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Abstract. Instance segmentation is a problem of significance in com-
puter vision. However, preparing annotated data for this task is ex-
tremely time-consuming and costly. By combining the advantages of 3D
scanning, reasoning, and GAN-based domain adaptation techniques, we
introduce a novel pipeline named SRDA to obtain large quantities of
training samples with very minor effort. Our pipeline is well-suited to
scenes that can be scanned, i.e. most indoor and some outdoor scenar-
ios. To evaluate our performance, we build three representative scenes
and a new dataset, with 3D models of various common objects categories
and annotated real-world scene images. Extensive experiments show that
our pipeline can achieve decent instance segmentation performance given
very low human labor cost.

Keywords: 3D scanning · physical reasoning · domain adaptation.

1 Introduction

Instance segmentation [6, 21] is one of the fundamental problems in computer
vision, which provides many more details in comparison to object detection [28],
or semantic segmentation [23]. With the development of deep learning, significant
progress has been made in instance segmentation. Many annotated datasets of
large quantity were proposed [5, 22]. However, in practice, when meeting a new
environment with many new objects, large-scale training data collection and
annotation is inevitable, which is cost-prohibitive and time-consuming.

Researchers have longed for a means of generating numerous training samples
with minor effort. Computer graphics simulation is a promising way, since a 3D
scene can be a source of unlimited photorealistic images paired with ground
truths. Besides, modern simulation techniques are capable of synthesizing most
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indoor and outdoor scenes with perceptual plausibility. Nevertheless, these two
advantages are double-edged, rendered images would be painstaking to make the
simulated scene visually realistic [43, 38, 31]. Moreover, for new environment, it
is very likely some of the objects in reality are not in the 3D model database.

Fig. 1. Compared with human labeling (red), our pipeline (blue) can significantly re-
duce human labor cost by nearly 2000 folds and achieve reasonable accuracy in instance
segmentation. 77.02 and 86.02 are average mAP@0.5 of 3 scenes.

We present a new pipeline that attempts to address these challenges. Our
pipeline comprises three stages: scanning, physics reasoning, domain adaptation

(SRDA) as shown in Fig. 1. At the first stage, new objects and environmental
background from a certain scene are scanned into 3D models. Unlike other CG
based methods that do simulation with existing model datasets, images synthe-
sized by our pipeline can ensure realistic effect and well describe the targeting
environment, since we use real-world scanned data. At the reasoning stage, we
proposed a reasoning system to generate proper layout for each scene by fully
considering physically and commonsense plausible. Physics engine is used to en-
sure physics plausible and commonsense plausible is checked by commonsense
likelihood (CL) function. For example, “a mouse on the mouse pad and they
on the table” would have a large output in CL function. In the last stage, we
proposed a novel Geometry-guided GAN (GeoGAN) framework. It integrates
geometry information (segmentation as edge cue, surface normal, depth) which
helps to generate more plausible images. In addition, it includes a new com-
ponent Predictor which can serve as a useful auxiliary supervision, and also a
criterion to score the visual quality of images.

The major advantage of our pipeline is time-saving. Compared with conven-
tional exhausting annotation, we can reduce labor cost by nearly 2000 folds, in
the meantime, achieve decent accuracy, preserving 90% performance. (See Fig.
1). The most time-consuming stage is scanning, which is easy to accomplish in
most of indoor and some of outdoor scenarios.

Our pipeline can be widely adaptive to many scenarios. We choose three
representative scenes, namely a shelf from a supermarket (for a self-service su-
permarket), a desk from an office (for home robot), a tote similar in Amazon
Robotic Challenge1.

1 https://www.amazonrobotics.com/#/roboticschallenge
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To the best of our knowledge, no current datasets consist of compact 3D ob-
ject/scene models and real scene images with instance segmentation annotations.
Hence, we build a dataset to prove the efficacy of our pipeline. This dataset have
two parts, one for scanned object models (SOM dataset) and one for real scene
images with instance level annotations (Instance-60K).

Our contributions have two folds:

– The main contribution is the novel three-stage SRDA pipeline. We added a
reasoning system to the feasible layout building and proposed a new domain
adaptation framework named GeoGAN. It is time-saving and the output
images are close to real ones according to the evaluation experiment.

– To demonstrate the effectiveness, we build up a database which contains
3D models of common objects and corresponding scenes (SOM dataset) and
scene images with instance level annotations (instance-60K).

We will first review some of the related concepts and works in Sec. 2 and
depict the whole pipeline from Sec. 3 on. We describe the scanning process in
Sec. 3, reasoning system in Sec. 4, and GAN-based domain adaptation in Sec. 5.
In Sec. 6, we illustrate how Instance-60K dataset is built. Extensive evaluation
experiments are carried out in Sec. 7. And finally, we discuss the limitation of
our pipeline in Sec. 8.

