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Abstract. Aggregated second-order features extracted from deep con-
volutional networks have been shown to be effective for texture gener-
ation, fine-grained recognition, material classification, and scene under-
standing. In this paper, we study a class of orderless aggregation func-
tions designed to minimize interference or equalize contributions in the
context of second-order features and we show that they can be computed
just as efficiently as their first-order counterparts and they have favor-
able properties over aggregation by summation. Another line of work
has shown that matrix power normalization after aggregation can signif-
icantly improve the generalization of second-order representations. We
show that matrix power normalization implicitly equalizes contributions
during aggregation thus establishing a connection between matrix nor-
malization techniques and prior work on minimizing interference. Based
on the analysis we present γ-democratic aggregators that interpolate be-
tween sum (γ=1) and democratic pooling (γ=0) outperforming both on
several classification tasks. Moreover, unlike power normalization, the γ-
democratic aggregations can be computed in a low dimensional space by
sketching that allows the use of very high-dimensional second-order fea-
tures. This results in a state-of-the-art performance on several datasets.

Keywords: Second-order features, democratic pooling, matrix power
normalization, tensor sketching

1 Introduction

Second-order statistics have been demonstrated to improve performance of clas-
sification on images of objects, scenes and textures as well as fine-grained prob-
lems, action classification and tracking [52,44,30,15,6,25,34,33]. In the simplest
form, such statistics are obtained by taking the outer product of some feature
vectors and aggregating them over some region of interest which results in an
auto-correlation [6,24] or covariance matrix [52]. Such a second-order image de-
scriptor is then passed as a feature to train a SVM, etc. Several recent works
obtained an increase in accuracy after switching from the first- to second-order
statistics [25,24,34,32,33,59,26,28]. Further improvements were obtained by con-
sidering the impact of spectrum of such statistics on aggregation into the final
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representations [25,24,37,31,33,26,28]. For instance, analysis conducted in [25,24]
concluded that decorrelating feature vectors from an image via the matrix power
normalization has a positive impact on classification due to the signal whitening
properties which prevent so-called bursts of features [19]. However, evaluating the
power of matrix is a costly procedure with complexity O(dω), where 2<ω<2.376
concerns the complexity of SVD. In recent CNN approaches [31,33,28] which per-
form end-to-end learning, the complexity becomes a prohibitive factor for typical
d ≥ 1024 due to a costly backpropagation step which involves SVD or solving a
Lyapunov equation [33] in every iteration of the CNN fine-tuning process; thus
adding several hours of computations to training. However, another line of ag-
gregation mechanisms aim to reweight the first-order feature vectors prior to
their aggregation [37] in order to balance their contributions to the final image
descriptor. Such a reweighting scheme, called a democratic aggregation [21,37],
is solved very efficiently by a modified Sinkhorn algorithm [23].

In this paper, we study democratic aggregation in the context of second-
order feature descriptors and show that this feature descriptor has favorable
properties when combined with the democratic aggregator which was applied
originally to the first-order descriptors. We take a closer look at the relation
between the reweighted representations and the matrix power normalization in
terms of the variance of feature contributions. In addition, we propose a γ-
democratic aggregation scheme which generalizes democratic aggregation and
allows to interpolate between sum pooling and democratic pooling. We show
that our formulation can be solved via the Sinkhorn algorithm as efficiently
as approach [37] while resulting in a performance comparable to the matrix
power normalization. Computationally, our approach involves Sinkhorn itera-
tions, which requires matrix-vector multiplications, and is faster by an order of
magnitude even when compared to approximate matrix power normalization via
the Newton’s method, which involves matrix-matrix operations [33]. Unlike the
power matrix normalization, our γ-democratic aggregation can be performed via
sketching [42,12] enabling the use of high-dimensional feature vectors.

To summarize, our contributions are: (i) we propose a new second-order γ-
democratic aggregation, (ii) we obtain reweighting factors via the Sinkhorn al-
gorithm which enjoys an order of magnitude speedup over the fast matrix power
normalization via Newton’s iterations while it achieves comparable results, (iii)
we provide theoretical bounds on feature contributions in relation to the matrix
power normalization, (iv) we present state-of-the-art results on several datasets
by applying democratic aggregation of second-order representations with sketch-
ing.

