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Abstract. Though Faster R-CNN based two-stage detectors have wit-
nessed significant boost in pedestrian detection accuracy, it is still slow
for practical applications. One solution is to simplify this working flow
as a single-stage detector. However, current single-stage detectors (e.g.
SSD) have not presented competitive accuracy on common pedestrian
detection benchmarks. This paper is towards a successful pedestrian
detector enjoying the speed of SSD while maintaining the accuracy of
Faster R-CNN. Specifically, a structurally simple but effective module
called Asymptotic Localization Fitting (ALF) is proposed, which stacks
a series of predictors to directly evolve the default anchor boxes of
SSD step by step into improving detection results. As a result, during
training the latter predictors enjoy more and better-quality positive
samples, meanwhile harder negatives could be mined with increasing
IoU thresholds. On top of this, an efficient single-stage pedestrian
detection architecture (denoted as ALFNet) is designed, achieving state-
of-the-art performance on CityPersons and Caltech, two of the largest
pedestrian detection benchmarks, and hence resulting in an attractive
pedestrian detector in both accuracy and speed. Code is available at
https://github.com/VideoObjectSearch/ALFNet.

Keywords: Pedestrian Detection - Convolutional Neural Networks -
Asymptotic Localization Fitting

1 Introduction

Pedestrian detection is a key problem in a number of real-world applications
including auto-driving systems and surveillance systems, and is required to have
both high accuracy and real-time speed. Traditionally, scanning an image in
a sliding-window paradigm is a common practice for object detection. In this
paradigm, designing hand-crafted features [11,2,10,29] is of critical importance
for state-of-the-art performance, which still remains as a difficult task.
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Beyond early studies focusing on hand-craft features, RCNN [17] firstly
introduced CNN into object detection. Following RCNN, Faster-RCNN [32]
proposed Region Proposal Network (RPN) to generate proposals in a unified
framework. Beyond its success on generic object detection, numerous adapted
Faster-RCNN detectors were proposed and demonstrated better accuracy for
pedestrian detection [12,4141]. However, when the processing speed is considered,
Faster-RCNN is still unsatisfactory because it requires two-stage processing,
namely proposal generation and classification of ROIpooling features. Alterna-
tively, as a representative one-stage detector, Single Shot MultiBox Detector
(SSD) [27] discards the second stage of Faster-RCNN [32] and directly regresses
the default anchors into detection boxes. Though faster, SSD [27] has not
presented competitive results on common pedestrian detection benchmarks (e.g.
CityPersons [141] and Caltech [12]). It motivates us to think what the key is in
Faster R-CNN and whether this key could be transfered to SSD. Since both
SSD and Faster R-CNN have default anchor boxes, we guess that the key is
the two-step prediction of the default anchor boxes, with RPN one step, and
prediction of ROIs another step, but not the ROI-pooling module. Recently,
Cascade R-CNN [6] has proved that Faster R-CNN can be further improved
by applying multi-step ROI-pooling and prediction after RPN. Besides, another
recent work called RefineDet [45] suggests that ROI-pooling can be replaced by a
convolutional transfer connection block after RPN. Therefore, it seems possible
that the default anchors in SSD could be directly processed in multi-steps for
an even simpler solution, with neither RPN nor ROI-pooling.

Another problem for SSD based pedestrian detection is caused by using a
single ToU threshold for training. On one hand, a lower IoU threshold (e.g. 0.5)
is helpful to define adequate number of positive samples, especially when there
are limited pedestrian instances in the training data. For example, as depicted in
Fig.1 (a), the augmented training data [12] on Caltech has 42782 images, among
which about 80% images have no pedestrian instances, while the remains have
only 1.4 pedestrian instances per image. However, a single lower IoU threshold
during training will result in many ”close but not correct” false positives during
inference, as demonstrated in Cascade R-CNN [6]. On the other hand, a higher
IoU threshold (e.g. 0.7) during training is helpful to reject close false positives
during inference, but there are much less matched positives under a higher ToU
threshold, as pointed out by Cascade R-CNN and also depicted in Fig.1 (b).
This positive-negative definition dilemma makes it hard to train a high-quality
SSD, yet this problem is alleviated by the two-step prediction in Faster R-CNN.