2 Related Works

Instance Segmentation Instance segmentation has become a hot topic in re-
cent years. Dai et al. [6] proposed a complex multiple-stage cascaded network
that does detection, segmentation, and classification in sequence. Li et al. [21]
combined a segment proposal system and object detection system, simultane-
ously producing object classes, bounding boxes, and masks. Mask R-CNN [14]
supports multiple tasks including instance segmentation, object detection, hu-
man pose estimation. Whereas exhausting labeling is required to guarantee a
satisfactory performance, if we apply these methods to a new environment.

Generative Adversarial Networks Since introduced by Goodfellow [12],
GAN-based methods have fruitful results in various fields, such as image gener-
ation [27], image-to-image translation [42], 3D model generation [40], etc. The
former paper on image-to-image translation inspired our work, it indicates GAN
has the potential to bridge the gap between simulation domain and real domain.

Image-to-Image Translation A general image-to-image translation frame-
work was first introduced by Pix2Pix [16], but it required a great amount of
paired data. Chen [4] proposed a cascaded refinement network free of adversar-
ial training, which gets high-resolution results, but still demands paired data.
Taigman et al. [36] proposed an unsupervised approach to learn cross-domain
conversion, however it needs a pre-trained function to map samples from two
domains into an intermediate representation. Dual learning [42, 41, 17] is soon
imported for unpaired image translation, but currently, dual learning methods
encounter setbacks when camera viewpoint or object position varies. On the
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contrary to CycleGAN, Benaim et al. [2] learned one-side mapping. Refining
rendered image using GAN is also not unknown [33, 32, 3]. Our work is a com-
plementary to these approaches, where we deal with more complex data and
tasks. We will compare [32, 3] with our GeoGAN in Sec. 7.

Synthetic Data for Training Some researchers attempt to generate syn-
thetic data for vision tasks such as viewpoint estimation [35], object detection
[11], semantic segmentation [30]. In [1], Alhaija et al. addressed generation of
instance segmentation training data for street scenes with technical effort in pro-
ducing realistically rendered and positioned cars. However, they focus on street
scenes and do not use an adversarial formulation.

Scene Generation by Computer Graphics Scene generation by CG tech-
niques is a well-studied area in the computer graphics community [13, 25, 34, 9,
26]. These methods are capable of generating plausible layout of indoor or out-
door scene, but they have no intention to transfer the rendered images to real
domain.

3 Scanning Process

In this section, we describe the scanning process. Objects and scene backgrounds
are scanned in two ways due to the scale issue.

We choose the multi-view environment (MVE) [10] to perform dense recon-
struction for objects, since it is image-based and thus requires only a RGB sensor.
Objects are first videotaped, which can be easily done by most RGB sensors. In
the experiment, we use an iPhone5s. The videos are sliced into images with mul-
tiple viewpoints, and fed into MVE to generate 3D models. We can videotape
multiple objects (at least 4) and generate corresponding models per time, which
can alleviate the scalability issue when new objects are too many to scan one by
one. MVE is capable of generating dense meshes with a fine texture. As for the
texture-less objects, we scan the object with hand holding, and the hand-object
interaction can be a useful cue for reconstruction, as indicated in [39].

For the environmental background, scenes without targeting objects were
scanned by Intel RealSense R200 and reconstructed by ReconstructMe2. We
follow the official instruction to operate reconstruction.

Resolution for iPhone5s is 1920×1080 and for R200 is 640×480 at 60 FPS.
Remaining settings are by default.

4 Layout Building With Reasoning

4.1 Scene Layout Building With Knowledge

With 3D models of objects and environmental background at hand, we are ready
to generate scenes by our reasoning system. A proper scene layout must obey
physics laws and human conventions. To make scene physics plausible, we se-
lect an off-the-shelf physics engine, Project Chrono [37]. However, it is not as

2 http://reconstructme.net/
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Fig. 2. Representative environmental backgrounds, object models, and corresponding
label information.

Fig. 3. The scanned objects (a) and background (b) are put into a rule-based reasoning
system (c) to generate physics plausible layouts. The upper of (c) is the random scheme,
while the bottom is the rule-based scheme. In the end, system output rough RGB
images and corresponding annotations (d).

direct to make object layout convincing, some commonsense knowledge should
be incorporated. To produce a feasible layout, we need to make object pose and
location reasonable. For example, a cup has the pose of “standing up”, but not
“lying down”, meanwhile, it is always on the table not the ground. This prior
falls in daily knowledge that cannot be achieved by physics reasoning. Therefore,
we present how to annotate the pose and location prior in what follows.

Pose Prior: For each object, we show annotators its 3D model in 3D graphics
environment, and ask annotators to draw all its possible poses that she/he can
imagine. For each possible pose, the annotator should suggest a probability that
this pose would happen. We record the the probability of ith object in pose k as
Dp[k|i]. We use interpolation to ensure most poses has a probability value.

Location Prior: The same as pose prior, we show annotators the environ-
mental background in 3D graphics environment, thus annotators label all its
possible locations that an object may be placed. For each possible location, the
annotator should suggest a probability that this object would be placed. We de-
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noted the probability of ith object in location k as Dl[k|i]. We use interpolation
to make most of location has correponding probability value.