2 Related work

Mechanisms of aggregating first- and second-order features have been exten-
sively studied in the context of image retrieval, texture and object recognition
[40,41,47,20,38,44,53,6,25]. In what follows, we first describe shallow approaches
and non-Euclidean aggregation schemes followed by the CNN-based approaches.
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Shallow Approaches. Early approaches to aggregating second-order statistics
include Region Covariance Descriptors [44,53], Fisher Vector Encoding [40,41,47]
and Vector of Locally Aggregated Tensors [38], to name but a few of approaches.

Region Covariance Descriptors capture co-occurrences of luminance, first-
and second-order partial derivatives of images [44,53] and, in some cases, even
binary patterns [46]. The main principle of these approaches is to aggregate the
co-occurrences of some feature vectors into a matrix which represents an image.

Fisher Vector Encoding [40] precomputes a visual vocabulary by clustering
over a set of feature vectors and captures the element-wise squared difference
between each feature vector and its nearest cluster center. Subsequently, the
re-normalization of the captured statistics with respect to the cluster variance
and the sum aggregation are performed. Furthermore, extension [41] proposes to
apply the element-wise square root to the aggregated statistics which improves
the classification results. Vector of Locally Aggregated Tensors extends Fisher
Vector Encoding to second-order off-diagonal feature interactions.

Non-Euclidean Distances. To take the full advantage of statistics captured
by the scatter matrices, several works employ non-Euclidean distances. For pos-
itive definite matrices, geodesic distances (or their approximations) known from
the Riemannian geometry are used [39,3,2]. Power-Euclidean distance [11] ex-
tends to semidefinite positive matrices. Distances such as Affine-Invariant Rie-
mannian Metric [39,3], KL-Divergence Metric [55], Jensen-Bregman LogDet Di-
vergence [7] and Log-Euclidean distance [2] are frequently used for comparing
scatter matrices resulting from aggregation of second-order statistics. However,
the above distances are notoriously difficult to backpropagate through for end-
to-end learning and often computationally prohibitive [27].

Pooling Normalizations. Both first- and second-order aggregation methods
often employ normalizations of pooled feature vectors. The early works on im-
age retrieval apply the square root [19] to aggregated feature vectors to limit the
impact of frequently occurring features and boost the impact of infrequent and
highly informative ones (so-called notion of feature bursts). The roots of this ap-
proach in computer vision can be traced back to so-called generalized histogram
of intersection kernel [5]. For second-order approaches, similar strategy is used by
Fisher Vector Encoding [41]. The notion of bursts is further studied in the context
of Bags-of-Words approach as well scatter matrices and tensors for which their
spectra are power normalized [24,25,26] (so-called Eigenvalue Power Normaliza-
tion or EPN for short). However, the square complexity of scatter matrices w.r.t.
length of feature vectors deems them somewhat impractical in classification. A
recent study [21,37] shows how to exploit second-order image-wise statistics and
reweight sets of feature vectors per image at the aggregation time to obtain an
informative first-order representation. So-called Democratic Aggregation (DA)
and Generalized Max-Pooling (GMP) strategies are proposed whose goal is to
reweight feature vectors per image prior to the sum aggregation so that inter-
ference between frequent and infrequent feature vectors is minimized. Strategies
such as EPN (Matrix Power Normalization, MPN for short, is a special case of
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EPN), DA and GMP can be seen as ways of equalizing contributions of feature
vectors into the final image descriptor and they are closely related to Zero-phase
Component Analysis (ZCA) whose role is to whiten the signal representation.

Pooling and Aggregation in CNNs. The early image retrieval and recog-
nition CNN-based approaches aggregate first-order statistics extracted from the
CNN maps e.g., [14,57,1]. In [14], multiple feture vectors are aggregated over
multiple image regions. In [57], feature vectors are aggregated for retrieval. In
[1], so-called VLAD descriptor is extended to allow end-to-end training.

More recent approaches form co-occurrence patterns from CNN feature vec-
tors similar in spirit to Region Covariance Descriptors. In [34], the authors com-
bine two CNN streams of feature vectors via outer product and demonstrate
that such a setup is robust for the task of the fine-grained image recognition. A
recent approach [49] extracts feature vectors at two separate locations in feature
maps and performs an outer product to form a CNN co-occurrence layer.

