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Abstract. Product quantization has been widely used in fast image
retrieval due to its effectiveness of coding high-dimensional visual fea-
tures. By extending the hard assignment to soft assignment, we make it
feasible to incorporate the product quantization as a layer of a convo-
lutional neural network and propose our product quantization network.
Meanwhile, we come up with a novel asymmetric triplet loss, which effec-
tively boosts the retrieval accuracy of the proposed product quantization
network based on asymmetric similarity. Through the proposed product
quantization network, we can obtain a discriminative and compact im-
age representation in an end-to-end manner, which further enables a fast
and accurate image retrieval. Comprehensive experiments conducted on
public benchmark datasets demonstrate the state-of-the-art performance
of the proposed product quantization network.

1 Introduction

Image retrieval has been a fundamental research topic in computer vision. Given
a query image, it aims to find the relevant images from a database. Precision
and efficiency are two key aspects for a retrieval system. These two key aspects
also drives the image retrieval research to progress in two directions.

One direction is to design or learn a more effective image representation for
a higher retrieval precision [31, 30, 18, 3, 2, 28, 11, 40, 4, 5]. Good image represen-
tation maintains a large distance between irrelevant images in feature space and
keeps a close distance between relevant images. Traditional image retrieval sys-
tems generated image representation by aggregating hand-craft local features like
SIFT and the research focuses on designing a more effective aggregation method
[31, 30, 18]. With the progress of deep learning, the convolutional neural network
provides an effective image representation[3, 2, 28, 38, 41], which is trained by the
semantic information and is robust to low-level image transformations.

On the other hand, to achieve a satisfactory efficiency in image retrieval,
especially when dealing with a large-scale dataset, a compact image representa-
tion is necessary. Generically speaking, there are two types of schemes to gain
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a compact image representation, hashing and quantization. Hashing maps the
real-value vectors into binary codes, which enables a faster distance computa-
tion and lower memory cost. One of most widely used hashing method is locality
sensitivity hashing (LSH) [7]. Nevertheless, LSH is data-independent, which ig-
nores the data distribution and is sub-optimal to a specific dataset. To further
improve the performance, some hashing methods [32, 36, 10] learn the projection
from the data, which caters better to a specific dataset and achieves higher re-
trieval precision. Traditional hashing methods are based on off-the-shelf visual
features. They optimize the feature extraction and Hamming embedding inde-
pendently. More recently, inspired by the progress of deep learning, some deep
hashing methods [37, 22, 25, 23] are proposed, which simultaneously conduct the
feature learning and compression through a unified network.

Nevertheless, hashing methods are only able to produce a few distinct dis-
tances, limiting its capability of describing the distance between data points. In
parallel to hashing methods, another widely used data compression method in
image retrieval is product quantization. It represents each feature vector by a
Cartesian product of several codewords. Thanks to the asymmetric distance cal-
culation mechanism, it enables a more accurate distance calculation than hashing
methods using the same code length. The product quantization (PQ) [17] and
its optimized versions like OPQ [9], CKmeans [29], APQ [1] and CQ [43, 12] are
originally designed for an unsupervised scenario where no labeling data are pro-
vided. SQ [35] extends product quantization to a supervised scenario. However,
SQ is based on the hand-crafted features or CNN features from the pretrained
model, therefore it might not be optimal with respect to the a specific dataset.

To simultaneously optimize the feature learning and quantization, Cao et

al [6] propose a deep quantization network (DQN) which can be trained in an
end-to-end manner. It optimizes a weighted sum of similarity-preserve loss and
product quantization loss. It iteratively updates codewords and other parame-
ters of a neural network. Therefore, in each iteration, the codewords are directly
updated by k-means whereas the label information is ignored. Recently, Klein et

al. [20] propose a deep product quantization (DPQ). They learn a cascade of two
fully-connected layers followed by a softmax layer to determine a soft codeword
assignment. It is different from original product quantization, the codeword as-
signment is no longer determined by distance between the original feature and
codewords. Nevertheless, the additional parameters introduced in the cascade of
fully-connected layers make DPQ more prone to over-fitting.

