randomly select 6 subjects from HKBU-MARsV2 for
training, use the remaining 6 subjects from HKBU-MARsV2 for development,
and use the entire of 3DMAD for testing. Due to the randomness in subject
selection, we also conduct 20 rounds of experiments.

As shown in Table 4 and Fig. 4, the proposed CFrPPG achieves the best a-
mong the baseline methods, which demonstrates the better generalizability. Not-
ed that the CFrPPG achieves similar performance and outperforms the GrPPG
and LrPPG in a larger gap compared with the results in intra-dataset 3D mask
detection experiments. This is because CFrPPG can extract heartbeat informa-
tion more precisely so that the feature distribution from the two datasets align
better in the feature spaces than existing methods. It is also noted that the
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Fig. 4. Average ROC curves under cross-dataset protocol

Table 4. Cross-dataset evaluation results between 3DMAD and HKBU-MARsV2

3DMAD→HKBUMARsV2 HKBUMARsV2→3DMAD

HTER(%) EER(%) AUC(%)
FFR@
FLR=0.1

FFR@
FLR=0.01 HTER(%) EER(%) AUC(%)

FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [18] 53.0 ± 3.6 39.8 60.4 97.8 100.0 32.8 ± 11.5 32.5 75.3 58.5 87.8

CTA [41] 40.1 ± 7.8 40.2 62.1 87.1 98.3 47.7 ± 5.4 42.5 60.5 81.2 96.5

CNN 50.0 ± 0.0 47.8 54.6 82.6 97.9 50.0 ± 0.0 44.3 58.6 87.3 99.3

GrPPG [20] 24.3 ± 7.1 18.5 86.7 37.8 78.5 15.7 ± 6.8 15.4 87.2 20.6 94.5

LrPPG [19] 16.8 ± 5.0 10.9 95.6 12.4 61.7 17.4 ± 4.4 14.0 92.3 17.4 48.7

CFrPPG 2.51 ± 0.1 5.08 99.0 2.19 19.6 2.55 ± 0.1 5.88 98.0 4.66 12.4

performance of the appearance-based methods drops compared with the intra-
dataset testing, which exposes the over-fitting problem due to their data-driven
property.

5.4 Evaluation of Robustness to Global Noise in More Practical

Scenarios

Existing 3D mask attack datasets are recorded under controlled settings without
varying lighting conditions or camera motion. To further validate the robustness
of CFrPPG to global noise under more challenging and practical scenarios, we
compare rPPG-based methods on the Replay Attack Dataset (RAD) that con-
tains different lighting conditions and continuous camera motion [40]. The RAD
contains photo and video attacks from 50 subjects with lower camera resolution
(320 × 240). Although the presentation media is different from 3D mask, the
rPPG-based approach works based on the same physical principle [20]. We al-
so do self-comparison by excluding the noise-aware robustness (CFrPPG−NAR),
i.e., setting the γ = 0 (Eq. 5), to validate the effectiveness of the robust noise-
aware learning strategy.

We conduct 20 rounds (each contains 50 iterations) LOOCV on RAD instead
of using the fixed testing set partition mentioned in [40]. In each iteration, after
leaving 1 testing subject out, we randomly select 15 subjects for training and
the rest 34 for developing. From the experimental results in Table. 5 and Fig. 5,
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Table 5. Comparison of rPPG-based methods under intra-dataset protocol on RAD

HTER dev(%) HTER test(%) EER(%) AUC
FFR@
FLR=0.1

FFR@
FLR=0.01

GrPPG [20] 30.5 ± 3.1 30.3 ± 13.4 31.0 73.9 66.5 97.2

LrPPG [19] 19.3 ± 1.5 19.3 ± 11.2 19.4 88.2 35.4 73.5

CFrPPG−NAR 10.0 ± 1.5 10.2 ± 8.2 10.2 95.4 10.3 29.9

CFrPPG 6.00 ± 1.4 6.11 ± 6.9 6.17 97.9 4.48 17.8
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Fig. 5. Average ROC curves of RAD datasets under intra-dataset protocol

it is obvious that the CFrPPG outperforms the others in a larger gap than
the results in 3D mask attack datasets. This is because the rPPG signals are
more noisy under poor light or with camera motion due to the principle of
rPPG. Consequently, the maximum amplitude of the signal spectrum may not
reflect the heartbeat information. The proposed CFrPPG solves this limitation
with the correspondence between the self-learned template and the local rPPG
signals so that CFrPPG−NAR outperforms GrPPG and LrPPG in a large margin
(see Fig. 5). CFrPPG achieves better performances than CFrPPG−NAR, which
validates the effectiveness of the noise-aware learning strategy.

6 Conclusion

To precisely identify the heartbeat vestige from the observed noisy rPPG signals,
this paper proposes a novel CFrPPG feature which takes the correspondence be-
tween the learned spectrum template and the local rPPG signals as the liveness
feature. To further overcome the global interferences, a novel learning strategy
which incorporates the global noise in the template estimation is proposed. We
show that the proposed feature not only outperforms the state-of-the-art rPPG
based methods but also be able to handle more practical and challenging sce-
narios with poor lighting and continues camera motion. In addition, the results
of CFrPPG on RAD indicate its potential on handling general face PAD.
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