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Abstract. In this paper, we study the problem of semi-supervised image
recognition, which is to learn classifiers using both labeled and unlabeled
images. We present Deep Co-Training, a deep learning based method in-
spired by the Co-Training framework. The original Co-Training learns
two classifiers on two views which are data from different sources that
describe the same instances. To extend this concept to deep learning,
Deep Co-Training trains multiple deep neural networks to be the differ-
ent views and exploits adversarial examples to encourage view difference,
in order to prevent the networks from collapsing into each other. As a re-
sult, the co-trained networks provide different and complementary infor-
mation about the data, which is necessary for the Co-Training framework
to achieve good results. We test our method on SVHN, CIFAR-10/100
and ImageNet datasets, and our method outperforms the previous state-
of-the-art methods by a large margin.
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1 Introduction

Deep neural networks achieve the state-of-art performances in many tasks [1–17].
However, training networks requires large-scale labeled datasets [18, 19] which
are usually difficult to collect. Given the massive amounts of unlabeled natu-
ral images, the idea to use datasets without human annotations becomes very
appealing [20]. In this paper, we study the semi-supervised image recognition
problem, the task of which is to use the unlabeled images in addition to the
labeled images to build better classifiers. Formally, we are provided with an im-
age dataset D = S ∪ U where images in S are labeled and images in U are
not. The task is to build classifiers on the categories C in S using the data in
D [21–23]. The test data contains only the categories that appear in S. The
problem of learning models on supervised datasets has been extensively studied,
and the state-of-the-art methods are deep convolutional networks [1,2]. The core
problem is how to use the unlabeled U to help learning on S.

The method proposed in this paper is inspired by the Co-Training frame-
work [24], which is an award-winning method for semi-supervised learning. It
assumes that each data x in D has two views, i.e. x is given as x = (v1, v2), and
each view vi is sufficient for learning an effective model. For example, the views
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can have different data sources [24] or different representations [25–27]. Let X
be the distribution that D is drawn from. Co-Training assumes that f1 and f2
trained on view v1 and v2 respectively have consistent predictions on X , i.e.,

f(x) = f1(v1) = f2(v2), ∀x = (v1, v2) ∼ X (Co-Training Assumption) (1)

Based on this assumption, Co-Training proposes a dual-view self-training al-
gorithm: it first learns a separate classifier for each view on S, and then the
predictions of the two classifiers on U are gradually added to S to continue the
training. Blum and Mitchell [24] further show that under an additional assump-
tion that the two views of each instance are conditionally independent given the
category, Co-Training has PAC-like guarantees on semi-supervised learning.

Given the superior performances of deep neural networks on supervised image
recognition, we are interested in extending the Co-Training framework to apply
deep learning to semi-supervised image recognition. A naive implementation is
to train two neural networks simultaneously on D by modeling Eq. 1. But this
method suffers from a critical drawback: there is no guarantee that the views pro-
vided by the two networks give different and complementary information about
each data point. Yet Co-Training is beneficial only if the two views are differ-
ent, ideally conditionally independent given the category; after all, there is no
point in training two identical networks. Moreover, the Co-Training assumption
encourages the two models to make similar predictions on both S and U , which
can even lead to collapsed neural networks, as we will show by experiments in
Section 3. Therefore, in order to extend the Co-Training framework to take the
advantages of deep learning, it is necessary to have a force that pushes networks
away to balance the Co-Training assumption that pulls them together.

The force we add to the Co-Training Assumption is View Difference Con-

straint formulated by Eq. 2, which encourages the networks to be different

∃X ′ : f1(v1) 6= f2(v2), ∀x = (v1, v2) ∼ X ′ (View Difference Constraint) (2)

The challenge is to find a proper and sufficient X ′ that is compatible with Eq. 1
(e.g. X ′ ∩X = ∅) and our tasks. We construct X ′ by adversarial examples [28].

