
Superpixel Sampling Networks

Varun Jampani1, Deqing Sun1, Ming-Yu Liu1,
Ming-Hsuan Yang1,2, Jan Kautz1

1NVIDIA 2UC Merced
{vjampani,deqings,mingyul,jkautz}@nvidia.com, mhyang@ucmerced.edu

Abstract. Superpixels provide an efficient low/mid-level representation
of image data, which greatly reduces the number of image primitives for
subsequent vision tasks. Existing superpixel algorithms are not differ-
entiable, making them difficult to integrate into otherwise end-to-end
trainable deep neural networks. We develop a new differentiable model
for superpixel sampling that leverages deep networks for learning super-
pixel segmentation. The resulting Superpixel Sampling Network (SSN)
is end-to-end trainable, which allows learning task-specific superpixels
with flexible loss functions and has fast runtime. Extensive experimen-
tal analysis indicates that SSNs not only outperform existing superpixel
algorithms on traditional segmentation benchmarks, but can also learn
superpixels for other tasks. In addition, SSNs can be easily integrated
into downstream deep networks resulting in performance improvements.

Keywords: Superpixels, Deep Learning, Clustering.

1 Introduction

Superpixels are an over-segmentation of an image that is formed by grouping im-
age pixels [33] based on low-level image properties. They provide a perceptually
meaningful tessellation of image content, thereby reducing the number of im-
age primitives for subsequent image processing. Owing to their representational
and computational efficiency, superpixels have become an established low/mid-
level image representation and are widely-used in computer vision algorithms
such as object detection [35,42], semantic segmentation [15,34,13], saliency esti-
mation [18,30,43,46], optical flow estimation [20,28,37,41], depth estimation [6],
tracking [44] to name a few. Superpixels are especially widely-used in tradi-
tional energy minimization frameworks, where a low number of image primitives
greatly reduce the optimization complexity.

The recent years have witnessed a dramatic increase in the adoption of deep
learning for a wide range of computer vision problems. With the exception of a
few methods (e.g., [13,18,34]), superpixels are scarcely used in conjunction with
modern deep networks. There are two main reasons for this. First, the stan-
dard convolution operation, which forms the basis of most deep architectures, is
usually defined over regular grid lattices and becomes inefficient when operat-
ing over irregular superpixel lattices. Second, existing superpixel algorithms are

2 Jampani et al.

Superpixel Sampling Network (SSN)

Deep
Network

Differentiable
SLIC

Image Superpixels

Superpixels for Semantic Segmentation

Image Superpixels Segmented Labels

Superpixels for Optical Flow

Image Superpixels Segmented Flow

Fig. 1: Overview of Superpixel Sampling Networks. A given image is first passed
onto a deep network that extracts features at each pixel, which are then used by
differentiable SLIC to generate the superpixels. Shown here are a couple of example
SSN generated task-specific superpixels for semantic segmentation and optical flow.

non-differentiable and thus using superpixels in deep networks introduces non-
differentiable modules in otherwise end-to-end trainable network architectures.

In this work, we alleviate the second issue by proposing a new deep dif-
ferentiable algorithm for superpixel segmentation. We start by revisiting the
widely-used Simple Linear Iterative Clustering (SLIC) superpixel algorithm [1]
and turn it into a differentiable algorithm by relaxing the nearest neighbor con-
straints present in SLIC. This new differentiable algorithm allows for end-to-end
training and enables us to leverage powerful deep networks for learning super-
pixels instead of using traditional hand-crafted features. This combination of a
deep network with differentiable SLIC forms our end-to-end trainable superpixel
algorithm which we call Superpixel Sampling Network (SSN). Fig. 1 shows an
overview of the proposed SSN. A given input image is first passed through a
deep network producing features at each pixel. These deep features are then
passed onto the differentiable SLIC, which performs iterative clustering, result-
ing in the desired superpixels. The entire network is end-to-end trainable. The
differentiable nature of SSN allows the use of flexible loss functions for learning
task-specific superpixels. Fig. 1 shows some sample SSN generated superpixels.

Experimental results on 3 different segmentation benchmark datasets includ-
ing BSDS500 [4], Cityscapes [10] and PascalVOC [11] indicate that the proposed
superpixel sampling network (SSN) performs favourably against existing promi-
nent superpixel algorithms, while also being faster. We also demonstrate that by
simply integrating our SSN framework into an existing semantic segmentation
network [13] that uses superpixels, performance improvements are achieved. In
addition, we demonstrate the flexibility of SSN in learning superpixels for other
vision tasks. Specifically, in a proof-of-concept experiment on the Sintel opti-
cal flow dataset [7], we demonstrate how we can learn superpixels that better
align with optical flow boundaries rather than standard object boundaries. The
proposed SSN has the following favorable properties in comparison to existing
superpixel algorithms:

Superpixel Sampling Networks 3

– End-to-end trainable: SSNs are end-to-end trainable and can be easily in-
tegrated into other deep network architectures. To the best of our knowledge,
this is the first end-to-end trainable superpixel algorithm.

– Flexible and task-specific: SSN allows for learning with flexible loss func-
tions resulting in the learning of task-specific superpixels.

– State-of-the-art performance: Experiments on a wide range of bench-
mark datasets show that SSN outperforms existing superpixel algorithms.

– Favorable runtime: SSN also performs favorably against prominent super-
pixel algorithms in terms of runtime, making it amenable to learn on large
datasets and also effective for practical applications.