The above analyses motivate us to train the SSD in multi-steps with
improving localization and increasing IoU thresholds. Consequently, in this
paper a simple but effective module called Asymptotic Localization Fitting
(ALF) is proposed. It directly starts from the default anchors in SSD, and
convolutionally evolves all anchor boxes step by step, pushing more anchor
boxes closer to groundtruth boxes. On top of this, a novel pedestrian detection
architecture is constructed, denoted as Asymptotic Localization Fitting Network



Learning Efficient Single-stage Pedestrian Detectors by ALF 3

x10*

num of positive samples

05 055 06 065 07 075 08 085 09 095
loU threshold

{a) (b)

Fig. 1. (a) Percentage of images with different number of pedestrian instances on the
Caltech training dataset newly annotated by [13]. (b) Number of positive anchors w.r.t.
different IoU threshold. Each bar represents the number of default anchors matched
with any ground truth higher than the corresponding IoU threshold.

(ALFNet). ALFNet significantly improves the pedestrian detection accuracy
while maintaining the efficiency of single-stage detectors. Extensive experiments
and analysis on two large-scale pedestrian detection datasets demonstrate the
effectiveness of the proposed method independent of the backbone network.

To sum up, the main contributions of this work lie in: (1) a module called ALF
is proposed, using multi-step prediction for asymptotic localization to overcome
the limitations of single-stage detectors in pedestrian detection; (2) the proposed
method achieves new state-of-the-art results on two of the largest pedestrian
benchmarks (i.e., CityPerson [141], Caltech [12]).

2 Related work

Generally, CNN-based generic object detection can be roughly classified into two
categories. The first type is named as two-stage methods [17,16,32,8], which first
generates plausible region proposals, then refines them by another sub-network.
However, its speed is limited by repeated CNN feature extraction and evaluation.
Recently, in the two-satage framework, numerous methods have tried to improve
the detection performance by focusing on network architecture [8,22,23,25],
training strategy [34,39], auxiliary context mining [1,15,35], and so on, while the
heavy computational burden is still an unavoidable problem. The second type
[27,30,31], which is called single-stage methods, aims at speeding up detection
by removing the region proposal generation stage. These single-stage detector
directly regress pre-defined anchors and thus are more computationally efficient,
but yield less satisfactory results than two-stage methods. Recently, some of these
methods [14,33] pay attention to enhancing the feature representation of CNN,
and some others [21,26] target at the positive-negative imbalance problem via
novel classification strategies. However, less work has been done for pedestrian
detection in the single-stage framework.
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In terms of pedestrian detection, driven by the success of RCNN [17], a
series of pedestrian detectors are proposed in the two-stage framework. Hosang
et al. [19] firstly utilizes the SCF detector [2] to generate proposals which are
then fed into a RCNN-style network. In TA-CNN [38], the ACF detector [10] is
employed for proposal generation, then pedestrian detection is jointly optimized
with an auxiliary semantic task. DeepParts [37] uses the LDCF detector [29] to
generate proposals and then trains an ensemble of CNN for detecting different
parts. Different from the above methods with resort to traditional detectors for
proposal generation, RPN+BF [42] adapts the original RPN in Faster-RCNN
[32] to generate proposals, then learns boosted forest classifiers on top of these
proposals. Towards the multi-scale detection problem, MS-CNN [1] exploits
multi-layers of a base network to generate proposals, followed by a detection
network aided by context reasoning. SA-FastRCNN [24] jointly trains two
networks to detect pedestrians of large scales and small scales respectively, based
on the proposals generated from ACF detector [10]. Brazil et al. [3], Du et al.
[13] and Mao et al. [28] further improve the detection performance by combining
semantic information. Recently, Wang et al. [10] designs a novel regression loss
for crowded pedestrian detection based on Faster-RCNN [32], achieving state-
of-the-art results on CityPersons [11] and Caltech [12] benchmark. However, less
attention is paid to the speed than the accuracy.