In this paper, we present Deep Co-Training (DCT) for semi-supervised im-
age recognition, which extends the Co-Training framework without the drawback
discussed above. Specifically, we model the Co-Training assumption by minimiz-
ing the expected Jensen-Shannon divergence between the predictions of the two
networks on U . To avoid the neural networks from collapsing into each other, we
impose the view difference constraint by training each network to be resistant to
the adversarial examples [28, 29] of the other. The result of the training is that
each network can keep its predictions unaffected on the examples that the other
network fails on. In other words, the two networks provide different and comple-
mentary information about the data because they are trained not to make errors
at the same time on the adversarial examples for them. To summarize, the main
contribution of DCT is a differentiable modeling that takes into account both
the Co-Training assumption and the view difference constraint. It is a end-to-
end solution which minimizes a loss function defined on the dataset S and U .
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Naturally, we extend the dual-view DCT to a scalable multi-view DCT. We test
our method on four datasets, SVHN [30], CIFAR10/100 [31] and ImageNet [18],
and DCT outperforms the previous state-of-the-arts by a large margin.

2 Deep Co-Training

In this section, we present our model of Deep Co-Training (DCT) and naturally
extend dual-view DCT to multi-view DCT.

2.1 Co-Training Assumption in DCT

We start with the dual-view case where we are interested in co-training two deep
neural networks for image recognition. Following the notations in Section 1, we
use S and U to denote the labeled and the unlabeled dataset. Let D = S ∪ U
denote all the provided data. Let v1(x) and v2(x) denote the two views of data
x. In this paper, v1(x) and v2(x) are convolutional representations of x before
the final fully-connected layer fi(·) that classifies vi(x) to one of the categories
in S. On the supervised dataset S, we use the standard cross entropy loss

Lsup(x, y) = H
(

y, f1
(

v1(x)
)

)

+H
(

y, f2
(

v2(x)
)

)

(3)

for any data (x, y) in S where y is the label for x and H(p, q) is the cross entropy
between distribution p and q.

Next, we model the Co-Training assumption. Co-Training assumes that on
the distribution X where x is drawn from, f1(v1(x)) and f2(v2(x)) agree on their
predictions. In other words, we want networks p1(x) = f1(v1(x)) and p2(x) =
f2(v2(x)) to have close predictions on U . Therefore, we use a natural measure of
similarity, the Jensen-Shannon divergence between p1(x) and p2(x), i.e.,

Lcot(x) = H
(1

2

(

p1(x) + p2(x)
)

)

−
1

2

(

H
(

p1(x)
)

+H
(

p2(x)
)

)

(4)

where x ∈ U and H(p) is the entropy of p. Training neural networks based on the
Co-Training assumption minimizes the expected loss E[Lcot] on the unlabeled set
U . As for the labeled set S, minimizing loss Lsup already encourages them to have
close predictions on S since they are trained with labels; therefore, minimizing
Lcot on S is unnecessary, and we only implement it on U (i.e. not on S).

2.2 View Difference Constraint in DCT

The key condition of Co-Training to be successful is that the two views are differ-
ent and provide complementary information about each data x. But minimizing
Eq. 3 and 4 only encourages the neural networks to output the same predictions
on D = S∪U . Therefore, it is necessary to encourage the networks to be different
and complementary. To achieve this, we create another set of images D′ where
p1(x) 6= p2(x), ∀x ∈ D′, which we will generate by adversarial examples [28,29].
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Since Co-Training assumes that p1(x) = p2(x), ∀x ∈ D, we know that D ∩
D′ = ∅. But D is all the data we have; therefore, D′ must be built up by a
generative method. On the other hand, suppose that p1(x) and p2(x) can achieve
very high accuracy on naturally obtained data (e.g. D), assuming p1(x) 6= p2(x),
∀x ∈ D′ also implies that D′ should be constructed by a generative method.

We consider a simple form of generative method g(x) which takes data x
from D to build D′, i.e. D′ = {g(x) | x ∈ D}. For any x ∈ D, we want g(x)− x
to be small so that g(x) also looks like a natural image. But when g(x) − x is
small, it is very possible that p1(g(x)) = p1(x) and p2(g(x)) = p2(x). Since Co-
Training assumes p1(x) = p2(x), ∀x ∈ D and we want p1(g(x)) 6= p2(g(x)), when
p1(g(x)) = p1(x), it follows that p2(g(x)) 6= p2(x). These considerations imply
that g(x) is an adversarial example [28] of p2 that fools the network p2 but not
the network p1. Therefore, in order to prevent the deep networks from collapsing
into each other, we propose to train the network p1 (or p2) to be resistant to the
adversarial examples g2(x) of p2 (or g1(x) of p1) by minimizing the cross entropy
between p2(x) and p1(g2(x)) (or between p1(x) and p2(g1(x))), i.e.,

Ldif(x) = H
(

p1(x), p2
(

g1(x)
)

)

+H
(

p2(x), p1
(

g2(x)
)

)

(5)

Using artificially created examples in image recognition has been studied.
They can serve as regularization techniques to smooth outputs [32], or create
negative examples to tighten decision boundaries [23,33]. Now, they are used to
make networks different. To summarize the Co-Training with the view difference
constraint in a sentence, we want the models to have the same predictions on
D but make different errors when they are exposed to adversarial attacks. By
minimizing Eq. 5 on D, we encourage the models to generate complementary
representations, each is resistant to the adversarial examples of the other.