2 Related Work

Superpixel algorithms. Traditional superpixel algorithms can be broadly clas-
sified into graph-based and clustering-based approaches. Graph-based approaches
formulate the superpixel segmentation as a graph-partitioning problem where
graph nodes are represented by pixels and the edges denote the strength of con-
nectivity between adjacent pixels. Usually, the graph partitioning is performed by
solving a discrete optimization problem. Some widely-used algorithms in this cat-
egory include the normalized-cuts [33], Felzenszwalb and Huttenlocher (FH) [12],
and the entropy rate superpixels (ERS) [26]. As discrete optimization involves
discrete variables, the optimization objectives are usually non-differentiable mak-
ing it difficult to leverage deep networks in graph-based approaches.

Clustering-based approaches, on the other hand, leverage traditional cluster-
ing techniques such as k-means for superpixel segmentation. Widely-used algo-
rithms in this category include SLIC [1], LSC [25], and Manifold-SLIC [27]. These
methods mainly do k-means clustering but differ in their feature representation.
While the SLIC [1] represents each pixel as a 5-dimensional positional and Lab

color features (XY Lab features), LSC [25] method projects these 5-dimensional
features on to a 10-dimensional space and performs clustering in the projected
space. Manifold-SLIC [27], on the other hand, uses a 2-dimensional manifold fea-
ture space for superpixel clustering. While these clustering algorithms require
iterative updates, a non-iterative clustering scheme for superpixel segmentation
is proposed in the SNIC method [2]. The proposed approach is also a clustering-
based approach. However, unlike existing techniques, we leverage deep networks
to learn features for superpixel clustering via an end-to-end training framework.

As detailed in a recent survey paper [36], other techniques are used for su-
perpixel segmentation, including watershed transform [29], geometric flows [24],
graph-cuts [39], mean-shift [9], and hill-climbing [5]. However, these methods all
rely on hand-crafted features and it is non-trivial to incorporate deep networks
into these techniques. A very recent technique of SEAL [38] proposed a way
to learn deep features for superpixel segmentation by bypassing the gradients
through non-differentiable superpixel algorithms. Unlike our SSN framework,
SEAL is not end-to-end differentiable.

4 Jampani et al.

Deep clustering. Inspired by the success of deep learning for supervised tasks,
several methods investigate the use of deep networks for unsupervised data clus-
tering. Recently, Greff et. al. [17] propose the neural expectation maximization
framework where they model the posterior distribution of cluster labels using
deep networks and unroll the iterative steps in the EM procedure for end-to-
end training. In another work [16], the Ladder network [31] is used to model a
hierarchical latent variable model for clustering. Hershey et. al. [19] propose a
deep learning-based clustering framework for separating and segmenting audio
signals. Xie et. al. [40] propose a deep embedded clustering framework, for simul-
taneously learning feature representations and cluster assignments. In a recent
survey paper, Aljalbout et. al. [3] give a taxonomy of deep learning based clus-
tering methods. In this paper, we also propose a deep learning-based clustering
algorithm. Different from the prior work, our algorithm is tailored for the super-
pixel segmentation task where we use image-specific constraints. Moreover, our
framework can easily incorporate other vision objective functions for learning
task-specific superpixel representations.

3 Preliminaries

At the core of SSN is a differentiable clustering technique that is inspired by the
SLIC [1] superpixel algorithm. Here, we briefly review the SLIC before describing
our SSN technique in the next section. SLIC is one of the simplest and also one
of the most widely-used superpixel algorithms. It is easy to implement, has fast
runtime and also produces compact and uniform superpixels.

Although there are several different variants [25,27] of SLIC algorithm, in the
original form, SLIC is a k-means clustering performed on image pixels in a five
dimensional position and color space (usually scaled XY Lab space). Formally,
given an image I ∈ R

n×5, with 5-dimensional XY Lab features at n pixels, the
task of superpixel computation is to assign each pixel to one of the m superpixels
i.e., to compute the pixel-superpixel association map H ∈ {0, 1, · · · ,m− 1}n×1.
The SLIC algorithm operates as follows. First, we sample initial cluster (super-
pixel) centers S0 ∈ R

m×5 in the 5-dimensional space. This sampling is usually
done uniformly across the pixel grid with some local perturbations based on
image gradients. Given these initial superpixel centers S0, the SLIC algorithm
proceeds in an iterative manner with the following two steps in each iteration t:

1. Pixel-Superpixel association: Associate each pixel to the nearest superpixel
center in the five-dimensional space, i.e., compute the new superpixel assign-
ment at each pixel p,

Ht
p = argmin

i∈{0,...,m−1}

D(Ip, S
t−1
i), (1)

where D denotes the distance computation D(a,b) = ||a− b||2.
2. Superpixel center update: Average pixel features (XY Lab) inside each su-

perpixel cluster to obtain new superpixel cluster centers St. For each super-

Superpixel Sampling Networks 5

pixel i, we compute the centroid of that cluster,

St
i =

1

Zt
i

∑

p|Ht
p=i

Ip, (2)

where Zt
i denotes the number of pixels in the superpixel cluster i.

These two steps form the core of the SLIC algorithm and are repeated until
either convergence or for a fixed number of iterations. Since computing the dis-
tance D in Eq. 1 between all the pixels and superpixels is time-consuming, this
computation is usually constrained to a fixed neighborhood around each super-
pixel center. At the end, depending on the application, there is an optional step
of enforcing spatial connectivity across pixels in each superpixel cluster. More
details regarding the SLIC algorithm can be found in Achanta et. al. [1]. In the
next section, we elucidate how we modify the SLIC algorithm to develop SSN.