Most recently, Cascade R-CNN [6] proposes to train a sequence of detectors
step-by-step via the proposals generated by RPN. The proposed method shares
the similar idea of multi-step refinement to Cascade R-CNN. However, the
differences lie in two aspects. Firstly, Cascade R-CNN is towards a better
detector based on the Faster R-CNN framework, but we try to answer what
the key in Faster R-CNN is and whether this key could be used to enhance
SSD for speed and accuracy. The key we get is the multi-step prediction, with
RPN one step, and prediction of ROIs another step. Given this finding, the
default anchors in SSD could be processed in multi-steps, in fully convolutional
way without ROI pooling. Secondly, in the proposed method, all default anchors
are convolutionally processed in multi-steps, without re-sampling or iterative
ROI pooling. In contrast, the Cascade R-CNN converts the detector part of the
Faster R-CNN into multi-steps, which unavoidably requires RPN, and iteratively
applying anchor selection and individual ROI pooling within that framework.

Another close related work to ours is the RefineDet [15] proposed for generic
object detection. It contains two inter-connected modules, with the former one
filtering out negative anchors by objectness scores and the latter one refining the
anchors from the first module. A transfer connection block is further designed to
transfer the features between these two modules. The proposed method differs
from RefineDet [45] mainly in two folds. Firstly, we stack the detection module on
the backbone feature maps without the transfer connection block, thus is simpler
and faster. Secondly, all default anchors are equally processed in multi-steps
without filtering. We consider that scores from the first step are not confident
enough for decisions, and the filtered "negative” anchor boxes may contain hard
positives that may still have chances to be corrected in latter steps.
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3 Approach

3.1 Preliminary

Our method is built on top of the single-stage detection framework, here we give
a brief review of this type of methods.

In single-stage detectors, multiple feature maps with different resolutions are
extracted from a backbone network (e.g. VGG [306], ResNet [18]), these multi-
scale feature maps can be defined as follows:

b, :fn(@nfl) :fn(fnfl(fl(j)))a (1)

where I represents the input image, f,,(.) is an existing layer from a base network
or an added feature extraction layer, and &, is the generated feature maps from
the nth layer. These feature maps decrease in size progressively thus multi-scale
object detection is feasible of different resolutions. On top of these multi-scale
feature maps, detection can be formulated as:

Dets = F(pn(gsnagn)vpn—l(@n—la Bn—l)a -~-apn—k(¢n—ka Bn—k))an >k >0,
(2)
pn(én; Bn) = {czsn<¢n78n)aTegrn(¢n76n)}7 (3)

where B,, is the anchor boxes pre-defined in the nth layer’s feature map cells,
pn(.) is typically a convolutional predictor that translates the nth feature maps
@, into detection results. Generally, p,(.) contains two elements, cls,(.) which
predicts the classification scores, and regr,(.) which predicts the scaling and
offsets of the default anchor boxes associated with the nth layer and finally gets
the regressed boxes. F'(.) is the function to gather all regressed boxes from all
layers and output final detection results. For more details please refer to [27].
We can find that Eq. (2) plays the same role as RPN in Faster-RCNN, except
that RPN applies the convolutional predictor p,(.) on the feature maps of the
last layer for anchors of all scales (denoted as B), which can be formulated as:

Proposals = p,($,,B),n >0 (4)

In two-stage methods, the region proposals from Eq. (4) is further processed
by the ROI-pooling and then fed into another detection sub-network for
classification and regression, thus is more accurate but less computationally
efficient than single-stage methods.

3.2 Asymptotic Localization Fitting

From the above analysis, it can be seen that the single-stage methods are
suboptimal primarily because it is difficult to ask a single predictor p,(.) to
perform perfectly on the default anchor boxes uniformly paved on the feature
maps. We argue that a reasonable solution is to stack a series of predictors p, (.)



6 W. Liu, S. Liao, W. Hu, X. Liang and X. Chen

mean_iou=0.613 | [num_pos=23 mean_iou=0.613 numApos=4 mean_iou=0.672

mean_iou=0.605 |[num_pos=67 mean_iou=0.699 | |num_pos=131 mean_iou=0.705
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Fig. 2. Two examples from the CityPersons [14] training data. Green and red rectangles
are anchor boxes and groundtruth boxes, respectively. Values on the upper left of the
image represent the number of anchor boxes matched with the groundtruth under the
ToU threshold of 0.5, and values on the upper right of the image denote the mean value
of overlaps with the groundtruth from all matched anchor boxes.