In this paper, we also attempt to incorporate the product quantization in a
neural network and train it in an end-to-end manner. We propose a soft product
quantization layer which is differentiable and the original product quantization is
a special case of the proposed soft product quantization when α→ +∞. Different
from DPQ, we no longer need fully-connected layers to obtain the codebook
assignment, instead, in our method, the codeword assignement is determined
by the similarity between the original feature and the codewords. Therefore, we
significantly reduce the number of parameters to be trained, making our PQN
more immune to over-fitting compared with DPQ. Meanwhile, inspired by the
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success of the triplet loss in metric learning and the triumph of the asymmetric
similarity measurement in feature compression, we propose a novel asymmetric
triplet loss to directly optimize the asymmetric similarity measurement in an
end-to-end manner. In summary, the contribution of our work is three-fold:

– We introduce a novel soft product quantization layer, which is a generalized
version of the original product quantization. It is differentiable and thus
brings an end-to-end training of the product quantization network.

– We propose a novel asymmetric triplet loss, which directly optimizes the
asymmetric distance brought based on product quantization. It enables a
more effective training of the convolutional neural network.

– Due to its simplicity, effectiveness and efficiency, we provide the image re-
trieval community a strong baseline. Some more sophisticated image retrieval
methods can be further built upon the proposed framework.

2 Related Work

Hashing [7, 32, 36, 10, 37, 22, 25, 23, 15, 14, 13, 39] aims to map a feature vector
into a short code consisting of a sequence of bits, which enables a fast distance
computation mechanism as well as a light memory cost. Traditional hashing
methods like locality sensitivity hashing (LSH) [7], spetral hashing (SH) [36]
and iterative quantization (ITQ) [10] first obtain real-value image features and
then compress the features into binary codes. They conduct the representation
learning and the feature compression separately and the mutual influence be-
tween them is ignored. Recently, motivated by the success of deep learning, some
works [37, 22, 25, 23] propose deep hashing methods by incorporating hashing as
a layer into a deep neural network. The end-to-end training mechanism of deep
hashing simultaneously optimizes the representation learning and feature com-
pression, achieving better performance than the traditional hashing methods.

Since the hashing methods are only able to produce a few distinct distances, it
has limited capability of describing the distance between data points. Parallelly,
another scheme termed product quantization (PQ) [17] decomposes the space
into a Cartesian product of subspaces and quantizes each subspace individually.
Some following works [9, 1, 43] further optimize the product quantization through
reducing the distortion errors and achieve higher retrieval precision. Note that
production quantization and its optimized versions such as OPQ [9], AQ [1]
and CQ [43] are originally designed for an unsupervised scenario where no label
information is provided.

Wang et al [35] propose supervised quantization (SQ) by exploiting the label
information. Nevertheless, SQ conducts feature extraction and quantization indi-
vidually, whereas the interaction between these two steps are ignored. To simulta-
neously learn image representation and product quantization, deep quantization
network (DQN) [6] adds a fully connected bottleneck layer in the convolutional
network. It optimizes a combined loss consisting of a similarity-preserving loss
and a product quantization loss. Nevertheless, the codebook in DPQ is trained
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through k-means clustering and thus the supervised information is ignored. Re-
cently, deep product quantization (DPQ) [20] is proposed where the codebook as
well as the parameters are learned in an end-to-end manner. Different from orig-
inal product quantization which determines the codeword assignment according
to the distance between the original feature and codewords, DPQ determines
the codeword assignment through a fully-connected layer whose parameters are
learned from data. Nevertheless, the additional parameters in the cascade of
fully-connected layers will make the network more prone to over-fitting.

Our work is also an attempt of incorporating the product quantization in
a neural network. We propose a soft product quantization layer and build our
product quantization network (PQN), which can be trained in an end-to-end
manner. Different from DPQ, our PQN determines the codeword assignment
according to the similarity between the feature for coding and codewords, which
can be seen as a soft extension of original product quantization. Unlike DPQ,
we do not need additional fully-connected layers to determine the codeword
assignment and the parameters in our soft product quantization layer are only
the codewords. Therefore, the number of parameters in our quantization layer is
considerably less than that of DPQ, which mitigates the over-fitting. As shown
in experiments, our PQN consistently outperforms DPQ by a large margin.