Furthermore, a number of recent approaches are dedicated to performing
backpropagation on the spectrum-normalized scatter matrices [18,17,31,33,28].
In [18], the authors employ the backpropagation via the SVD of matrix to im-
plement the Log-Euclidean distance in end-to-end fashion. In [31], the authors
extend Eigenvalue Power Normalization [25] to an end-to-end learning scenario
which also requires to backpropagate via the SVD of matrix. Concurrently, ap-
proach [33] suggests to perform Matrix Power Normalization via the Newton’s
method and backpropagate w.r.t. the square root of matrix by solving a Lya-
punov equation for greater numerical stability. An approach [58] phrases the
matrix normalization as the problem of robust covariance estimation. Lastly,
compact bilinear pooling [12] uses so-called tensor sketching [42]. Where indi-
cated, we also make use of tensor sketching in our work.

There has been no connection made between reweighting feature vectors and
its impact on the spectrum of the corresponding scatter matrix. Our work closely
related to the approaches [21,37], however, introduce a mechanisms of limiting
the interference in the context of second-order features. We demonstrate their
superiority over the first-order inference approaches [21,37] and show that we
can obtain results comparable to the matrix square root aggregation [33] with
much lower computational complexity at the training and testing stages.

3 Method

Given a sequence of features X = (x1,x2, . . . ,xn), where xi ∈ R
d, we are in-

terested in a class of functions that compute an orderless aggregation of the
sequence to obtain a global descriptor ξ(X ). If the descriptor is orderless, it
implies that any permutation of features does not effect the global descriptor.
A common approach is to encode each feature using a non-linear function φ(x)
before aggregation via a simple symmetric function such as sum or max. For
example, the global descriptor using sum pooling can be written as:

ξ(X ) =
∑

x∈X

φ(x). (1)
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In this work, we investigate outer-product encoders, i.e. φ(x) = vec(xxT ), where
xT denotes the transpose and vec(·) is the vectorization operator. Thus, if x is
d dimensional then φ(x) is d2 dimensional.

3.1 Democratic aggregation

The democratic aggregation approach was proposed in [37] to minimize interfer-
ence or equalize contributions of each element in the sequence. The contribution
of a feature is measured as the similarity of the feature to the overall descriptor.
In the case of sum pooling, the contribution C(x) of a feature x is given by:

C(x) = φ(x)T
∑

x
′∈X

φ(x′). (2)

For sum pooling, the contributions C(x) may not be equal for all features x.
In particular, the contribution is affected by both the norm and frequency of
the feature. Democratic aggregation is a scheme that weights each feature by a
scalar α(x) that depends on both x and the overall set of features in X such
that the weighted aggregation ξ(X ) satisfies:

α(x)φ(x)T ξ(X ) = α(x)φ(x)T
∑

x
′∈X

α(x′)φ(x′) = C, ∀x ∈ X , (3)

under the constraint that ∀x ∈ X , α(x) > 0. The above equation only depends
on the dot product between the elements since:

α(x)
∑

x
′∈X

α(x′)φ(x)Tφ(x′) = α(x)
∑

x
′∈X

α(x′)k(x,x′), (4)

where k(x,x′) denotes the dot product between the two vectors φ(x) and φ(x′).
Following the notation in [37], if we denote KX to be the kernel matrix of the
set X , the above constraint is equivalent to finding a vector of weights α such
that:

diag(α)Kdiag(α)1n = C1n, (5)

where diag is the diagonalization operator and 1n is an n dimensional vector
of ones. In practice, the aggregated features ξ(X ) are ℓ2 normalized hence the
constant C does not matter and can be set to 1.

The authors [37] noted that the above equation can be efficiently solved by
a dampened Sinkhorn algorithm [23]. The algorithm returns a unique solution
as long as certain conditions are met, namely the entries in K are non-negative
and the matrix is not fully decomposable. In practice, these conditions are not
satisfied since the dot product between two features can be negative. A solution
proposed in [37] is to compute α by setting the negative entries in K to zero.