applied on coarse-to-fine anchor boxes Bf,, where ¢ indicates the t;, step. In this
case, Eq. 3 can be re-formulated as:

Pa(@n, By) = oy (07, (- (00 (P, B))), ()

B = regrt (&, Bfl_l), (6)

where T is the number of total steps and BY denotes the default anchor boxes
paved on the ny, layer. In each step, the predictor pf,(.) is optimized using the
regressed anchor boxes B! ~! instead of the default anchor boxes. In other words,
with the progressively refined anchor boxes, which means more positive samples
could be available, the predictors in latter steps can be trained with a higher IoU
threshold, which is helpful to produce more precise localization during inference
[6]. Another advantage of this strategy is that multiple classifiers trained with
different IoU thresholds in all steps will score each anchor box in a 'multi-expert’
manner, and thus if properly fused the score will be more confident than a single
classifier. Given this design, the limitations of current single-stage detectors could
be alleviated, resulting in a potential of surpassing the two-stage detectors in
both accuracy and efficiency.

Fig. 2 gives two example images to demonstrate the effectiveness of the
proposed ALF module. As can be seen from Fig. 2 (a), there are only 7 and
16 default anchor boxes respectively assigned as positive samples under the IoU
threshold of 0.5, this number increases progressively with more ALF steps, and
the value of mean overlaps with the groundtruth is also going up. It indicates
that the former predictor can hand over more anchor boxes with higher IoU to
the latter one.
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Fig. 3. (a) ALFNet architecture, which is constructed by four levels of feature maps
for detecting objects with different sizes, where the first three blocks in yellow are
from the backbone network, and the green one is an added convolutional layer to the
end of the truncated backbone network. (b) Convolutional Predictor Block (CPB),
which is attached to each level of feature maps to translate default anchor boxes to
corresponding detection results.

3.3 Overall Framework

In this section we will present details of the proposed ALFNet pedestrian
detection pipeline.

The details of our detection network architecture is pictorially illustrated in
Fig. 3. Our method is based on a fully-convolutional network that produces a set
of bounding boxes and confidence scores indicating whether there is a pedestrian
instance or not. The base network layers are truncated from a standard network
used for image classification (e.g. ResNet-50 [18] or MobileNet [20]). Taking
ResNet-50 as an example, we firstly emanate branches from feature maps of the
last layers of stage 3, 4 and 5 (denoted as @3, P4 and Ps, the yellow blocks in
Fig. 3 (a)) and attach an additional convolutional layer at the end to produce
dg, generating an auxiliary branch (the green block in Fig. 3 (a)). Detection
is performed on {®3, P4, P5, Pg}, with sizes downsampled by 8, 16, 32, 64
w.r.t. the input image, respectively. For proposal generation, anchor boxes with
width of {(16,24), (32, 48), (64,80), (128, 160)} pixels and a single aspect ratio of
0.41, are assigned to each level of feature maps, respectively. Then, we append
the Convolutional Predictor Block (CPB) illustrated in Fig. 3 (b) with several
stacked steps for bounding box classification and regression.

3.4 Training and Inference

Training Anchor boxes are assigned as positives Sy if the IoUs with any ground
truth are above a threshold wuj,, and negatives S_ if the IoUs lower than a
threshold w;. Those anchors with IoU in [u;, up) are ignored during training.
We assign different IoU threshold sets {u;, up} for progressive steps which will
be discussed in our experiments.
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At each step t, the convolutional predictor is optimized by a multi-task loss
function combining two objectives:

L= lcls + A[y = 1]ll0ca (7)

where the regression loss [;,. is the same smooth L1 loss adopted in Faster-
RCNN [32], l.s is cross-entropy loss for binary classification, and A is a trade-off
parameter. Inspired by [26], we also append the focal weight in classification loss
s to combat the positive-negative imbalance. The [ is formulated as:

ls = —a Y (1—=pi)"log(p;) — (1 —a) Y p] log(1 — py), (8)

€S, i€S_

where p; is the positive probability of sample i, o and v are the focusing
parameters, experimentally set as @ = 0.25 and v = 2 suggested in [20]. In
this way, the loss contribution of easy samples are down-weighted.