2.3 Training DCT

In Deep Co-Training, the objective function is of the form

L = E(x,y)∈SLsup(x, y) + λcotEx∈ULcot(x) + λdifEx∈DLdif(x) (6)

which linearly combines Eq. 3, Eq. 4 and Eq. 5 with hyperparameters λcot and
λdif. We present one iteration of the training loop in Algorithm 1. The full
training procedure repeats the computations in Algorithm 1 for many iterations
and epochs using gradient descent with decreasing learning rates.

Note that in each iteration of the training loop of DCT, the two neural
networks receive different supervised data. This is to increase the difference
between them by providing them with supervised data in different time orders.
Consider that the data of the two networks are provided by two data streams s
and s. Each data d from s and d from s are of the form [ds, du], where ds and du
denote a batch of supervised data and unsupervised data, respectively. We call
(s, s) a bundle of data streams if their du are the same and the sizes of ds are
the same. Algorithm 1 uses a bundle of data streams to provide data to the two
networks. The idea of using bundles of data streams is important for scalable
multi-view Deep Co-Training, which we will present in the following subsections.
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Algorithm 1: One Iteration of the Training Loop of Deep Co-Training

1 Data Sampling Sample data batch b1 = (xb1 , yb1) for p1 and b2 = (xb2 , yb2)
for p2 from S s.t. |b1| = |b2| = b. Sample data batch bu = (xu) from U .

2 Create Adversarial Examples Compute the adversarial examples g1(x) of
p1 for all x ∈ xb1 ∪ xu and g2(x) of p2 for all x ∈ xb2 ∪ xu using FGSM [28].

3 Lsup =
1

b

[

∑

(x,y)∈b1

H(y, p1(x)) +
∑

(x,y)∈b2

H(y, p2(x))
]

4 Lcot =
1

|bu|

∑

x∈bu

[

H
(1

2

(

p1(x) + p2(x)
)

)

−
1

2

(

H
(

p1(x)
)

+H
(

p2(x)
)

)]

5 Ldif =
1

b+ |bu|

[

∑

x∈x1∪xu

H(p1(x), p2(g1(x))) +
∑

x∈x2∪xu

H(p2(x), p1(g2(x)))
]

6 L = Lsup + λcotLcot + λdifLdif

7 Update Compute the gradients with respect to L by backpropagation and
update the parameters of p1 and p2 using gradient descent.

2.4 Multi-View DCT

In the previous subsection, we introduced our model of dual-view Deep Co-
Training. But dual-view is only a special case of multi-view learning, and multi-
view co-training has also been studied for other problems [34,35]. In this subsec-
tion, we present a scalable method for multi-view Deep Co-Training. Here, the
scalability means that the hyperparameters λcot and λdif in Eq. 6 that work for
dual-view DCT are also suitable for increased numbers of views. Recall that in
the previous subsections, we propose a concept called a bundle of data streams
s = (s, s) which provides data to the two neural networks in the dual-view set-
ting. Here, we will use multiple data stream bundles to provide data to different
views so that the dual-view DCT can be adapted to the multi-view settings.

Specifically, we consider n views vi(·), i = 1, .., n in the multi-view DCT.
We assume that n is a even number for simplicity of presenting the multi-
view algorithm. Next, we build n/2 independent data stream bundles B =
(

(s1, s1), ..., (sn/2, sn/2)
)

. Let Bi(t) denote the training data that bundle Bi pro-
vides at iteration t. Let L(vi, vj , Bk(t)) denote the loss L in Step 6 of Algorithm 1
when dual training vi and vj using data Bk(t). Then, at each iteration t, we con-
sider the training scheme implied by the following loss function

Lfake n-view(t) =

n/2
∑

i=1

L(v2i−1, v2i, Bi(t)) (7)