3 Product Quantization Network

CNN

CNN

CNN

Share

Weights

Share

Weights

SPQ

SPQ

Share

Weights

Asymmetric

Triplet LossI
+

I
-

I

Fig. 1. The overview of the proposed product quantization network, where CNN repre-
sents the convolutional neural network and SPQ represents the proposed soft product
quantization layer. The asymmetric triplet loss takes as input a triplet consisting of
the CNN feature of an anchor image (I), the SPQ feature of a positive sample (I+)
and the SPQ feature of a negative sample (I

−
).
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3.1 From Hard Quantization to Soft Quantization

Let us denote by x ∈ R
d the feature of an image I, we divide the feature x into

M subvectors [x1, · · · ,xm, · · · ,xM ] in the feature space where xm ∈ R
d/M is a

subvector. The product quantization further approximates x by

q = [q1(x1), · · · , qm(xm), · · · , qM (xM )], (1)

where qm(·) is the quantizer for xm defined as

qm(xm) =
∑

k

✶(k = k∗)cmk, (2)

where k∗ = argmin
k

‖cmk − xm‖2 , ✶(·) is the indicator function and cmk is the

k-th codeword from the m-th codebook. The hard assignment makes it infeasible
to derive its derivative and thus it can not be incorporated in a neural network.
This embarrassment motivates us to replace the hard assignment ✶(k = k∗) by

the soft assignment e−α‖xm−cmk‖
2
2/
∑

k′ e−α‖xm−c
mk′‖2

2 and obtain

s = [s1(x1), · · · , sm(xm), · · · , sM (xM )], (3)

where sm(·) is the soft quantizer for m-th subvector defined as

sm(xm) =
∑

k

e−α‖xm−cmk‖
2
2cmk

∑

k′ e−α‖xm−c
mk′‖2

2

. (4)

It is not difficult to observe that

✶(k = k∗) = lim
α→+∞

e−α‖xm−cmk‖
2
2

∑

k′ e−α‖xm−c
mk′‖2

2

(5)

Therefore, when α → +∞, the soft quantizer sm(xm) will be equivalent to the
hard quantizer qm(xm). Since the soft quantization operation is differentiable
and thus it can be readily incorporated into a network as a layer.

3.2 Soft Product Quantization Layer

Before we conduct soft product quantization in the network, we first pre-process
the original feature x = [x1, · · · ,xm, · · · ,xM ] through intra-normalization and

conduct ℓ2-normalization on codewords {cmk}
M,K
m=1,k=1

:

xm ← xm/‖xm‖2 (6)

cmk ← cmk/‖cmk‖2 (7)

The pre-processing step is motivated by two reasons: 1) intra-normalization and
ℓ2-normalization can balance the contribution of each sub-vector and each code-
word; 2) it simplifies the gradient computation.
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Forward pass. After intra-normalization on original features and ℓ2-normalization
on the codewords, we can obtain ‖xm− cmk‖

2
2 = 2− 2〈xm, cmk〉, where 〈·, ·〉 de-

notes the inner product between two vectors. Based on the above property, we
can rewrite Eq. (4) into:

sm(xm) =
∑

k

e2α〈xm,cmk〉cmk
∑

k′ e2α〈xm,c
mk′ 〉

. (8)

Backward pass. To elaborate the backward pass of the soft quantization layer,
we introduce an immediate variable amk defined as

amk =
e2α〈xm,cmk〉

∑

k′ e2α〈xm,c
mk′ 〉

. (9)

Based on the above definition, Eq. (8) will be converted into

sm(xm) =
∑

k

amkcmk. (10)

Through chain rule, we can obtain the derivative of loss with respect to cmk by

∂L

∂cmk
= amk

∂L

∂sm(xm)
+
∑

k′

∂amk′

∂cmk
(
∂sm(xm)

∂amk′

)⊤
∂L

∂sm(xm)
, (11)

where
∂sm(xm)

∂amk′

= cmk′ , (12)

and

∂amk′

∂cmk
=



















−e2α〈xm,c
mk′ 〉e2α〈xm,cmk〉2αxm

(
∑

k′′ e2α〈xm,c
mk′′ 〉)2

, k 6= k′

∑

k′ 6=k e
2α〈xm,c

mk′ 〉e2α〈xm,cmk〉2αxm

(
∑

k′′ e2α〈xm,c
mk′′ 〉)2

, k = k′
(13)

By plugging Eq. (12) and Eq. (13) into Eq. (11), we can obtain ∂L
∂cmk

.