To increase the diversity of the training data, each image is augmented by
the following options: after random color distortion and horizontal image flip
with a probability of 0.5, we firstly crop a patch with the size of [0.3, 1] of the
original image, then the patch is resized such that the shorter side has N pixels
(N = 640 for CityPersons, and N = 336 for Caltech), while keeping the aspect
ratio of the image.

Inference ALFNet simply involves feeding forward an image through the
network. For each level, we get the regressed anchor boxes from the final predictor
and hybrid confidence scores from all predictors. We firstly filter out boxes with
scores lower than 0.01, then all remaining boxes are merged with the Non-
Maximum Suppression (NMS) with a threshold of 0.5.

4 Experiments and Analysis

4.1 Experiment settings

Datasets. The performance of ALFNet is evaluated on the CityPersons [14] and
Caltech [12] benchmarks. The CityPersons dataset is a newly published large-
scale pedestrian detection dataset, which has 2975 images and approximately
20000 annotated pedestrian instances in the training subset. The proposed model
is trained on this training subset and evaluated on the validation subset. For
Caltech, our model is trained and test with the new annotations provided by
[43]. We use the 10x set (42782 images) for training and the standard test subset
(4024 images) for evaluation.

The evaluation metric follows the standard Caltech evaluation [12]: log-
average Miss Rate over False Positive Per Image (FPPI) range of [1072, 10°]
(denoted as M R~2). Tests are only applied on the original image size without
enlarging for speed consideration.

Training details. Our method is implemented in the Keras [7], with 2 GTX
1080Ti GPUs for training. A mini-batch contains 10 images per GPU. The
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Adam solver is applied. For CityPersons, the backbone network is pretrained
on ImageNet [9] and all added layers are randomly initialized with the xavier
method. The network is totally trained for 240k iterations, with the initial
learning rate of 0.0001 and decreased by a factor of 10 after 160k iterations. For
Caltech, we also include experiments with the model initialized from CityPersons
as done in [14,10] and totally trained for 140k iterations with the learning rate
of 0.00001. The backbone network is ResNet-50 [18] unless otherwise stated.

4.2 Ablation Experiments

In this section, we conduct the ablation studies on the CityPersons validation
dataset to demonstrate the effectiveness of the proposed method.

ALF improvement. For clarity, we trained a detector with two steps.
Table 1 summarizes the performance, where C; B; represents the detection results
obtained by the confidence scores on step ¢ and bounding box locations on step
j. As can be seen from Table 1, when evaluated with different IoU thresholds
(e.g. 0.5, 0.75), the second convolutional predictor consistently performs better
than the first one. With the same confidence scores C7, the improvement from
C1 B> to C1 B indicates the second regressor is better than the first one. On the
other hand, with the same bounding box locations By, the improvement from
C5Bs to C1 B> indicates the second classifier is better than the first one.

We also combine the two confidence scores by summation or multiplication,
which is denoted as (C7 + C2) and (C; * C3). For the IoU threshold of 0.5, this
kind of score fusion is considerably better than both C; and C5. Yet interestingly,
under a stricter IoU threshold of 0.75, both the two hybrid confidence scores
underperform the second confidence score Cy, which reasonably indicates that
the second classifier is more discriminative between groundtruth and many ”close
but not accurate” false positives. It is worth noting that when we increase the
IoU threshold from 0.5 to a stricter 0.75, the largest improvement increases by
a large margin (from 1.45 to 11.93), demonstrating the high-quality localization
performance of the proposed ALFNet.

To further demonstrate the effectiveness of the proposed method, Fig. 4
depicts the distribution of anchor boxes over the IoU range of [0.5, 1]. The
total number of matched anchor boxes increases by a large margin (from 16351
up to 100571). Meanwhile, the percentage of matched anchor boxes in higher
IoU intervals is increasing stably. In other words, anchor boxes with different
IoU values are relatively well-distributed with the progressive steps.