We call this fake multi-view DCT because Eq. 7 can be considered as n/2 inde-
pendent dual-view DCTs. Next, we adapt Eq. 7 to the real multi-view DCT. In
our multi-view DCT, at each iteration t, we consider an index list l randomly
shuffled from {1, 2, .., n}. Then, we use the following training loss function

Ln-view(t) =

n/2
∑

i=1

L(vl2i−1
, vl2i , Bi(t)) (8)
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Compared with Eq. 7, Eq. 8 randomly chooses a pair of views to train for each
data stream bundle at each iteration. The benefits of this modeling are multifold.
Firstly, Eq. 8 is converted from n/2 independent dual-view trainings; therefore,
the hyperparameters for the dual-view setting are also suitable for multi-view
settings. Thus, we can save our efforts in tuning parameters for different number
of views. Secondly, because of the relationship between Eq. 7 and Eq. 8, we
can directly compare the training dynamics between different number of views.
Thirdly, compared with computing the expected loss on all the possible pairs
and data at each iteration, this modeling is also computationally efficient.

2.5 Implementation Details

To fairly compare with the previous state-of-the-art methods, we use the training
and evaluation framework of Laine and Aila [22]. We port their implementation
to PyTorch for easy multi-GPU support. Our multi-view implementation will
automatically spread the models to different devices for the maximal utilizations.
For SVHN and CIFAR, we use a network architecture similar to [22]: we only
change their weight normalization and mean-only batch normalization layers [36]
to the natively supported batch normalization layers [37]. This change results in
performances a little worse than but close to those reported in their paper. [22]
thus is the most natural baseline. For ImageNet, we use a small model ResNet-
18 [1] for fast experiments. In the following, we introduce the datasets SVHN,
CIFAR and ImageNet, and how we train our models on them.

SVHN The Street View House Numbers (SVHN) dataset [30] contains real-
world images of house numbers, each of which is of size 32 × 32. The label for
each image is the centermost digit. Therefore, this is a classification problem
with 10 categories. Following Laine and Aila [22], we only use 1000 images out
of 73257 official training images as the supervised part S to learn the models and
the full test set of 26032 images for testing. The rest 73257 − 1000 images are
considered as the unsupervised part U . We train our method with the standard
data augmentation, and our method significantly outperforms the previous state-
of-the-art methods. Here, the data augmentation is only the random translation
by at most 2 pixels. We do not use any other types of data augmentations.

CIFAR CIFAR [31] has two image datasets, CIFAR-10 and CIFAR-100. Both
of them contain color natural images of size 32 × 32, while CIFAR-10 includes
10 categories and CIFAR-100 contains 100 categories. Both of them have 50000
images for training and 10000 images for testing. Following Laine and Aila [22],
for CIFAR-10, we only use 4000 images out of 50000 training images as the
supervised part S and the rest 46000 images are used as the unsupervised part
U . As for CIFAR-100, we use 10000 images out of 50000 training images as the
supervised part S and the rest 40000 images as the unsupervised part U . We
use the full 10000 test images for evaluation for both CIFAR-10 and CIFAR-
100. We train our methods with the standard data augmentation, which is the
combination of random horizontal flip and translation by at most 2 pixels.
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ImageNet The ImageNet dataset contains about 1.3 million natural color im-
ages for training and 50000 images for validation. The dataset includes 1000
categories, each of which typically has 1300 images for training and 50 for eval-
uation. Following the prior work that reported results on ImageNet [21, 38, 39],
we uniformly choose 10% data from 1.3 million training images as supervised S
and the rest as unsupervised U . We report the single center crop error rates on
the validation set. We train our models with data augmentation, which includes
random resized crop to 224×224 and random horizontal flip. We do not use other
advanced augmentation techniques such as color jittering or PCA lighting [4].

For SVHN and CIFAR, following [22], we use a warmup scheme for the hy-
perparameters λcot and λdif. Specifically, we warmup them in the first 80 epochs
such that λ = λmax ·exp(−5(1−T/80)2) when the epoch T ≤ 80, and λmax after
that. For SVHN and CIFAR, we set λcot,max = 10. For SVHN and CIFAR-10,
λdif,max = 0.5, and for CIFAR-100 λdif,max = 1.0. For training, we train the net-
works using stochastic gradient descent with momentum 0.9 and weight decay
0.0001. The total number of training epochs is 600 and we use a cosine learning
rate schedule lr = 0.05× (1.0+cos((T −1)×π/600)) at epoch T [40]. The batch
size is set to 100 for SVHN, CIFAR-10 and CIFAR-100.