4 Superpixel Sampling Networks

As illustrated in Fig. 1, SSN is composed of two parts: A deep network that
generates pixel features, which are then passed on to differentiable SLIC. Here,
we first describe the differentiable SLIC followed by the SSN architecture.

4.1 Differentiable SLIC

Why is SLIC not differentiable? A closer look at all the computations in SLIC
shows that the non-differentiability arises because of the computation of pixel-
superpixel associations, which involves a non-differentiable nearest neighbor op-
eration. This nearest neighbor computation also forms the core of the SLIC
superpixel clustering and thus we cannot avoid this operation.

A key to our approach is to convert the nearest-neighbor operation into a
differentiable one. Instead of computing hard pixel-superpixel associations H ∈
{0, 1, · · · ,m − 1}n×1 (in Eq. 1), we propose to compute soft-associations Q ∈
R

n×m between pixels and superpixels. Specifically, for a pixel p and superpixel
i at iteration t, we replace the nearest-neighbor computation (Eq. 1) in SLIC
with the following pixel-superpixel association.

Qt
pi = e−D(Ip,S

t−1
i

) = e−||Ip−S
t−1
i

||2 (3)

Correspondingly, the computation of new superpixels cluster centers (Eq. 2)
is modified as the weighted sum of pixel features,

St
i =

1

Zt
i

n∑

p=1

Qt
piIp, (4)

where Zt
i =

∑
p Q

t
pi is the normalization constant. For convenience, we refer to

the column normalized Qt as Q̂t and thus we can write the above superpixel

6 Jampani et al.

Input GT Segments Initial Superpixels SSNpix SSNdeep

Fig. 2: From initial grid to learned superpixels. An example visual result from
BSDS500 dataset showing the initial superpixel grid and the superpixels obtained with
SSNpix and SSNdeep. To compute the pixel-superpixel associations for every pixel in
the green box, only the surrounding superpixels in the red box are considered.

Algorithm 1 Superpixel Sampling Network (SSN)

Input: Image I
n×5

. ⊲ XY Lab features

Output: Pixel-Superpixel association Q
n×m

.

1: Pixel features using a CNN, F
n×k

= F(I).

2: Initial superpixel centers with average features in regular grid cells, S0

m×k
= J (F).

3: for each iteration t in 1 to v do

4: Compute association between each pixel p and the surrounding superpixel i,

Qt
pi = e−||Fp−S

t−1
i

||2 .
5: Compute new superpixel centers, St

i = 1

Zt
i

∑n

p=1
Qt

piFp; Z
t
i =

∑
p
Qt

pi.

6: end for

7: (Optional) Compute hard-associations Hv

n×1

;Hv
p = argmax

i∈{0,...,m−1}

Qv
pi.

8: (Optional) Enforce spatial connectivity.

center update as St = Q̂t
⊤
I. The size of Q is n×m and even for a small number

of superpixels m, it is prohibitively expensive to compute Qpi between all the
pixels and superpixels. Therefore, we constrain the distance computations from
each pixel to only 9 surrounding superpixels as illustrated using the red and
green boxes in Fig. 2. For each pixel in the green box, only the surrounding
superpixels in the red box are considered for computing the association. This
brings down the size of Q from n ×m to n × 9, making it efficient in terms of
both computation and memory. This approximation in the Q computation is
similar in spirit to the approximate nearest-neighbor search in SLIC.

Now, both the computations in each SLIC iteration are completely differen-
tiable and we refer to this modified algorithm as differentiable SLIC. Empirically,
we observe that replacing the hard pixel-superpixel associations in SLIC with the
soft ones in differentiable SLIC does not result in any performance degradations.
Since this new superpixel algorithm is differentiable, it can be easily integrated
into any deep network architecture. Instead of using manually designed pixel
features Ip, we can leverage deep feature extractors and train the whole net-
work end-to-end. In other words, we replace the image features Ip in the above
computations (Eq. 3 and 4) with k dimensional pixel features Fp ∈ R

n×k com-
puted using a deep network. We refer to this coupling of deep networks with the
differentiable SLIC as Superpixel Sampling Network (SSN).

Superpixel Sampling Networks 7

Image (X
YLab)

Super
pixels

C
o
n
v
-B

N
-R

eL
U

C
o
n
v
-B

N
-R

eL
U

P
o
o
l-
C
o
n
v
-B

N
-R

eL
U

C
o
n
v
-B

N
-R

eL
U

P
o
o
l-
C
o
n
v
-B

N
-R

eL
U

C
o
n
v
-B

N
-R

eL
U

C
o
n
ca
t-
C
o
n
v
-R

eL
U

Deep Network

Compute

Pixel-Superpixel

Association

Compute

Superpixel

Centers

v iterations

Differentiable SLIC

Fig. 3:Computation flow of SSN. Our network is composed of a series of convolution
layers interleaved with Batch Norm (BN) and ReLU nonlinearities. ↑ denotes bilinear
upsampling to the original image resolution. The features from CNNs are then passed
onto iterative updates in the differentiable SLIC to generate superpixels.