3.3 Initialization

We initialize the parameters of convolutional layers by fine-tuning a standard
convolutional neural network without quantization, e.g., Alexnet, on the specific
dataset. Note that, we add an intra-normalization layer to fine-tune the net-
work to make it compatible with our deep product quantization network. After
the initialization of convolutional layers, we extract the features from the fine-
tuned network and conduct k-means followed by ℓ2-normalization to obtain the
initialized codewords {cmk}

K,M
k=1,m=1

in the soft product quantization layer.
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3.4 Asymmetric Triplet Loss

We propose a novel asymmetric triplet loss to optimize the parameters of the
network. We define (I, I+, I−) as a training triplet, where I− and I+ represent
a relevant image and an irrelevant image with respect to the anchor image I.
We denote by xI as the feature of I before soft product quantization and denote
by sI+ and sI− the features of I+ and I− after soft product quantization. We
define asymmetric similarity between I and I+ as 〈xI , sI+〉, where 〈·, ·〉 denotes
the inner-product operation. The proposed asymmetric triplet loss is defined as

l = 〈xI , sI−〉 − 〈xI , sI+〉. (14)

Intuitively, it aims to increase the asymmetric similarity between the pairs of
relevant images and decrease that of pairs consisting of irrelevant images. It
is a natural extension of original triplet loss on the condition of asymmetric
distance. The difference is that, a training triplet used in original triplet loss
consists of three features of the same type, whereas a training triplet used in the
proposed asymmetric triplet loss consists of one feature without quantization
and two features after quantization. In fact, our experiments show that a better
performance is achieved by processing above loss through sigmoid function and
a revised loss function is defined as Eq. (15). The better performance might be
contributed by the fact that the sigmoid function can normalize the original loss
so that the training will not be biased by some samples causing huge loss.

l =
1

1 + e〈xI ,sI+ 〉−〈xI ,sI
−
〉
. (15)

3.5 Encode and retrieval.

After training the proposed product quantization network, the reference images
in the database will be encoded by hard product quantization. We define the
layer before the soft product quantization layer as embedding layer. Given a
reference image I of the database, we obtain its output from embedding layer
x = [x1, · · · ,xm, · · · ,xM ] and further obtain its product quantization code b =
[b1, · · · , bm, · · · , bM ] where bm is computed by

bm = argmax
k
〈xm, cmk〉, (16)

where {cmk}
M,K
m=1,k=1

are codewords learned from our product quantization net-
work. In the retrieval phase, we obtain the query feature from the embed-
ding layer q = [q1, · · · ,qm, · · · ,qM ]. The relevance between the query im-
age and a reference image represented by its product quantization code b =
[b1, · · · , bm, · · · , bM ] is computed by the asymmetric similarity s(q,b) defined as

s(q,b) =

M
∑

m=1

〈qm, cmbm〉. (17)
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Since 〈qm, cmbm〉 is computed only once for all the reference images in the
database and thus obtaining s(q,b) only requires to sum up the pre-computed
similarity scores in the look-up table, considerably speeding up the image re-
trieval process. Meanwhile, storing the product quantization code b only requires
M log2K bits, which considerably reduces the memory cost.

3.6 Relation to existing methods.

DQN [6] is the first attempt of incorporating product quantization in the neu-
ral network. It alternatively optimizes codewords and other parameters of the
network. It is worth noting that when updating codewords, it only minimizes
the quantizaition errors through k-means. Therefore, when learning codewords,
the supervision information is ignored and the solution might be sub-optimal.

SUBIC [16] integrates the one-hot block encoding layer in the deep neural
network. It represents each image by a product of one-hot blocks, following
the spirit of product quantization. Nevertheless, the sparse property limits its
representation capability, making it perform not as well as ours.

DPQ [20] is another attempt of incorporating the product quantization into the
neural network. It determines the codeword assignment through a cascade of two
fully-connected layers. In contrast, our method determines the codeword assign-
ment according to the similarity between original feature and the codewords.
Note that, the additional parameters from these two fully-connected layers in
DPQ no only increase the computation complexity in training the neural net-
work but also are more prone to over-fitting. Our experiments show that our
proposed PQN considerably outperforms DPQ.