For completeness, the dampened Sinkhorn algorithm is included in Algo-
rithm 1. Given n features of d dimensions, computing the kernel matrix takes
O(n2d), whereas each Sinkhorn iteration takes O(n2) time. In practice, 10 it-
erations are sufficient to find a good solution. The damping factor τ = 0.5 is
typically used. This slows the convergence rate but avoids oscillations and other
numerical issues associated with the undampened version (τ = 1).
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Algorithm 1 Dampened Sinkhorn Algorithm

1: procedure Sinkhorn(K, τ,T)
2: α← 1n

3: for t = 1 to T do
4: σ = diag(α)Kdiag(α)1n

5: α← α/στ

6: return α

γ-democratic aggregation. We propose a parametrized family of democratic
aggregation functions that interpolate between sum pooling and fully democratic
pooling. Given a parameter 0 ≤ γ ≤ 1, the γ-democratic aggregation is obtained
by solving for a vector of weights α such that:

diag(α)Kdiag(α)1n = (K1n)
γ . (6)

When γ = 0, this corresponds to the democratic aggregation, and when γ = 1,
this corresponds to sum aggregation since α = 1n satisfies the above equation.
The above equation can be solved by modifying the update rule for computing
σ in the Sinkhorn iterations to:

σ = diag(α)Kdiag(α)1n/(K1n)
γ , (7)

in Algorithm 1, where / denotes element-wise division. Thus, the solution can
be equally efficient for any value of γ. Intermediate values of γ allow the contri-
butions C(x) of each feature x within the set to vary and, in our experiments,
we find this can lead to better results than the extremes (i.e., γ = 1).

Second-order democratic aggregation. In practice, features extracted using
deep ConvNets can be high-dimensional. For example, an input image I is passed
through layers of a ConvNet to obtain a feature map Φ(I) of size W ×H ×D.
Here d = D corresponds to the number of filters in the convolutional layer and
n = W × H corresponds to the spatial resolution of the feature. For state-of-
the-art ConvNets from which features are typically extracted, the values of n
and d are comparable and in the range of a few hundred to a thousand. Thus,
explicitly realizing the outer products can be expensive. Below we show several
properties of democratic aggregation with outer-product encoders. Some of these
properties allow aggregation in a computationally and memory efficient manner.

Proposition 1. For outer-product encoders, the solution to the γ-democratic

kernels exists for all values of γ as long as ||x|| > 0, ∀x ∈ X .

Proof. For the outer-product encoder we have:

k(x,x′) = φ(x)Tφ(x′) = vec(xxT )T vec(x′x′T ) = (xTx′)2 ≥ 0.
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Thus, all the entries of the kernel matrix are non-negative and the kernel
matrix is strictly positive definite when ||x|| > 0, ∀x ∈ X . This is a sufficient
condition for the solution to exist [23]. Note that the kernel matrix of the outer
product encoders is positive even when xTx′ < 0.

Proposition 2. For outer-product encoders, the solution α to the γ-democratic

kernels can be computed in O(n2d) time and O(n2 + nd) space.

Proof. The running time of the Sinkhorn algorithm is dominated by the time
to compute the kernel matrix K. Naively computing the kernel matrix for d2

dimensional features would take O(n2d2) time and O(n2+nd2) space. However,
since the kernel entries of the outer products are just the square of the kernel
entries of the features before the encoding step, one can compute the kernel K
by simply squaring the kernel of the raw features, which can be computed in
O(n2d) time and O(n2 + nd) space. Thus the weights α for the second-order
features can also be computed in O(n2d) time and O(n2 + nd) space.

Proposition 3. For outer-product encoders, γ-democratic aggregation ξ(X ) can
be computed with low-memory overhead using Tensor Sketching.

Proof. Let θ be a low-dimensional embedding that approximates the inner prod-
uct between two outer-products, i.e.,

θ(x)T θ(x′) ∼ vec(xxT )T vec(x′x′T ), (8)

and θ(x) ∈ R
k with k << d2. Since the γ-democratic aggregation of X is a linear

combination of the outer-products, the overall feature ξ(X ) can be written as:

ξ(X ) =
∑

x∈X

α(x)xxT ∼
∑

x∈X

α(x)θ(x). (9)

Thus, instead of realizing the overall feature ξ(X ) of size d2, one can use the
embedding θ to obtain a feature of size k as a democratic aggregation of the
approximate outer-products. One example of an approximate outer-product em-
bedding is the Tensor Sketching (TS) approach of Pham and Pagh [42]. Tensor
sketching has been used to approximate second-order sum pooling [12] resulting
in an order-of-magnitude savings in space at a marginal loss in performance on
classification tasks. Our experiments show that sketching also performs well in
the context of democratic aggregation.