IoU threshold for training. As shown in Fig. 4, the number of matched
anchor boxes increases drastically in latter steps, and the gap among different
IoU thresholds is narrowing down. A similar finding is also observed in the
Cascade R-CNN [6] with a single threshold, instead of dual thresholds here.
This inspires us to study how the IoU threshold for training affects the final
detection performance. Experimentally, the {u;, uy} for the first step should not
be higher than that for the second step, because more anchors with higher quality
are assigned as positives after the first step (shown in Fig. 4). Results in Table 2
shows that training predictors of two steps with the increasing IoU thresholds is
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Table 1. The ALF improvement evaluated under IoU threshold of 0.5 and 0.75. C;
represents the confidence scores from step ¢ and B; means the bounding box locations
from step j. M R~2 on the reasonable subset is reported.

IoU ‘ C1B; ‘ C1B> ‘ Co B> ‘ (01 +02)B2 (Cl *02)32 ‘ Improvement

0.5 | 13.46 | 13.17 | 12.64 12.03 12.01 +1.45 (10.8%)
0.75 | 46.83 | 45.00 | 34.90 36.49 36.49 +11.93 (25.5%)

Total: 16351

Total: 72065 Total: 100571

FS U
21757(30.2%)

(21.4%)
(20.2%) 2157
(22.7%) 20322 (18.7%)
16332 - 20 18815
(19.2%)
13810 (17.8%) £ (14.4%)
2828 15 14496

num of positive samples
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loU threshold
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Fig. 4. It depicts the number of anchor boxes matched with the ground-truth boxes
w.r.t. different IoU thresholds ranging from 0.5 to 1. (a), (b) and (c) represent the
distribution of default anchor boxes, refined anchor boxes after the first and second
step, respectively. The total number of boxes with IoU above 0.5 is presented in the
heads of the three sub-figures. The numbers and percentages of each IoU threshold
range are annotated on the head of the corresponding bar.

better than that with the same IoU thresholds, which indicates that optimizing
the later predictor more strictly with higher-quality positive anchors is vitally
important for better performance. We choose {0.3, 0.5} and {0.5, 0.7} for two
steps in the following experiments, which achieves the lowest M R~2 in both of
the two evaluated settings (IoU=0.5, 0.75).

Number of stacked steps. The proposed ALF module is helpful to achieve
better detection performance, but we have not yet studied how many stacked
steps are enough to obtain a speed-accuracy trade-off. We train our ALFNet
up to three steps when the accuracy is saturated. Table 3 compares the three
variants of our ALFNet with 1, 2 and 3 steps, denoted as ALFNet-1s, ALFNet-2s
and ALFNet-3s. Experimentally, the ALFNet-3s is trained with IoU thresholds
{0.3, 0.5}, {0.4, 0.65} and {0.5, 0.75}). By adding a second step, ALFNet-2s
significantly surpasses ALFNet-1s by a large margin (12.01 VS. 16.01). It is
worth noting that the results from the first step of ALFNet-2s and ALFNet-3s are
substantially better than ALFNet-1s with the same computational burden, which
indicates that multi-step training is also beneficial for optimizing the former step.
Similar findings can also be seen in Cascade R-CNN [(], in which the three-stage
cascade achieves the best trade-off.

From the results shown in Table 3, it appears that the addition of the 3rd
step can not provide performance gain in terms of M R~2. Yet when taking a
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Table 2. Comparison of training the two-step ALFNet with different IoU threshold
sets. {u, up} represents the IoU threshold to assign positives and negatives defined in
Section. 3.3. Bold and italic indicate the best and second best results.

Training ToU thresholds MR™?
step 1 ‘ step 2 IoU=0.5 ‘ IoU=0.75

{0.3, 0.5} 13.75 44.27
{0.3, 0.5} | {0.4, 0.6} 13.31 39.30
{0.5, 0.7} 12.01 86.49
{0.4, 0.6} 13.60 42.31
{0-4, 0.6} {0.5, 0.7} 12.80 36.43
{0.5, 0.7} | {0.5,0.7} 13.72 38.20

Table 3. Comparison of ALFNet with various steps evaluated in terms of M R~2. Test
time is evaluated on the original image size (1024x2048 on CityPersons).