Algorithm 1 outlines all the computation steps in SSN. The algorithm starts
with deep image feature extraction using a CNN (line 1). We initialize the su-
perpixel cluster centers (line 2) with the average pixels features in an initial
regular superpixel grid (Fig. 2). Then, for v iterations, we iteratively update
pixel-superpixel associations and superpixel centers, using the above-mentioned
computations (lines 3-6). Although one could directly use soft pixel-superpixel
associations Q for several downstream tasks, there is an optional step of convert-
ing soft associations to hard ones (line 7), depending on the application needs. In
addition, like in the original SLIC algorithm, we can optionally enforce spatial
connectivity across pixels inside each superpixel cluster. This is accomplished
by merging the superpixels, smaller than certain threshold, with the surround-
ing ones and then assigning a unique cluster ID for each spatially-connected
component. Note that these two optional steps (lines 7, 8) are not differentiable.

Mapping between pixel and superpixel representations. For some down-
stream applications that use superpixels, pixel representations are mapped onto
superpixel representations and vice versa. With the traditional superpixel al-
gorithms, which provide hard clusters, this mapping from pixel to superpixel
representations is done via averaging inside each cluster (Eq. 2). The inverse
mapping from superpixel to pixel representations is done by assigning the same
superpixel feature to all the pixels belonging to that superpixel. We can use the
same pixel-superpixel mappings with SSN superpixels as well, using the hard
clusters (line 7 in Algorithm 1) obtained from SSN. However, since this compu-
tation of hard-associations is not differentiable, it may not be desirable to use
hard clusters when integrating into an end-to-end trainable system. It is worth
noting that the soft pixel-superpixel associations generated by SSN can also be
easily used for mapping between pixel and superpixel representations. Eq. 4 al-
ready describes the mapping from a pixel to superpixel representation which is a
simple matrix multiplication with the transpose of column-normalized Q matrix:
S = Q̂⊤F , where F and S denote pixel and superpixel representations respec-
tively. The inverse mapping from superpixel to pixel representation is done by
multiplying the row-normalized Q, denoted as Q̃, with the superpixel represen-

8 Jampani et al.

tations, F = Q̃S. Thus the pixel-superpixel feature mappings are given as simple
matrix multiplications with the association matrix and are differentiable. Later,
we will make use of these mappings in designing the loss functions to train SSN.

4.2 Network Architecture

Fig. 3 shows the SSN network architecture. The CNN for feature extraction
is composed of a series of convolution layers interleaved with batch normaliza-
tion [21] (BN) and ReLU activations. We use max-pooling, which downsamples
the input by a factor of 2, after the 2nd and 4th convolution layers to increase
the receptive field. We bilinearly upsample the 4th and 6th convolution layer out-
puts and then concatenate with the 2nd convolution layer output to pass onto
the final convolution layer. We use 3× 3 convolution filters with the number of
output channels set to 64 in each layer, except the last CNN layer which outputs
k − 5 channels. We concatenate this k − 5 channel output with the XY Lab of
the given image resulting in k-dimensional pixel features. We choose this CNN
architecture for its simplicity and efficiency. Other network architectures are con-
ceivable. The resulting k dimensional features are passed onto the two modules
of differentiable SLIC that iteratively updates pixel-superpixel associations and
superpixel centers for v iterations. The entire network is end-to-end trainable.

4.3 Learning Task-Specific Superpixels

One of the main advantages of end-to-end trainable SSN is the flexibility in terms
of loss functions, which we can use to learn task-specific superpixels. Like in any
CNN, we can couple SSN with any task-specific loss function resulting in the
learning of superpixels that are optimized for downstream computer vision tasks.
In this work, we focus on optimizing the representational efficiency of superpixels
i.e., learning superpixels that can efficiently represent a scene characteristic such
as semantic labels, optical flow, depth etc. As an example, if we want to learn
superpixels that are going to be used for downstream semantic segmentation
task, it is desirable to produce superpixels that adhere to semantic boundaries.
To optimize for representational efficiency, we find that the combination of a
task-specific reconstruction loss and a compactness loss performs well.
Task-specific reconstruction loss. We denote the pixel properties that we
want to represent efficiently with superpixels as R ∈ R

n×l. For instance, R can
be semantic label (as one-hot encoding) or optical flow maps. It is important to
note that we do not have access to R during the test time, i.e., SSN predicts
superpixels only using image data. We only useR during training so that SSN can
learn to predict superpixels suitable to represent R. As mentioned previously in
Section 4.1, we can map the pixel properties onto superpixels using the column-
normalized association matrix Q̂, R̆ = Q̂⊤R, where R̆ ∈ R

m×l. The resulting
superpixel representation R̆ is then mapped back onto pixel representation R∗

using row-normalized association matrix Q̃, R∗ = Q̃S, where R∗ ∈ R
n×l. Then

the reconstruction loss is given as

Superpixel Sampling Networks 9

Lrecon = L(R,R∗) = L(R, Q̃Q̂⊤R) (5)

where L(., .) denotes a task-specific loss-function. In this work, for segmentation
tasks, we used cross-entropy loss for L and used L1-norm for learning superpixels
for optical flow. HereQ denotes the association matrix Qv after the final iteration
of differentiable SLIC. We omit v for convenience.
Compactness loss. In addition to the above loss, we also use a compactness
loss to encourage superpixels to be spatially compact i.e., to have lower spatial
variance inside each superpixel cluster. Let Ixy denote positional pixel features.
We first map these positional features into our superpixel representation, Sxy =
Q̂⊤Ixy. Then, we do the inverse mapping onto the pixel representation using
the hard associations H, instead of soft associations Q, by assigning the same
superpixel positional feature to all the pixels belonging to that superpixel, Īxyp =
Sxy
i |Hp = i. The compactness loss is defined as the following L2 norm:

Lcompact = ||Ixy − Īxy||2. (6)

This loss encourages superpixels to have lower spatial variance. The flexibility
of SSN allows using many other loss functions, which makes for interesting future
research. The overall loss we use in this work is a combination of these two loss
functions, L = Lrecon+λLcompact, where we set λ to 10−5 in all our experiments.