3.2 Spectral normalization of second-order representations

A different line of work [6,33,31,58] has investigated matrix functions to normal-
ize the second-order representations obtained by sum pooling. For example, the
improved bilinear pooling [33] and second-order approaches [24,25,28] construct
a global representation by sum pooling of outer-products:

A =
∑

x∈X

xxT . (10)
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The matrix A is subsequently normalized using matrix power function Ap with
0 < p < 1. When p = 1/2, this corresponds to the matrix square-root which is
defined as matrix Z such that ZZ = A. Matrix function can be computed using
the Singular Value Decomposition (SVD). Given matrix A with a SVD given
by A = UΛUT , where the matrix Λ = diag(λ1, λ2, ..., λd), with λi ≥ λi+1, the
matrix function f can be written as Z = f(A) = Ug(Λ)UT , where g is applied
to the elements in the diagonal of Λ. Thus, the matrix power can be computed
as Ap = UΛpUT = Udiag(λp

1, λ
p
2, ..., λ

p
d)U

T . Such spectral normalization tech-
niques scale the spectrum of the matrixA. The following establishes a connection
between the spectral normalization techniques and democratic pooling.

Let Âp be the ℓ2 normalized version ofAp and rmax and rmin be the maximum
and minimum squared radii of the data x ∈ X defined as:

rmax = max
x ∈X

||x||2, rmin = min
x ∈X

||x||2. (11)

As earlier, let C(x) be the contribution of the vector x to the the aggregated
representation defined as:

C(x) = vec(xxT )T vec(Âp). (12)

Proposition 4. The following properties hold true:

1. The ℓ2 norm of vec(Ap) is ρ(Ap) = || vec(Ap)|| =
(

∑

i λ
2p
i

)1/2

.

2.
∑

x∈X
C(x) = Trace(A1+p/||Ap||) =

(

∑

i λ
1+p
i

)

/ρ(Ap).

3. The maximum value M = maxx∈X C(x) ≤ rmaxλ
p
1/ρ(A

p).

4. The minimum value m = minx∈X C(x) ≥ rminλ
p
d/ρ(A

p).

Proof. The proof is left in the supplementary material.

Proposition 5. The variance σ2 of the contributions C(x) satisfies

σ2 ≤ (M − µ)(µ−m) ≤
(M −m)2

4
≤

r2maxλ
2p
1

4ρ(Ap)2
, (13)

where M and m are the maximum and minimum values defined above and µ is

the mean of C(x) given by
∑

x∈X
C(x)/n where n is the cardinality of X . All of

the above quantities can be computed from the spectrum of the matrix A.

Proof. The proof can be obtained by a straightforward application of Popoviciu’s
inequality on variances [43] and a tighter variant by Bhatia and Davis [4]. The
last inequality is obtained by setting m = 0.

The above shows that smaller values p reduce an upper-bound on the variance
of the contributions thereby equalizing their contributions. The upper bound is a
monotonic function of the exponent p and is minimized when p = 0 reducing all
the spectrum to an identity matrix. This corresponds to whitening of the matrix
A. However, complete whitening often leads to poor results while intermediate
values such as p = 1/2 can be significantly better than p = 1 [24,25,33,31]. In the
experiments section we evaluate these bounds on deep features from real data.
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Proposition 6. For exponents 0 < p < 1, the matrix power Ap may not lie in

the linear span of the outer-products of the features x ∈ X .

The proof of Proposition 6 is left in the supplementary material. A conse-
quence of this is that the matrix power cannot be easily computed in the low-
dimensional embedding space of outer-products encoding such as Tensor Sketch.
It does however lie in the linear span of the outer-products of the eigenvectors.
However, computing eigenvectors can be significantly slower than computing
weighted aggregates. We describe the computation and memory trade-offs be-
tween computing the matrix powers and democratic pooling in Section 4.5.

4 Experiments

We analyze the behavior of matrix power normalization and γ-democratic pool-
ing empirically on several fine-grained and texture recognition datasets. The
general experiment setting and the datasets are described in Section 4.1. We
validate the theoretical bounds on the feature contributions with real data in
Section 4.2. We compare our models against sum-pooling baseline, matrix power
normalization, and other state-of-the-art methods in Sections 4.3 and 4.4. Fi-
nally, we include a discussion on runtime and memory consumption for various
approaches and a technique to perform end-to-end fine-tuning in Section 4.5.