MR™?
ToU=0.5 [ ToU=0.75

Method | # Steps | Test step | Test time

ALFNet-1s | 1 1 0.26s/img | 16.01 | 48.95
T 2 1 0.26s/img | 13.17 | 45.00
ALFNet-2s 2 0.27s/img | 12.01 | 36.49
3 1 0.26s/img | 14.53 | 46.70

ALFNet-3s [ 3 2 0.27s/img | 12.67 | 37.75
3 3 0.28s/img | 12.88 | 39.31

deep look at the detection results of this three variants of ALFNet, the detection
performance based on the metric of F-measure is further evaluated, as shown in
Table 4. In this case, ALFNet-3s tested on the 3rd step performs the best under
the IoU threshold of both 0.5 and 0.75. It substantially outperforms ALFNet-1s
and achieves a 6.3% performance gain from ALFNet-2s under the IoU of 0.5, and
6.5% with ToU=0.75. It can also be observed that the number of false positives
decreases progressively with increasing steps, which is pictorially illustrated in
Fig. 5. Besides, as shown in Table 4, the average mean IoU of the detection
results matched with the groundtruth is increasing, further demonstrating the
improved detection quality. However, the improvement of step 3 over step 2 is
saturating, compared to the large gap of step 2 over step 1. Therefore, considering
the speed-accuracy trade-off, we choose ALFNet-2s in the following experiments.

Different backbone network. Large backbone network like ResNet-50 is
strong in feature representation. To further demonstrate the improvement from
the ALF module, a light-weight network like MobileNet [20] is chosen as the
backbone and the results are shown in Table 5. Notably, the weaker MobileNet
equipped with the proposed ALF module is able to beat the strong ResNet-50
without ALF (15.45 VS. 16.01).
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Table 4. Comparison of ALFNet with various steps evaluated with F-measure. # TP
and # FP denote the number of True Positives and False Positives.

ToU=0.5 ToU=0.75

Method | Test step | Ave. mIoU Z TP ‘ ZTD ‘ Fmca. | Z TP ‘ ZTP ‘ v
ALFNet-1s 1 0.49 2404 | 13396 | 0.263 | 1786 | 14014 ] 0.195
1 0.55 2393 | 9638 | 0.330 | 1816 | 10215 | 0.250

ALFNet-2s 2 0.76 2198 | 1447 | 0.717 | 1747 | 1898 | 0.570
1 0.57 2361 | 7760 | 0.375 | 1791 | 8330 | 0.284

ALFNet-3s 2 0.76 2180 | 1352 | 0.725 | 1734 | 1798 | 0.576
3 0.80 2079 | 768 | 0.780 | 1694 | 1153 | 0.635

() step 1 ' ‘ - (b) step 2 E " (c) step 3

Fig. 5. Examples of detection results of ALFNet-3s. Red and green rectangles represent
groundtruth and detection bounding boxes, respectively. It can be seen that the number
of false positives decreases progressively with increasing steps, which indicates that
more steps are beneficial for higher detection accuracy.

4.3 Comparison with State-of-the-Art

CityPersons. Table 6 shows the comparison to previous state-of-the art on
CityPersons. Detection results test on the original image size are compared.
Note that it is a common practice to upsample the image to achieve a better
detection accuracy, but with the cost of more computational expense. We
only test on the original image size as pedestrian detection is more critical
on both accuracy and efficiency. Besides the reasonable subset, following [40],
we also test our method on three subsets with different occlusion levels. On
the Reasonable subset, without any additional supervision like semantic labels
(as done in [11]) or auxiliary regression loss (as done in [10]), our method
achieves the best performance, with an improvement of 1.2 MR™2 from the
closest competitor RepLoss [40]. Note that RepLoss [10] is specifically designed
for the occlusion problem, however, without bells and whistles, the proposed
method with the same backbone network (ResNet-50) achieves comparable or
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Table 5. Comparison of different backbone network with our ALF design.

. . . 1 MR72
Backbone | Asymptotic Localization Fitting | # Parameters ToU=05 [ ToU=0.75
39.5M 16.01 48.94
ResNet-50 v 48.4M 12.01 36.49
. 12.1M 18.88 56.26
MobileNet 7 17.4M 15.45 47.42

Table 6. Comparison with the state-of-the-art on the CityPersons[14]. Detection
results test on the original image size (1024x2048 on CityPersons) is reported.