For ImageNet, we choose a different training scheme. Before using any data
from U , we first train two ResNet-18 individually with different initializations
and training sequences on only the labeled data S. Following ResNet [1], we
train the models using stochastic gradient descent with momentum 0.9, weight
decay 0.0001 and batch size 256 for 600 epochs, the time of which is the same as
training 60 epochs with full supervision. The learning rate is initialized as 0.1 and
multiplied by 0.1 at the 301st epoch. Then, we take the two pre-trained models
to our unsupervised training loops. This time, we directly set λ to the maximum
values λ = λmax because the previous 600 epochs have already warmed up the
models. Here, λcot,max = 1 and λdif,max = 0.1. In the unsupervised loops, we use
a cosine learning rate lr = 0.005× (1.0 + cos((T − 1)× π/20)) and we train the
networks for 20 epochs on both U and S. The batch size is set to 128.

To make the loss L stable across different training iterations, we require that
each data stream provides data batches whose proportions of the supervised data
are close to the ratio of the size of S to the size of D. To achieve this, we evenly
divide the supervised and the unsupervised data to build each data batch in the
data streams. As a result, the difference of the numbers of the supervised images
between any two batches is no greater than 1.

3 Results

In this section, we will present the experimental results on four datasets, i.e.
SVHN [30], CIFAR-10, CIFAR-100 [31] and ImageNet [18]

3.1 SVHN and CIFAR-10

SVHN and CIFAR-10 are the datasets that the previous state-of-the-art meth-
ods for semi-supervised image recognition mostly focus on. Therefore, we first
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Method SVHN CIFAR-10

GAN [41] 8.11± 1.30 18.63± 2.32
Stochastic Transformations [21] – 11.29± 0.24
Π Model [22] 4.82± 0.17 12.36± 0.31
Temporal Ensembling [22] 4.42± 0.16 12.16± 0.24
Mean Teacher [39] 3.95± 0.19 12.31± 0.28
Bad GAN [23] 4.25± 0.03 14.41± 0.30
VAT [32] 3.86 10.55

Deep Co-Training with 2 Views 3.61± 0.15 9.03± 0.18
Deep Co-Training with 4 Views 3.38± 0.05 8.54± 0.12
Deep Co-Training with 8 Views 3.29± 0.03 8.35± 0.06

Table 1. Error rates on SVHN (1000 labeled) and CIFAR-10 (4000 labeled) bench-
marks. Note that we report the averages of the single model error rates without ensem-
bling them for the fairness of comparisons. We use architectures that are similar to that
of Π Model [22]. “–” means that the original papers did not report the corresponding
error rates. We report means and standard deviations from 5 runs.

present the performances of our method and show the comparisons with the pre-
vious state-of-the-art methods on these two datasets. Next, we will also provide
ablation studies on the two datasets for better understandings of the dynamics
and characteristics of dual-view and multi-view Deep Co-Training.

Table 1 compares our method Deep Co-Training with the previous state-of-
the-arts on SVHN and CIFAR-10 datasets. To make sure these methods are fairly
compared, we do not ensemble the models of our method even through there
are multiple well-trained models after the entire training procedure. Instead,
we only report the average performances of those models. Compared with other
state-of-the-art methods, Deep Co-Training achieves significant performance im-
provements when 2, 4 or 8 views are used. As we will discuss in Section 4, all
the methods listed in Table 1 require implicit or explicit computations of mul-
tiple models, e.g. GAN [41] has a discriminative and a generative network, Bad
GAN [23] adds another encoder network based on GAN, and Mean Teacher [39]
has an additional EMA model. Therefore, the dual-view Deep Co-Training does
not require more computations in terms of the total number of the networks.