4.1 Experimental setup

Datasets. We experiment on Caltech-UCSD Birds [56], Stanford Cars [29] and
FGVC Aircrafts [35] datasets. Birds dataset contains 11,788 images which con-
tain over 200 bird species. Stanford Cars dataset consists of 16.185 images across
196 categories and FGVC Aircrafts provides 10,000 images of 100 categories.
For each dataset, we use the train and test splits provided by the benchmarks
and only the corresponding category labels are used during training phase. In
addition to the above fine-grained classification tasks, we also analyze the per-
formance of various approaches on the following datasets: Describable Texture
Dataset (DTD) [8], Flickr Material Dataset (FMD) [48] and MIT indoor scene
dataset [45]. DTD consists of 5,640 images across 47 texture attributes. We re-
port results averaged over the 10 splits provided by the dataset. FMD provides
1000 images from 10 different material categories. We randomly split half of
images for training and the rest for testing for each category and report results
across multiple splits. The MIT indoor scene dataset contains 67 indoor scene
categories, each of which includes 80 images for training and 20 for testing.

Features. We aggregate the second-order features with γ-democratic pool-
ing and matrix power normalization using VGG-16 [50] and ResNet101 [16]
networks. We follow the work [34] and resize input images to 448 × 448 and
aggregate the last convolutional layer features after ReLU activations. For the
VGG-16 network architecture, this results in feature maps of size 28× 28× 512
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Fig. 1. (a) The spectrum (eigenvalues) for various feature aggregators on CUB-200
and MIT indoor datasets. (b) The individual feature vector contributions C(x).

(before aggregation), while for the ResNet101 architecture this results in maps
of size 14× 14× 2048. For γ-democratic pooling, we run the modified Sinkhorn
algorithm for 10 iterations with the power exponent τ = 0.5. Fully democratic
pooling [37] and sum pooling can be implemented by setting γ = 0 and γ = 1,
respectively. The aggregated features are followed by element-wise signed square-
root and ℓ2 normalization. For fine-grained recognition datasets, we aggregate
the VGG-16 features fine-tuned with vanilla BCNN models, while the ImageNet
pretrained networks without fine-tuning are used for texture and scene datasets.

4.2 The distribution of the spectrum and feature contributions

In this section, we analyze how democratic pooling and matrix normalization
effect the spectrum (set of eigenvalues) of the aggregated representation, as well
as how the contributions of individual features are distributed as a function of
γ for the democratic pooling and p of the matrix power normalization.

We randomly sampled 50 images from CUB and MIT indoor datasets each
and plotted the spectrum (normalized to unit length) and the feature vector
contributions C(x) (Eq. (12)) in Figure 1. In this experiment, we use the ma-
trix power p = 0.5 and γ = 0.5. Figure 1(a) shows that the square root yields
a flatter spectrum in comparison to the sum aggregation. Democratic aggrega-
tion distributes the energy away from the top eigenvalues but has considerably
sharper spectrum in comparison to the square root. The γ-democratic pooling
interpolates between sum and fully democratic pooling.

Figure 1(b) shows the contributions of each feature x to the aggregate for
different pooling techniques (Eq. (12)). The contributions are more evenly dis-
tributed for the matrix square root in comparison to sum pooling. Democratic
pooling flattens the individual contributions the most – we note that it is explic-
itly designed to have this effect. These two plots show that democratic aggrega-
tion and power normalization both achieve equalization of feature contributions.

Figure 2 shows the variances of the contributions C(x) to the aggregation

Âp using the VGG-16 features for different values of the exponent p. Figure 2(a)
shows the true minimum, maximum, mean as well as the bounds of these quanti-
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Fig. 2. (a) The upper (red solid) and lower bounds (blue solid) on the contributions
to the set similarity versus the exponent of matrix power normalization on Birds and
MIT indoor datasets. Maximum and minimum values are shown in dashed lines and
the the mean is shown in black solid lines. (b) The upper bounds to the variance of
feature contributions C(x).

ties expressed in Proposition 4. The upper bound on the maximum contribution,
i.e., rmaxλ

p
1/ρ(A

p), is tight on both datasets, as can be seen in the overlapping
red lines, while the lower bound is significantly less tight.

Figure 2(b) shows the true deviation and two different upper bounds on the
variance of the contributions as expressed in Proposition 5 and Eq. (13). The
tighter bound shown by the dashed red line corresponds to the version with
the mean µ in Eq. (13). The plot shows that the matrix power normalization
implicitly reduces the variance in feature contributions similar to equalizing the
feature vector contributions C(x) in democratic aggregation. These plots are
averaged over 50 examples from the CUB-200 and MIT indoor datasets.