4.4 Implementation and Experiment Protocols

We implement the differentiable SLIC as neural network layers using CUDA
in the Caffe neural network framework [22]. All the experiments are performed
using Caffe with the Python interface. We use scaled XY Lab features as input
to the SSN, with position and color feature scales represented as γpos and γcolor
respectively. The value of γcolor is independent of the number of superpixels and
is set to 0.26 with color values ranging between 0 and 255. The value of γpos
depends on the number of superpixels, γpos = ηmax (mw/nw,mh/nh), where
mw, nw andmh, nh denotes the number of superpixels and pixels along the image
width and height respectively. In practice, we observe that η = 2.5 performs well.

For training, we use image patches of size 201× 201 and 100 superpixels. In
terms of data augmentation, we use left-right flips and for the small BSDS500
dataset [4], we use an additional data augmentation of random scaling of image
patches. For all the experiments, we use Adam stochastic optimization [23] with
a batch size of 8 and a learning rate of 0.0001. Unless otherwise mentioned,
we trained the models for 500K iterations and choose the final trained models
based on validation accuracy. For the ablation studies, we trained models with
varying parameters for 200K iterations. It is important to note that we use
a single trained SSN model for estimating varying number of superpixels by
scaling the input positional features as described above. We use 5 iterations
(v = 5) of differentiable SLIC for training and used 10 iterations while testing
as we observed only marginal performance gains with more iterations. Refer to
https://varunjampani.github.io/ssn/ for the code and trained models.

https://varunjampani.github.io/ssn/

10 Jampani et al.

5 Experiments

We conduct experiments on 4 different benchmark datasets. We first demon-
strate the use of learned superpixels with experiments on the prominent super-
pixel benchmark BSDS500 [4] (Section 5.1). We then demonstrate the use of
task-specific superpixels on the Cityscapes [10] and PascalVOC [11] datasets for
semantic segmentation (Section 5.2), and on MPI-Sintel [7] dataset for optical
flow (Section 5.3). In addition, we demonstrate the use of SSN superpixels in a
downstream semantic segmentation network that uses superpixels (Section 5.2).

5.1 Learned Superpixels

We perform ablation studies and evaluate against other superpixel techniques
on the BSDS500 benchmark dataset [4]. BSDS500 consists of 200 train, 100
validation, and 200 test images. Each image is annotated with ground-truth (GT)
segments from multiple annotators. We treat each annotation as as a separate
sample resulting in 1633 training/validation pairs and 1063 testing pairs.

In order to learn superpixels that adhere to GT segments, we use GT segment
labels in the reconstruction loss (Eq. 5). Specifically, we represent GT segments
in each image as one-hot encoding vectors and use that as pixel properties R in
the reconstruction loss. We use the cross-entropy loss for L in Eq. 5. Note that,
unlike in the semantic segmentation task where the GT labels have meaning,
GT segments in this dataset do not carry any semantic meaning. This does not
pose any issue to our learning setup as both the SSN and reconstruction loss are
agnostic to the meaning of pixel properties R. The reconstruction loss generates
a loss value using the given input signal R and its reconstructed version R∗ and
does not consider whether the meaning of R is preserved across images.
Evaluation metrics. Superpixels are useful in a wide range of vision tasks and
several metrics exist for evaluating superpixels. In this work, we consider Achiev-
able Segmentation Accuracy (ASA) as our primary metric while also reporting
boundary metrics such as Boundary Recall (BR) and Boundary Precision (BP)
metrics. ASA score represents the upper bound on the accuracy achievable by
any segmentation step performed on the superpixels. Boundary precision and
recall on the other hand measures how well the superpixel boundaries align with
the GT boundaries. We explain these metrics in more detail in the supplemen-
tary material. The higher these scores, the better is the segmentation result.
We report the average ASA and boundary metrics by varying the average num-
ber of generated superpixels. A fair evaluation of boundary precision and recall
expects superpixels to be spatially connected. Thus, for the sake of unbiased
comparisons, we follow the optional post-processing of computing hard clusters
and enforcing spatial connectivity (lines 7–8 in Algorithm 1) on SSN superpixels.
Ablation studies. We refer to our main model illustrated in Fig. 3, with 7
convolution layers in deep network, as SSNdeep. As a baseline model, we evalute
the superpixels generated with differentiable SLIC that takes pixel XY Lab fea-
tures as input. This is similar to standard SLIC algorithm, which we refer to
as SSNpix and has no trainable parameters. As an another baseline model, we

Superpixel Sampling Networks 11

300 350 400 450 500 550 600
Number of Superpixels

95

96

97

AS
A

Sc
or

e SSNpix, v=10
SSNlinear, v=10
SSNdeep, v=10, k=10
SSNdeep, v=10, k=20
SSNdeep, v=10, k=30
SSNdeep, v=5, k=20
SSNdeep, v=15, k=20

300 350 400 450 500 550 600
Number of Superpixels

86

88

90

92

94

B
R

 S
co

re

SSNpix, v=10
SSNlinear, v=10
SSNdeep, v=10, k=10
SSNdeep, v=10, k=20
SSNdeep, v=10, k=30
SSNdeep, v=5, k=20
SSNdeep, v=15, k=20

Fig. 4: Ablation studies on BSDS500. Results on the test set show that both the
ASA and BR scores considerably improve with deep network, and marginally improve
with higher number of feature dimensions k and differentiable SLIC iterations v.

replaced the deep network with a single convolution layer that learns to linearly
transform input XY Lab features, which we refer to as SSNlinear.