Another trend we observe is that although 4-view DCT gives significant im-
provements over 2-view DCT, we do not see similar improvements when we
increase the number of the views to 8. For this observation, we speculate that
this is because compared with 2-views, 4-views can use the majority vote rule
when we encourage them to have close predictions on U . When we increase the
number of views to 8, although it is expected to perform better, the advantages
over 4-views are not that strong compared with that of 4-views over 2-views. But
8-view DCT converges faster than 4-view DCT, which is even faster than dual-
view DCT. The training dynamics of DCT with different numbers of views will
be presented in the later subsections. We first provide our results on CIFAR-100
and ImageNet datasets in the next subsection.
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Method CIFAR-100 CIFAR-100+

Π Model [22] 43.43± 0.54 39.19± 0.36
Temporal Ensembling [22] – 38.65± 0.51

Dual-View Deep Co-Training 38.77± 0.28 34.63± 0.14

Table 2. Error rates on CIFAR-100 with 10000 images labeled. Note that other meth-
ods listed in Table 1 have not published results on CIFAR-100. The performances of our
method are the averages of single model error rates of the networks without ensembling
them for the fairness of comparisons. We use architectures that are similar to that of
Π Model [22]. “–” means that the original papers did not report the corresponding
error rates. CIFAR-100+ and CIFAR-100 indicate that the models are trained with
and without data augmentation, respectively. Our results are reported from 5 runs.

3.2 CIFAR-100 and ImageNet

Compared with SVHN and CIFAR-10, CIFAR-100 and ImageNet are considered
harder benchmarks [22] for the semi-supervised image recognition problem be-
cause their numbers of categories are 100 and 1000, respectively, greater than
10 categories in SVHN and CIFAR-10. Here, we provide our results on these
two datasets. Table 2 compares our method with the previous state-of-the-art
methods that report the performances on CIFAR-100 dataset, i.e. Π Model and
Temporal Ensembling [22]. Dual-view Deep Co-Training even without data aug-
mentation achieves similar performances with the previous state-of-the-arts that
use data augmentation. When our method also uses data augmentation, the er-
ror rate drops significantly from 38.65 to 34.63. These results demonstrate the
effectiveness of the proposed Deep Co-Training when the number of categories
and the difficulty of the datasets increase.

Method Architecture # Param Top-1 Top-5

Stochastic Transformations [21] AlexNet 61.1M – 39.84
VAE [38] with 10% Supervised Customized 30.6M 51.59 35.24
Mean Teacher [39] ResNet-18 11.6M 49.07 23.59

100% Supervised ResNet-18 11.6M 30.43 10.76
10% Supervised ResNet-18 11.6M 52.23 27.54
Dual-View Deep Co-Training ResNet-18 11.6M 46.50 22.73

Table 3. Error rates on the validation set of ImageNet benchmark with 10% images
labeled. The image size of our method in training and testing is 224× 224.

Next, we show our results on ImageNet with 1000 categories and 10% labeled
in Table 3. Our method has better performances than the supervised-only but
is still behind the accuracy when 100% supervision is used. When compared
with the previous state-of-the-art methods, however, DCT shows significant im-
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Fig. 1. Ablation study on Lcot and Ldif. The left plot is the training dynamics of
dual-view Deep Co-Training on SVHN dataset, and the right is on CIFAR-10 dataset.
“λcot”, “λdif” represent the loss functions are used alone while “λcot+λdif” correspond
to the weighted sum loss used in Deep Co-Training. In all the cases, Lsup is used.

provements on both the Top-1 and Top-5 error rates. Here, the performances
of [21] and [38] are quoted from their papers, and the performance of Mean
Teacher [39] with ResNet-18 [1] is from running their official implementation on
GitHub. When using the same architecture, DCT outperforms Mean Teacher
by ∼ 2.6% for Top-1 error rate, and ∼ 0.9% for Top-5 error rate. Compared
with [21] and [38] that use networks with more parameters and larger input size
256× 256, Deep Co-Training also achieves lower error rates.

3.3 Ablation Study

In this subsection, we will provide several ablation studies for better understand-
ings of our proposed Deep Co-Training method.

On Lcot and Ldif Recall that the loss function used in Deep Co-Training has
three parts, the supervision loss Lsup, the co-training loss Lcot and the view
difference constraint Ldif. It is of interest to study the changes when the loss
function Lcot and Ldif are used alone in addition to Lsup in L. Fig. 1 shows the
plots of the training dynamics of Deep Co-Training when different loss functions
are used on SVHN and CIFAR-10 dataset. In both plots, the blue lines repre-
sent the loss function that we use in practice in training DCT, the green lines
represent only the co-training loss Lcot and Lsup are applied, and the orange
lines represent only the the view difference constraint Ldif and Lsup are used.
From Fig. 1, we can see that the Co-Training assumption (Lcot) performs better
at the beginning, but soon is overtaken by Ldif. Lcot even falls into an extreme
case in the SVHN dataset where its validation accuracy drops suddenly around
the 400-th epoch. For this phenomenon, we speculate that this is because the
networks have collapsed into each other, which motivates us to investigate the
dynamics of loss Ldif. If our speculation is correct, there will also be abnormali-
ties in loss Ldif around that epoch, which indeed we show in the next subsection.
Moreover, this also supports our argument at the beginning of the paper that a
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Fig. 2. Ablation study on the view difference. The left plot is Ldif on SVHN dataset,
and the right plot shows Ldif on CIFAR-10. Without minimizing Ldif, Ldif is usually
big in “Lcot”, indicating that the two models are making similar errors. In the SVHN
dataset, the two models start to collapse into each other after around the 400-th epoch
because we observe a sudden increase of Ldif. This corresponds to the sudden drop in
the left plot of Fig. 1, which shows the relation between view difference and accuracy.