4 Experiments

We evaluate the performance of our PQN on two public benchmark datasets,
CIFAR-10 and NUS-WIDE. CIFAR-10 [21] is a dataset containing 60, 000 color
images in 10 classes, and each class has 6, 000 images in size 32×32. Different from
CIFAR-10, NUS-WIDE [8] is a dataset for evaluating multi-class classification,
in which one sample is assigned to one or multiple labels. We follow the settings
in [22, 6] and use the subset of 195, 834 images that are associated with the 21
most frequent concepts, where each concept consists of at least 5, 000 images.
We resize all images into 256× 256.

On the CIFAR-10 dataset, the performance reported by different baselines
are based on different base convolutional neural networks, making it unfair to di-
rectly compare their reported retrieval accuracy. To make a fair comparison, we
evaluate our method based on two types of convolutional neural networks. The
first convolutional neural network we use is 3CNet which is also used by SUBIC
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[16] and DQN [20]. 3CNet is proposed in [25], which consists of L = 3 convolu-
tional layers with 32, 32 and 64 filters of size 5×5 respectively, followed by a fully
connected layer with d = 500 nodes. The second convolutional neural network
we choose is AlexNet. It is worth noting that the baselines we compare may ap-
ply different models. For example, DQN [6] adopts AlexNet whereas other work
[34, 23] adopt VGG-F model. These two models are similar in the architecture.
To be specific, both the CNN-F and AlexNet consist of five convolutional layers
and two fully connected layers. As shown in [19], the CNN-F generally performs
better than Alexnet in image retrieval, therefore, the better performance of ours
based on AlexNet than existing state-of-art methods based on CNN-F is not
owing to better base network. In other words, our method can achieve better
performance even with an inferior base network. On the NUS-WIDE dataset,
we also adopt AlexNet as our base model. On both datasets, we report the per-
formance of the proposed method through mAP, which is a standard metric in
evaluating the performance of retrieval algorithms.

(a) Influence of α (b) Influence of M and K

Fig. 2. The influence of parameters on CIFAR-10 dataset using 3CNet.

4.1 CIFAR-10 using 3CNet

Following the experimental setup in SUBIC [16] and DPQ [20], the training is
conducted on 50K image training set. The test set is split into 9K database
images and 1K query images (100 per class).

Influence of M and K. In this section, we evaluate the influence of the
number of subvectors M and the number of codewords per sub-codebook K on
the retrieval precision of the proposed PQN. We vary M among {1, 2, 4, 8}, and
vary B = log2K among {3, 6, 9, 12}. As shown in Fig. 2(a), the proposed method
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achieves the best performance whenM = 4. By default, we setM = 4 on CIFAR-
10 Dataset. Note that when M = 1 and M = 2, the performance of the proposed
PQN increases as B increases. This is expected since the larger B can partition
the feature space into finer cells. Nevertheless, when M = 4, the performance
drops when B increases from 9 to 12. Meanwhile, when M = 8, there is also a
performance drop when K increases from 6 to 9. The worse performance might
be caused by over-fitting when both M and K are large.

Influence of α. α controls the quantization softness of the soft product quanti-
zation layer. We evaluate the performance of our method when α varies. We test
the influence of α when M = 4 and K varies among {23, 26, 29, 212}. As shown
in Fig. 2(b), the performance of the proposed PQN is relatively stable when α
increases from 1 to 80. Note that, when α = 1, the performance is slightly worse
than that when α = 5. The worse performance is due to the fact a small α will
make the quantization too soft and thus the soft quantization in training phase
differs too much from the hard quantization in the testing phase. Meanwhile,
we also observe a performance drop when α increases from 20 to 40. This drops
might be caused by the fact that a huge α tends to push the input of soft-max
function to the saturation region and lead to gradient vanishing.