4.3 Effect of γ on democratic pooling

Table 1 shows the performance as a function of γ for the γ-democratic pooling
and p for the matrix normalization on the VGG-16 network. For DTD dataset,
we report results on the first split. For FMD dataset, we randomly sample half
of the data in each category for training and use the rest for testing. We use
the standard training and testing splits on remaining datasets. We augment the
training set by flipping its images and train k one-vs-all linear SVM classifiers
with hyperparameter C = 1. At the test time, we average predictions from an
image and its flipped copy. Optimal γ and the matrix power p are also reported.

The results on sum pooling correspond to the symmetric BCNN models [33].
Fully democratic pooling (γ=0) improves the performance over sum pooling by
0.7-1%. However, equalizing feature contributions hurts performance on Stan-
ford Cars and FMD dataset. Table 1 shows that reducing the contributions by
adjusting 0 < γ < 1 helps outperform sum pooling and fully democratic pooling.

Matrix power normalization outperforms γ-democratic pooling by 0.2-1%.
However, computing the matrix powers on covariance matrices is computation-
ally expensive compared to our democratic aggregation. We discuss these trade-
offs in the Section 4.5.
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Dataset

γ-democratic

ApDemocratic Optimal Sum

γ=0 γ γ = 1

Caltech UCSD Birds 84.7 84.9 (0.5) 84.0 85.9 (0.3)

Stanford Cars 89.7 90.8 (0.5) 90.6 91.7 (0.5)

FGVC Aircrafts 86.7 86.7 (0.0) 85.7 87.6 (0.3)

DTD 72.2 72.3 (0.3) 71.2 72.9 (0.6)

FMD 82.8 84.8 (0.8) 84.6 85.0 (0.7)

MIT indoor 79.6 80.4 (0.3) 79.5 80.9 (0.6)
Table 1. The accuracy of aggregating second-order features w.r.t. various aggrega-
tors using fine-tuned VGG-16 on fine-grained recognition (top) and using ImageNet
pretrained VGG-16 on other (bottom) datasets. From left to right, we vary γ values
and compare democratic pooling, γ-democratic pooling and average pooling with the
matrix power aggregation. The optimal values of γ and p are indicated in parentheses.

4.4 Democratic pooling with Tensor Sketching

One of the main advantages of the democratic pooling approaches over matrix
power normalization techniques is that the embeddings can be computed in a
low-dimensional space using tensor sketching. To demonstrate this advantage, we
compute the second-order democratic pooling combined with tensor sketching
on 2048 dimensional ResNet-101 features. Direct construction of second-order
features yields ∼4M dimensional features which are impractical to manipulate
on GPU/CPU. Therefore, we apply the Tensor Sketch [42] to approximate the
outer product using 8192 dimensional features, which is far lower than 20482 of
the full outer product. The features are aggregated using γ-democratic approach
with γ = 0.5. We compare our method to the state of the art on MIT indoor,
FMD and DTD datasets. We report the mean accuracy. For DTD and FMD, we
also indicate the standard deviation over 10 splits.

Results on MIT indoor. Table 2 reports the accuracy on MIT indoor. The
baseline model approximating second-order features with tensor sketch followed
by sum pooling achieves 82.8% accuracy. With democratic pooling, our model
achieves state-of-the-art accuracy of 84.3% which is 1.5% more than the baseline.
Moreover, Table 1 shows that we outperform the matrix power normalization
using VGG-16 network by 3.4%. Note that (i) matrix power normalization is
impractical for ResNet101 features, (ii) it cannot be computed by sketching due
to Proposition 6. We also outperform FASON [10] by 2.6%. FASON fuses the
first- and second-order features from conv4 4 and conv5 4 layers of the VGG-19
networks given 448×448 image size and scores 81.7% accuracy. Recent work on
Spectral Features [22] achieves the same accuracy as our best model with demo-
cratic pooling. However, approach [22] uses more data augmentations (rotation,
shifts, etc.) during training and pretrains the VGG-19 network on the large-scale
Places205 dataset. In contrast, our networks are pretrained on ImageNet which
arguably has a larger domain shift from the MIT indoor dataset than Places205.
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Method accuracy

Places-205 [54] 80.9
Deep Filter Banks [9] 81.0
Spectral Features [22] 84.3
FASON [10] 81.7

ResNet101 + TS + sum pooling (baseline) 82.8
ResNet101 + TS + γ-democratic (ours) 84.3

Table 2. Evaluations and comparisons to the state of the art on MIT indoor dataset.