force to push models away is necessary for co-training multiple neural networks
for semi-supervised learning. Another phenomenon we observe is that Ldif alone
can achieve reasonable results. This is because when the adversarial algorithm
fails to fool the networks, Ldif will degenrate to Lcot. In other words, Ldif in
practice combines the Co-Training assumption and View Difference Constraint,
depending on the success rate of the adversarial algorithm.

On the view difference This is a sanity check on whether in dual-view train-
ing, two models tend to collapse into each other when we only model the Co-
Training assumption, and if Ldif can push them away during training. To study
this, we plot Ldif when it is minimized as in the Deep Co-Training and when it is
not minimized, i.e. λdif = 0. Fig. 2 shows the plots of Ldif for SVHN dataset and
CIFAR dataset, which correspond to the validation accuracies shown in Fig. 1. It
is clear that when Ldif is not minimized as in the “Lcot” case, Ldif is far greater
than 0, indicating that each model is vulnerable to the adversarial examples of
the other. Like the extreme case we observe in Fig. 1 for SVHN dataset (left)
around the 400-th epoch, we also see a sudden increase of Ldif here in Fig. 2
for SVHN at the similar epochs. This means that every adversarial example of
one model fools the other model, i.e. they collapse into each other. The col-
lapse directly causes a significant drop of the validation accuracy in the left of
Fig. 1. These experimental results demonstrate the positive correlation between
the view difference and the validation error. It also shows that the models in
the dual-view training tend to collapse into each other when no force is applied
to push them away. Finally, these results also support the effectiveness of our
proposed Ldif as a loss function to increase the difference between the models.

On the number of views We have provided the performances of Deep Co-
Training with different numbers of views for SVHN and CIFAR-10 datasets in
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Fig. 3. Training dynamics of Deep Co-Training with different numbers of views on
SVHN dataset (left) and CIFAR-10 (right). The plots focus on the epochs from 100 to
200 where the differences are clearest. We observe a faster convergence speed when the
number of views increases, but the improvements become smaller when the numbers
of views increase from 4 to 8 compared with that from 2 to 4.

Table 1, where we show that increasing the number of the views from 2 to 4
improves the performances of each individual model. But we also observe that
the improvement becomes smaller when we further increase the number of views
to 8. In Fig. 3, we show the training dynamics of Deep Co-Training when different
numbers of views are trained simultaneously.

As shown in Fig. 3, we observe a faster convergence speed when we increase
the number of views to train simultaneously. We focus on the epochs from 100
to 200 where the differences between different numbers of views are clearest.
The performances of different views are directly comparable because of the scal-
ability of the proposed multi-view Deep Co-Training. Like the improvements of
8 views over 4 views on the final validation accuracy, the improvements of the
convergence speed also decrease compared with that of 4 views over 2 views.

4 Discussions

In this section, we discuss the relationship between Deep Co-Training and the
previous methods. We also present perspectives alternative to the Co-Training
framework for discussing Deep Co-Training.

4.1 Related Work

Deep Co-Training is also inspired by the recent advances in semi-supervised im-
age recognition techniques [21, 22, 32, 42, 43] which train deep neural networks
f(·) to be resistant to noises ǫ(z), i.e. f(x) = f(x + ǫ(z)). We notice that their
computations in one iteration require double feedforwardings and backpropaga-
tions, one for f(x) and one for f(x + ǫ(z)). We ask the question: what would
happen if we train two individual models as doing so requires the same amount of
computations? We soon realized that training two models and encouraging them
to have close predictions is related to the Co-Training framework [24], which has
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good theoretical results, provided that the two models are conditional indepen-
dent given the category. However, training models with only the Co-Training
assumption is not sufficient for getting good performances because the models
tend to collapse into each other, which is against the view difference between
different models which is necessary for the Co-Training framework.