Comparison with unsupervised PQ/LSQ. We compare with unsupervised
PQ and LSQ [27] based on fine-tuned features trained through triplet loss. As
shown in Table 1, ours considerably outperforms both TL+PQ and TL+LSQ.
Meanwhile, we also show the performance of original features trained through
triplet loss without quantization (TL+Full) in Table 1. The performance of ours
is even better than that of features without quantization, this is owing to the
regularization imposed by quantization, which suppresses over-fitting.

method 4bits 8bits 16bits 24bits 32bits

TL+Full 0.779

TL+PQ 0.503 0.621 0.741 0.773 0.780

TL+LSQ 0.511 0.720 0.752 0.753 0.763

PQN(Ours) 0.574 0.729 0.778 0.782 0.786

Table 1. Comparisons with PQ and LSQ.

Effectiveness of asymmetric triplet loss. Meanwhile, in order to show the
effectiveness of the proposed asymmetric triplet loss, we compare with two alter-
natives, cross-entropy loss (CEL) and triplet loss (TL). To make a fair compar-
ison, we only change the loss function and keep the other parts of the network
unchanged. As shown in Fig. 3, the proposed assymetric loss consistently outper-
forms the cross-entropy loss and triplet loss when L varies among {12, 24, 36, 48}.
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For instance, when L = 36, our ATL achieves a 0.787 mAP whereas TL only
achieves a 0.778 mAP and CEL only achieves a 0.768 mAP.

Compare with state-of-the-art methods. We compare our method with two
state-of-the-art methods (SUBIC and DPQ), which adopt the same 3CNet as well
as the same experimental settings. We change bit length L among {12, 24, 36, 48}.
We set M = 4 and K = 8, 64, 512, 4096, respectively. Since SUBIC adopts cross-
entropy loss, it is unfair to directly compare it with ours using asymmetric
triplet loss. Therefore, we report the performance of our PQN based on the
cross-entropy loss (CEL) as well as the proposed asymmetric triplet loss (ATL).
As shown in Table 2, our method based on both CEL and ATL significantly
outperform the existing state-of-the-art methods including SUBIC and DPQ. For
instance, when L = 24, ours achieves a 0.771 mAP based on the cross-entropy
loss and a 0.782 mAP using the proposed asymmetric triplet loss whereas SUBIC
only achieves a 0.672 mAP and DPQ only achieves a 0.692 mAP.

Fig. 3. Comparisons of our asymmetric triple loss (ATL) with cross-entropy loss (CEL)
and triplet loss (TL).

4.2 CIFAR-10 using AlexNet

Following the experimental settings in [34, 23], we randomly sample 1000 images
per class (10000 images in total) as the testing query images, and the remaining
50000 images are used as the training set as well as reference images in the
database. We set M = 4 and vary K among {24, 26, 29, 212}, and thus the code
length L varies among {16, 24, 36, 48}.
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Method 12 bits 24 bits 36 bits 48 bits

SUBIC [16] 0.635 0.672 0.682 0.686

DPQ [20] 0.673 0.692 0.695 0.693

Ours+CEL 0.737 0.771 0.768 0.762

Ours+ATL 0.741 0.782 0.787 0.786

Table 2. mAP comparisons with state-of-the-art methods using 3CNet.

Comparions with state-of-the-art methods. As shown in Table 3, ours
consistently outperforms the existing state-of-the-art methods, especially when
the bit length is small. For instance, when the bit length is 16, our method
based on asymmetric triplet loss (Ours+ATL) achieves a 0.947 mAP whereas
the second best method, DSDH, only achieves a 0.935 mAP.

Method 16 bits 24 bits 36 bits 48 bits

DRSCH [42] 0.615 0.622 0.629 0.631

DSCH [42] 0.609 0.613 0.617 0.686

DSRH [45] 0.608 0.611 0.617 0.618

VDSH [44] 0.845 0.848 0.844 0.845

DPSH [24] 0.903 0.885 0.915 0.911

DTSH [34] 0.915 0.923 0.925 0.926

DSDH [23] 0.935 0.940 0.939 0.939

Ours + CE 0.939 0.941 0.941 0.940

Ours + ATL 0.947 0.947 0.946 0.947

Table 3. mAP comparisons with existing state-of-the-art methods using AlexNet base
model on the CIFAR10 dataset.