Method [ +RepGT +RepBox +Seg. [ Reasonable [ Heavy Partial Bare
Faster-RCNN[44] 15.4 - - -
(VGG16) v 14.8 - - -

14.6 60.6 18.6 7.9

RepLoss[40] v 13.7 57.5 173 7.2

(ResNet-50) v 13.7 591 172 7.8

v v 13.2 56.9 16.8 7.6

ALFNet[ours] 12.0 51.9 11.4 84

Table 7. Comparisons of running time on Caltech. The time of LDCF, CCF,
CompACT-Deep and RPN+BF are reported in [42], and that of SA-FastRCNN and
F-DNN are reported in [13]. MR™? is based on the new annotations [13]. The original
image size on Caltech is 480x640.

Method Hardware Scale | Test time MR
ToU=0.5 | ToU=0.75

LDCF [29] CPU x1 0.6 s/img 23.6 72.2
CCF [11] Titan Z GPU | x1 | 13 s/img 23.8 97.4
CompACT-Deep [5] | Tesla K40 GPU x1 0.5 s/img 9.2 59.0
RPN+BF [12] Tesla K40 GPU | x1.5 | 0.5 s/img 7.3 57.8
SA-FastRCNN [24] Titan X GPU x1.7 | 0.59 s/img 74 55.5
F-DNN [13] Titan X GPU x1 0.16 s/img 6.9 59.8
ALFNet [ours] GTX 1080Ti GPU | x1 |0.05 s/img 6.1 22.5
ALFNet+City [ours] | GTX 1080Ti GPU | x1 | 0.05 s/img 4.5 18.6
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1
80 = = =28.0% DeepCascade
64 12.9% DeepParts
- = =9.5% MS-CNN
50 9.2% CompACT-Deep
40 = = =8.7% FasterRCNN
- 7.3% RPN+BF %
Y4 = = =6.1% ALFNet{ours] - - Y
2 5.5% HyperLeamer 2 = = =79.3% DeepCascade
=20 - = =5.0% Reploss 2 20 68.3% DeepParls Aol
@ » “ S sehcccaka
B 4.5% ALFNet+City[ours] 2 59. °°/° CompACT-Deep ==
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e 41.2% HyperLeamer
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05 LA 05 21.0% RepLoss+City
x N 18.6% ALFNet+City[ours]
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10 102 10! 10° 10’ 103 102 107" 10° 10’
false positives per image false positives per image
(a) IoU=0.5 (b) I0U=0.75

Fig. 6. Comparisons of state-of-the-arts on Caltech (reasonable subset).

even better performance in terms of different levels of occlusions, demonstrating
the self-contained ability of our method to handle occlusion issues in crowded
scenes. This is probably because in the latter ALF steps, more positive samples
are recalled for training, including occluded samples. On the other hand, harder
negatives are mined in the latter steps, resulting in a more discriminant predictor.

Caltech. We also test our method on Caltech and the comparison with state-
of-the-arts on this benchmark is shown in Fig. 6. Our method achieves M R~2 of
4.5 under the IoU threshold of 0.5, which is comparable to the best competitor
(4.0 of RepLoss [10]) . However, in the case of a stricter IoU threshold of 0.75,
our method is the first one to achieve the M R~2 below 20.0%, outperforming all
previous state-of-the-arts with an improvement of 2.4 M R~2 over RepLoss [40].
It indicates that our method has a substantially better localization accuracy.

Table 7 reports the running time on Caletch, our method significantly
outperforms the competitors on both speed and accuracy. The speed of the
proposed method is 20 FPS with the original 480x640 images. Thanks to the ALF
module, our method avoids the time-consuming proposal-wise feature extraction
(ROIpooling), instead, it refines the default anchors step by step, thus achieves
a better speed-accuracy trade-off.

5 Conclusions

In this paper, we present a simple but effective single-stage pedestrian detector,
achieving competitive accuracy while performing faster than the state-of-the-
art methods. On top of a backbone network, an asymptotic localization fitting
module is proposed to refine anchor boxes step by step into final detection
results. This novel design is flexible and independent of any backbone network,
without being limited by the single-stage detection framework. Therefore, it is
also interesting to incorporate the proposed ALF module with other single-stage
detectors like YOLO [30,31] and FPN [25,26], which will be studied in future.
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