As stated in 2.2, we need a generative method to generate images on which
two models predict differently. Generative Adversarial Networks (GANs) [23,41,
44] are popular generative models for vision problems, and have also been used
for semi-supervised image recognition. A problem of GANs is that they will
introduce new networks to the Co-Training framework for generating images,
which also need to be learned. Compared with GANs, Introspective Generative
Models [33,45] can generate images from discriminative models in a lightweight
manner, which bears some similarities with the adversarial examples [28]. The
generative methods that use discriminative models also include DeepDream [46],
Neural Artistic Style [47], etc. We use adversarial examples in our Deep Co-
Training for its natural applicability to avoiding models from collapsing into
each other by training each model with the adversarial examples of the others.

Before the work discussed above, semi-supervised learning in general has
already been widely studied. For example, the mutual-exclusivity loss used in [21]
and the entropy minimization used in [32] resemble soft implementations of the
self-training technique [48,49], one of the earliest approaches for semi-supervised
classification tasks. [20] provides a good survey for the semi-supervised learning
methods in general.

4.2 Alternative Perspectives

In this subsection, we discuss the proposed Deep Co-Training method from sev-
eral perspectives alternative to the Co-Training framework.

Model Ensemble Ensembling multiple independently trained models to get a
more accurate and stable classifier is a widely used technique to achieve higher
performances [50]. This is also applicable to deep neural networks [51, 52]. In
other words, this suggests that when multiple networks with the same architec-
ture are initialized differently and trained using data sequences in different time
orders, they can achieve similar performances but in a complementary way [53].
In multi-view Deep Co-Training, we also train multiple models in parallel, but
not independently, and our evaluation is done by taking one of them as the final
classifier instead of averaging their predicted probabilities. Deep Co-Training in
effect is searching for an initialization-free and data-order-free solution.

Multi-Agent Learning After the literature review of the most recent semi-
supervised learning methods for image recognition, we find that almost all of
them are within the multi-agent learning framework [54]. To name a few, GAN-
based methods at least have a discriminative network and a generative network.
Bad GAN [23] adds an encoder network based on GAN. The agents in GANs are
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interacting in an adversarial way. As we stated in Section 4.1, the methods that
train deep networks to be resistant to noises also have the interacting behav-
iors as what two individual models would have, i.e. double feedforwardings and
backpropagations. The agents in these methods are interacting in a cooperative
way. Deep Co-Training explicitly models the cooperative multi-agent learning,
which trains multiple agents from the supervised data and cooperative interac-
tions between different agents. In the multi-agent learning framework, Ldif can
be understood as learning from the errors of the others, and the loss function
Eq. 8 resembles the simulation of interactions within a crowd of agents.

Knowledge Distillation One characteristic of Deep Co-Training is that the
models not only learn from the supervised data, but also learn from the predic-
tions of the other models. This is reminiscent to knowledge distillation [55] where
student models learn from teacher models instead of the supervisions from the
datasets. In Deep Co-Training, all the models are students and learn from not
only the predictions of the other student models but also the errors they make.

5 Conclusion

In this paper, we present Deep Co-Training, a method for semi-supervised im-
age recognition. It extends the Co-Training framework, which assumes that the
data has two complementary views, based on which two effective classifiers can
be built and are assumed to have close predictions on the unlabeled images.
Motivated by the recent successes of deep neural networks in supervised image
recognition, we extend the Co-Training framework to apply deep networks to the
task of semi-supervised image recognition. In our experiments, we notice that
the models are easy to collapse into each other, which violates the requirement of
the view difference in the Co-Training framework. To prevent the models from
collapsing, we use adversarial examples as the generative method to generate
data on which the views have different predictions. The experiments show that
this additional force that pushes models away is helpful for training and improves
accuracies significantly compared with the Co-Training-only modeling.

Since Co-Training is a special case of multi-view learning, we also naturally
extend the dual-view DCT to a scalable multi-view Deep Co-Training method
where the hyperparameters for two views are also suitable for increased numbers
of views. We test our proposed Deep Co-Training on the SVHN, CIFAR-10/100
and ImageNet datasets which are the benchmarks that the previous state-of-the-
art methods are tested on. Our method outperforms them by a large margin.
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