Extremely short code evaluation. As shown in Table 3, the mAP achieved
by our method does not drop when the bit length decreases from 48 to 16. In
contrast, the performance of other methods in Table 3 all turn worse due to
decrease of the bit length. To fully exploit the potential of the proposed product
quantization network on the CIAFR-10 dataset, we evaluate it by setting the
code length L extremely small. We vary M among 1, 2 and 4, and meanwhile
vary the code length (bit number) L within {4, 6, 8, 10, 12}. As shown in Fig. 4,
when code length is extremely small, e.g., L = 4, the performance of PQN when
M = 1 significantly outperforms that when M = 2, 4. Meanwhile, when M = 1,
there is not significant performance drop when L decreases from 12 to 4. Note
that, when M = 1, the proposed PQN achieves a 0.945 mAP when using only
4 bits per code. It considerably outperforms the existing state-of-art method
DSDH [23] which only achieves 0.935 mAP using 16 bits.
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Fig. 4. Evaluation on the extremely short code.

4.3 NUS-WIDE

Following the experiment setup in [34, 23], we randomly sample 100 images per
class (2100 images in total) as the test query set and the remaining images are
used as database images. 500 database images per label are randomly sampled
as training images. The mAP is calculated based on the top 5000 returned neigh-
bors. Due to multi-label settings, the cross-entropy loss used in SUBIC [16] and
the softmax loss in DPQ [20] are no longer feasible, which explains neither SUBIC
[16] nor DPQ [20] conducts the experiments on NUS-WIDE dataset. Inspired by
the success of label embedding proposed in [23], we also adopt a combined loss,
which is a weighed sum of our asymmetric triplet loss and a mean square loss
defined as

l =
1

1 + e〈xI ,sI+ 〉−〈xI ,sI
−
〉
+ β‖WsI − yI‖

2
2, (18)

where W is the parameter in an additional FC layer after the soft product
quantization layer and yI is the label of the sample I. We set β = 10 by default.

Comparisons with existing state-of-the-art methods. We compare our
method with two types of baselines. The first type extracts the features from
CNN and then convert the extracted features into binary codes. We directly
copy the reported results in [23] which conducts experiments on several tradi-
tional hashing methods such as SH [32], ITQ [10], KSH [26], SDH [33], etc. The
baselines of the second type are deep hashing/quantization methods, where the
binary codes are learned in an end-to-end manner. We compare several methods
of the second type such as DQN [6], DPSH [24], DTSH [34], DSDH [23], etc. As
shown in Table 4, the proposed PQN consistently outperforms these two types
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Method 12 bits 24 bits 36 bits 48 bits

SH + CNN [23] 0.621 0.616 0.615 0.612

ITQ + CNN [23] 0.719 0.739 0.747 0.756

LFH + CNN [23] 0.695 0.734 0.739 0.759

KSH + CNN [23] 0.768 0.786 0.790 0.799

SDH+ CNN [23] 0.780 0.804 0.815 0.824

FASTH+CNN [23] 0.779 0.807 0.816 0.825

CNNH [37] 0.611 0.618 0.625 0.608

NINH [22] 0.674 0.697 0.713 0.715

DHN [46] 0.708 0.735 0.748 0.758

DQN [6] 0.768 0.776 0.783 0.792

DPSH [24] 0.752 0.790 0.794 0.812

DTSH [34] 0.773 0.808 0.812 0.824

DSDH [23] 0.776 0.808 0.820 0.829

Ours 0.795 0.819 0.823 0.830

Table 4. mAP comparisons with existing state-of-the-art methods using AlexNet base
model on the NUS-WIDE dataset. The mAP is based on top 5000 nearest neighbors.

of baselines when code length L varies among {12, 24, 36, 48}. The advantage of
our PQN over other methods is more obvious when the code length L is short.
For instance, when L = 12, our PQN achieves a 0.795 mAP whereas the second
best method, FASTH+CNN [23] only achieves a 0.779 mAP.

5 Conclusion

In this paper, by incorporating product quantization in the neural network,
we propose product quantization nework (PQN) to learn a discriminative and
compact image representation in an end-to-end manner. Meanwhile, we propose
a novel asymmetric triplet loss, which directly optimizes the image retrieval
based on asymmetric distance to train our network more effectively. Systematic
experiments conducted on benchmark datasets demonstrate the state-of-the-art
performance of the proposed PQN.
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