Fig. 4 shows the average ASA and BR scores for these different models with
varying feature dimensionality k and the number of iterations v in differentiable
SLIC. The ASA and BR of SSNlinear is already reliably higher than the baseline
SSNpix showing the importance of our loss functions and back-propagating the
loss signal through the superpixel algorithm. SSNdeep further improves ASA
and BR scores by a large margin. We observe slightly better scores with higher
feature dimensionality k and also more iterations v. For computational reasons,
we choose k = 20 and v = 10 and from here on refer to this model as SSNdeep.

200 300 400 500 600 700 800 900 1000 1100
Number of Superpixels

93

94

95

96

97

98

AS
A

Sc
or

e

SLIC
SNIC
SEEDS
LSC
ERS
ETPS
SCALP
SSNpix

SSNdeep

84 86 88 90 92 94 96 98 100
Boundary Recall

15

20

25

30

35

40

45

B
ou

nd
ar

y
Pr

ec
is

io
n SLIC

SNIC
SEEDS
LSC
ERS
ETPS
SCALP
SSNpix

SSNdeep

Fig. 5: Results on BSDS500 test. SSN performs favourably against other techniques
in terms of both ASA score and boundary precision-recall.

Comparison with the state-of-the-arts. Fig. 5 shows the ASA and precision-
recall comparison of SSN with state-of-the-art superpixel algorithms. We com-
pare with the following prominent algorithms: SLIC [1], SNIC [2], SEEDS [5],
LSC [25], ERS [26], ETPS [45] and SCALP [14]. Plots indicate that SSNpix

performs similarly to SLIC superpixels, showing that the performance of SLIC
does not drop when relaxing the nearest neighbor constraints. Comparison with
other techniques indicate that SSN performs considerably better in terms of both
ASA score and precision-recall. Fig. 2 shows a visual result comparing SSNpix

and SSNdeep and, Fig. 7 shows visual results comparing SSNdeep with state-of-
the-arts. Notice that SSNdeep superpixels smoothly follow object boundaries and
are also more concentrated near the object boundaries.

12 Jampani et al.

200 300 400 500 600 700 800 900 1000 1100
Number of Superpixels

90

91

92

93

94

95

96

97

AS
A

Sc
or

e

SLIC
SNIC
LSC
ERS
SEAL
GSLICR
SSNpix

SSNdeep

50 55 60 65 70 75 80
Boundary Recall

20

22

24

26

28

30

32

B
ou

nd
ar

y
Pr

ec
is

io
n

SLIC
SNIC
LSC
ERS
SEAL
GSLICR
SSNpix

SSNdeep

Fig. 6: Results on Cityscapes validation. ASA and boundary precision-recall shows
that SSN performs favourably against other techniques.

5.2 Superpixels for Semantic Segmentation

In this section, we present results on the semantic segmentation benchmarks of
Cityscapes [10] and PascalVOC [11]. The experimental settings are quite similar
to that of the previous section with the only difference being the use of semantic
labels as the pixel properties R in the reconstruction loss. Thus, we encourage
SSN to learn superpixels that adhere to semantic segments.

Model GPU/CPU Time (ms)

SLIC [1] CPU 350
SNIC [2] CPU 810
SEEDS [5] CPU 160
LSC [25] CPU 1240
ERS [26] CPU 4600
SEAL-ERS [38] GPU-CPU 4610
GSLICR [32] GPU 10

SSN models

SSNpix,v=10 GPU 58

SSNdeep,v=5,k=10 GPU 71

SSNdeep,v=10,k=10 GPU 90

SSNdeep,v=5,k=20 GPU 80

SSNdeep,v=10,k=20 GPU 101

Table 1: Runtime Analysis. Average
runtime (in ms) of different superpixel
techniques, for computing 1000 super-
pixels on a 512× 1024 cityscapes image.

Cityscapes. Cityscapes is a large scale
urban scene understanding benchmark
with pixel accurate semantic annota-
tions. We train SSN with the 2975 train
images and evaluate on the 500 valida-
tion images. For the ease of experimenta-
tion, we experiment with half-resolution
(512 × 1024) images. Plots in Fig. 6
shows that SSNdeep performs on par with
SEAL [38] superpixels in terms of ASA
while being better in terms of precision-
recall. We show a visual result in Fig. 7
with more in the supplementary.
Runtime analysis. We report the ap-
proximate runtimes of different techniques, for computing 1000 superpixels on
a 512 × 1024 cityscapes image in Table 1. We compute GPU runtimes using
an NVIDIA Tesla V100 GPU. The runtime comparison between SSNpix and
SSNdeep indicates that a significant portion of the SSN computation time is due
to the differentiable SLIC. The runtimes indicate that SSN is considerably faster
than the implementations of several superpixel algorithms.
PascalVOC. PascalVOC2012 [11] is another widely-used semantic segmenta-
tion benchmark, where we train SSN with 1464 train images and validate on 1449
validation images. Fig. 8(a) shows the ASA scores for different techniques. We do
not analyze boundary scores on this dataset as the GT semantic boundaries are
dilated with an ignore label. The ASA scores indicate that SSNdeep outperforms
other techniques. We also evaluated the BSDS-trained model on this dataset
and observed only a marginal drop in accuracy (‘SSNdeep-BSDS’ in Fig. 8(a)).
This shows the generalization and robustness of SSN to different datasets. An
example visual result is shown in Fig. 7 with more in the supplementary.