Results on FMD. Table 3 compares the accuracy on FMD dataset. Recent
work on Deep filter banks [9], denoted as FV+FC+CNN, which combines fully-
connected CNN features and Fisher Vector approach, scores 82.1% accuracy. In
contrast to several methods, FASON uses single-scale input images (224×224)
and also scores 82.1% accuracy. Our second-order democratic pooling outper-
forms FASON by 0.7% given the same image size. For 448×448 image size, our
model scores 84.3% and outperforms other state-of-the-art approaches.

Method input size accuracy

IFV+DeCAF [8] ms 65.5 ± 1.3
FV+FC+CNN [9] ms 82.2 ± 1.4
LFV [51] ms 82.1 ± 1.9
SMO Task [60] - 82.3 ± 1.7
FASON [10] 224 82.1 ± 1.9

ResNet101 + TS + sum pooling (baseline) 448 83.7 ± 1.3
ResNet101 + TS + γ-democratic (ours) 448 84.3 ± 1.5
ResNet101 + TS + γ-democratic (ours) 224 82.8 ± 2.5

Table 3. Evaluations and comparisons to the state of the art on the FMD dataset. The
middle column indicates the image size used by each method (ms indicates multiple
scales while hyphen denotes an unknown size).

Results on DTD. Table 4 presents our results and comparisons on DTD
dataset. Deep filter banks [9], denoted as FV+FC+CNN, reports 75.5% accuracy.
Combined second-order features and tensor sketching outperforms Deep filter
banks by 0.3%. With second-order democratic pooling and 448×448 size im-
ages, our model achieves 76.2% accuracy and outperforms FV+FC+CNN 0.7%.
Note that FV+FC+CNN exploits several scales of image sizes.

4.5 Discussion

While matrix power normalization achieves marginally better performance, it
requires SVD which is computationally expensive and not GPU friendly e.g.,
the CUDA BLAS cannot perform SVD for large matrices. Even in the case of



14 Tsung-Yu Lin, Subhransu Maji and Piotr Koniusz

Method input size accuracy

LFV [51] ms 73.8 ± 1.0
FV+FC+CNN [9] ms 75.5 ± 0.8
FASON [10] 224 72.9 ± 0.7

ResNet101 + TS + sum pooling (baseline) 448 75.8 ± 0.7
ResNet101 + TS + γ-democratic (ours) 448 76.2 ± 0.7
ResNet101 + TS + γ-democratic (ours) 224 73.0 ± 0.6

Table 4. Evaluations and comparisons to the state of the art on the DTD dataset. The
middle column indicates the image size used by each method (ms indicates multiple
scales while hyphen denotes an unknown size).

matrix square root which can be approximated via Newton’s iterations [33], the
iterations involve matrix-matrix multiplication of O(n3) complexity. In contrast,
solving democratic pooling via the Sinkhorn algorithm (Algorithm 1) involves
only matrix-vector multiplication which is O(n2). Empirically, we find that solv-
ing Sinkhorn iterations is an order of magnitude faster than solving the matrix
square root on a NVIDIA Titan X GPU. Moreover, the complexity of Sinkhorn
iteration depends only on the kernel matrix – it is independent of the feature
vector size. In contrast, the memory required by a covariance matrix grows with
O(n2) which becomes prohibitive for feature vectors greater than 512 dimen-
sions. Second-order democratic pooling with tensor sketching yields comparable
results and reduces the memory usage by two orders of magnitude over the
matrix power normalization.

Although we did not report results using end-to-end training, one can easily
obtain the gradients of the Sinkhorn algorithm using automatic differentiation
by implementing Algorithm 1 in a library such as PyTorch or Tensorflow. Train-
ing using gradients from iterative solvers has been performed in a number of
applications (e.g., [13] and [36]) which suggests that it is a promising direction.

5 Conclusions

We proposed a second-order aggregation method referred to as γ-democratic
pooling that interpolates between sum (γ=1) and democratic pooling (γ=0)
and outperforms other aggregation approaches on several classification tasks. We
demonstrated that our approach enjoys low computational complexity compared
to the matrix square root approximations via Newton’s iterations. With the use
of sketching, our approach is not limited to aggregating small feature vectors
which is typically the case for the matrix power normalization. The source code
for the project is available at http://vis-www.cs.umass.edu/o2dp.
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