Superpixel Sampling Networks 13

Input GT Segments SLIC LSC ERS SSNdeep (Ours)

B
S
D
S
5
0
0

C
it
y
sc
a
p
e
s

P
a
sc
a
lV

O
C

Fig. 7: Example visual results on different segmentation benchmarks. Notice
the segregation of SSNdeep superpixels around object boundaries.

100 200 300 400 500 600
Number of Superpixels

97

98

99

100

AS
A

Sc
or

e

SLIC
SNIC
SEEDS
LSC
ERS
SSNpix

SSNdeep BSDS
SSNdeep

(a) VOC Semantic Segmenation

200 300 400 500 600 700 800 900
Number of Superpixels

1.0

1.5

2.0

2.5

E
nd

 P
oi

nt
 E

rr
or

 (E
PE

) SLIC
SNIC
LSC
ERS
SSNpix

SSNdeep

(b) MPI-Sintel Optical Flow

Fig. 8: Learning task-specific superpixels. (a) ASA scores on PascalVOC2012 val-
idation dataset and (b) EPE scores on Sintel optical flow validation dataset showing
the robustness of SSN across different tasks and datasets.

Method IoU

DeepLab [8] 68.9
+ CRF [8] 72.7
+ BI (SLIC) [13] 74.1
+ BI (SSNdeep) 75.3

Table 2: SSN with a downstream

CNN. IoU improvements, on the
VOC2012 test data, with the integra-
tion of SSN into the bilateral incep-
tion (BI) network from [13].

We perform an additional experiment
where we plug SSN into the downstream se-
mantic segmentation network of [13], The
network in [13] has bilateral inception lay-
ers that makes use of superpixels for long-
range data-adaptive information propaga-
tion across intermediate CNN representa-
tions. Table 2 shows the Intersection over
Union (IoU) score for this joint model eval-
uated on the test data. The improvements
in IoU with respect to original SLIC super-
pixels used in [13] shows that SSN can also bring performance improvements to
the downstream task networks that use superpixels.

5.3 Superpixels for Optical Flow

To demonstrate the applicability of SSN for regression tasks as well, we conduct
a proof-of-concept experiment where we learn superpixels that adhere to optical
flow boundaries. To this end, we experiment on the MPI-Sintel dataset [7] and
use SSN to predict superpixels given a pair of input frames. We use GT optical
flow as pixel properties R in the reconstruction loss (Eq. 5) and use L1 loss for
L, encouraging SSN to generate superpixels that can effectively represent flow.

14 Jampani et al.

Input GT Flow LSC Segment Flow SLIC Segment Flow SSNdeep Segment Flow

Fig. 9: Sample visual result on Sintel optical flow. Segmented flow visuals ob-
tained with different types of superpixels indicate that SSNdeep superpixels can better
represent GT optical flow compared to other techniques.

The MPI-Sintel dataset consists of 23 video sequences, which we split into
disjoint sets of 18 (836 frames) training and 5 (205 frames) validation sequences.
To evaluate the superpixels, we follow a similar strategy as for computing ASA.
That is, for each pixel inside a superpixel, we assign the average GT optical flow
resulting in a segmented flow. Fig. 9 shows sample segmented flows obtained
using different types of superpixels. We then compute the Euclidean distance
between the GT flow and the segmented flow, which is referred to as end-point
error (EPE). The lower the EPE value, the better the superpixels are for rep-
resenting flow. A sample result in Fig. 9 shows that SSNdeep superpixels are
better aligned with the changes in the GT flow than other superpixels. Fig. 8(b)
shows the average EPE values for different techniques where SSNdeep performs
favourably against existing superpixel techniques. This shows the usefulness of
SSN in learning task-specific superpixels.

6 Conclusion

We propose a novel superpixel sampling network (SSN) that leverages deep fea-
tures learned via end-to-end training for estimating task-specific superpixels. To
our knowledge, this is the first deep superpixel prediction technique that is end-
to-end trainable. Experiments several benchmarks show that SSN consistently
performs favorably against state-of-the-art superpixel techniques, while also be-
ing faster. Integration of SSN into a semantic segmentation network [13] also
results in performance improvements showing the usefulness of SSN in down-
stream computer vision tasks. SSN is fast, easy to implement, can be easily
integrated into other deep networks and has good empirical performance.

SSN has addressed one of the main hurdles for incorporating superpixels into
deep networks which is the non-differentiable nature of existing superpixel algo-
rithms. The use of superpixels inside deep networks can have several advantages.
Superpixels can reduce the computational complexity, especially when process-
ing high-resolution images. Superpixels can also be used to enforce piece-wise
constant assumptions and also help in long-range information propagation [13].
We believe this work opens up new avenues in leveraging superpixels inside deep
networks and also inspires new deep learning techniques that use superpixels.
Acknowledgments. We thank Wei-Chih Tu for providing evaluation scripts. We
thank Ben Eckart for his help in the supplementary video.

Superpixel Sampling Networks 15

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC su-
perpixels compared to state-of-the-art superpixel methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 34(11), 2274–2282 (2012)

2. Achanta, R., Susstrunk, S.: Superpixels and polygons using simple non-iterative
clustering. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

3. Aljalbout, E., Golkov, V., Siddiqui, Y., Cremers, D.: Clustering with deep learning:
Taxonomy and new methods. arXiv preprint arXiv:1801.07648 (2018)

4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) 33(5), 898–916 (2011)

5. Van den Bergh, M., Boix, X., Roig, G., Van Gool, L.: SEEDS: Superpixels ex-
tracted via energy-driven sampling. International Journal of Computer Vision
(IJCV) 111(3), 298–314 (2015)

6. Van den Bergh, M., Carton, D., Van Gool, L.: Depth SEEDS: Recovering in-
complete depth data using superpixels. In: IEEE Workshop on Applications of
Computer Vision (WACV). pp. 363–368 (2013)

7. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: European Conference on Computer Vision (ECCV).
pp. 611–625. Springer (2012)

8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic
image segmentation with deep convolutional nets and fully connected CRFs. In:
International Conference on Learning Representations (ICLR) (2015)

9. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
24(5), 603–619 (2002)

10. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

11. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisser-
man, A.: The Pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision (IJCV) 111(1), 98–136 (2015)

12. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision (IJCV) (2004)

13. Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.: Superpixel convolu-
tional networks using bilateral inceptions. In: European Conference on Computer
Vision (ECCV) (2016)

14. Giraud, R., Ta, V.T., Papadakis, N.: SCALP: Superpixels with contour adherence
using linear path. In: International Conference on Pattern Recognition (ICPR)
(2016)

15. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation
with relative location prior. International Journal of Computer Vision 80(3), 300–
316 (2008)

16. Greff, K., Rasmus, A., Berglund, M., Hao, T., Valpola, H., Schmidhuber, J.: Tag-
ger: Deep unsupervised perceptual grouping. In: Advances in Neural Information
Processing Systems (NIPS) (2016)

16 Jampani et al.

17. Greff, K., van Steenkiste, S., Schmidhuber, J.: Neural expectation maximization.
In: Advances in Neural Information Processing Systems (NIPS) (2017)

18. He, S., Lau, R.W., Liu, W., Huang, Z., Yang, Q.: SuperCNN: A superpixelwise
convolutional neural network for salient object detection. International Journal of
Computer Vision (IJCV) 115(3), 330–344 (2015)

19. Hershey, J.R., Chen, Z., Le Roux, J., Watanabe, S.: Deep clustering: Discriminative
embeddings for segmentation and separation. In: IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2016)

20. Hu, Y., Song, R., Li, Y., Rao, P., Wang, Y.: Highly accurate optical flow estimation
on superpixel tree. Image and Vision Computing 52, 167–177 (2016)

21. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning
(ICML). pp. 448–456 (2015)

22. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: ACM Multimedia (MM). pp. 675–678 (2014)

23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

24. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi,
K.: Turbopixels: Fast superpixels using geometric flows. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 31(12), 2290–2297 (2009)

25. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

26. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2011)

27. Liu, Y.J., Yu, C.C., Yu, M.J., He, Y.: Manifold slic: A fast method to compute
content-sensitive superpixels. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2016)

28. Lu, J., Yang, H., Min, D., Do, M.N.: Patch match filter: Efficient edge-aware fil-
tering meets randomized search for fast correspondence field estimation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1854–1861
(2013)

29. Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., De-
cencière, E.: Waterpixels. IEEE Transactions on Image Processing (TIP) 24(11),
3707–3716 (2015)

30. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast
based filtering for salient region detection. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 733–740 (2012)

31. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: Advances in Neural Information Processing Sys-
tems (NIPS) (2015)

32. Ren, C.Y., Prisacariu, V.A., Reid, I.D.: gSLICr: SLIC superpixels at over 250hz.
arXiv preprint arXiv:1509.04232 (2015)

33. Ren, X., Malik, J.: Learning a classification model for segmentation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2003)

34. Sharma, A., Tuzel, O., Liu, M.Y.: Recursive context propagation network for se-
mantic scene labeling. In: Advances in Neural Information Processing Systems
(NIPS) (2014)

Superpixel Sampling Networks 17

35. Shu, G., Dehghan, A., Shah, M.: Improving an object detector and extracting
regions using superpixels. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3721–3727 (2013)

36. Stutz, D., Hermans, A., Leibe, B.: Superpixels: An evaluation of the state-of-the-
art. Computer Vision and Image Understanding 166(C), 1–27 (2018)

37. Sun, D., Liu, C., Pfister, H.: Local layering for joint motion estimation and occlu-
sion detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1098–1105 (2014)

38. Tu, W.C., Liu, M.Y., Jampani, V., Sun, D., Chien, S.Y., Yang, M.H., Kautz, J.:
Learning superpixels with segmentation-aware affinity loss. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

39. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy
optimization framework. In: European Conference on Computer Vision (ECCV)
(2010)

40. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: International conference on machine learning (ICML) (2016)

41. Yamaguchi, K., McAllester, D., Urtasun, R.: Robust monocular epipolar flow
estimation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 1862–1869 (2013)

42. Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling superpixels.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
5107–5116 (2015)

43. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-
based manifold ranking. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2013)

44. Yang, F., Lu, H., Yang, M.H.: Robust superpixel tracking. IEEE Transactions on
Image Processing 23(4), 1639–1651 (2014)

45. Yao, J., Boben, M., Fidler, S., Urtasun, R.: Real-time coarse-to-fine topologically
preserving segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015)

46. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust back-
ground detection. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2014)