Relationship Prior: Some objects have strong co-occurrence prior. For ex-
ample, mouse is always close to laptop. Given an object name list, we use lan-
guage prior to select a set of object pair that have high co-occurrence probability,
we call them as occurrence object pair (OOP). For each OOP, annotator sug-
gests a probability of occurrence of corresponding object pairs. For object ith

and jth, their probability of occurrence is denoted as Dr[i, j] and a suggested
distance (by annotators) is Hr[i, j].

Note that the annotation maybe subjective, but we found that we only need
a prior for layout generation guidance. Extensive experiments show that roughly
subjective labeling is sufficient for producing satisfactory results. We will report
the experiment details in supplementary file.

4.2 Layout Generation by Knowledge

We generate layout by considering both physics laws and human conventions.
First, we randomly generate a layout and check its physics plausible by Chrono.
If it is not physically reasonable, we reject this layout. Second, we check its com-
monsense plausible by three priors above. In detail, all object pairs are extracted
in layout scene. We denote ({c1(i), c2(i)}, ({p1(i), p2(i)} and ({l1(i), l2(i)} as
category, pose and 3D location of ith extracted object pair in scene layout. The
likelihood of pose is expressed as

Kp[i] = Dp[p1(i)|c1(i)]Dp[p2(i)|c2(i)]. (1)

The likelihood of location for ith object pair is written as,

Kl[i] = Dl[l1(i)|c1(i)]Dl[l2(i)|c2(i)]. (2)

The likelihood of occurrence for ith object pair is presented as

Kr[i] =

{

Gσ(|l1(i)− l2(i)| −Dr[c1(i), c2(j)]) if Hr[i, j] > γ

1, otherwise.
(3)

where Gσ is a Gaussian function with parameter σ (σ = 0.1 in our paper). We
compute occurrence prior in the case where the probability Hr[i, j] is larger than
a threshold γ (γ = 0.5 in our paper).

We denote commonsense likelihood function of a scene layout as

K =
∏

i

Kl[i]Kl[i]Kr[i] ∝
∑

i

log(Kl[i]) + log(Kp[i]) + log(Kr[i]) (4)

Thus, we can judge commonsense plausible byK. IfK is smaller than a threshold
(K ≤ 0.6 in our experiments), we reject its corresponding layout. In this way, we
can generate large quantities of layouts that is both physics and commonsense
plausible.
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4.3 Annotation Cost

We annotate scanned model one by one. So, the annotation cost is linear scale
with respect to scanned object model number M . Note that only a small set of
object have strong object occurrence assumption (e.g. laptop and mouse). So,
the complexity of object occurrence annotation is close to O(M). We carry out
experiment to find that 10 seconds is taken to label knowledge for a scanned
object model in average, which is minor (one hour for hundreds of objects).

5 Domain Adaptation With Geometry-guided GAN

Now, we have collection of the rough (RGB) image {Iri }
M
i=1 ∈ Ir and its corre-

sponding ground truths, instance segmentation {Is-gti }Mi=1 ∈ Is-gt, surface normal

{In-gti }Mi=1 ∈ In-gt, depth image {Id-gti }Mi=1 ∈ Id-gt. Besides, the real image cap-
tured from targeting environment is denoted as {Ij}

N
j=1. M,N are the sample

sizes for rendered samples and real samples. With these data, we can embark on
training GeoGAN.
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Fig. 4. The GDP structure consists of three components: a generator (G), a discrimi-
nator (D), and a predictor (P), along with four loss: LSGAN loss (GAN loss), Structure
loss, Reconstruction loss (L1 loss), Geometry-guided loss (Geo loss).
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Fig. 5. Iterative optimization framework. As the epoch goes, G, D and P are updated
as presented. While one component is updating, the other two are fixed.

5.1 Objective Function

GeoGAN has a “GDP” structure, as sketched in Fig. 4, which comprises a gen-
erator (G), a discriminator (D) and a predictor (P) which serves as a geometry
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prior guidance. Such structure leads to the design of the objective function,
which consists of four loss functions that will be presented in what follows.

LSGAN Loss We adopt a least-square generative adversarial objective (LS-
GAN)[24] to help G and D training stable. The LSGAN adversarial loss can be
written as

LGAN (G,D) = Ey∼pdata(y)[(D(y)− 1)2] + Ex∼pdata(x)[(D(G(x)))2], (5)

x and y stand for a sample from the rough image and the real image domain
respectively.

We denote the output of the generator with parameter ΦG for ith rough image
as I∗i , i.e. I

∗

i , G(Iri |ΦG)
Structure Loss A structure loss is introduced to ensure I∗i maintains the

original structure of Iri . A Pairwise Mean Square Error (PMSE) loss is imported
from [7], expressed as:

LPMSE(G) =
1

N

∑

i

(Iri − I∗i )
2 −

1

N2
(
∑

i,j

(Iri − I∗i ))
2. (6)

Reconstruction Loss To ensure the geometry information successfully en-
coded in the network. We also use ℓ1 as a reconstruction loss for the geometric
images.

Lrec(G) = ||[Ir, Is, In, Id|ΦG]rec, [I
r, Is, In, Id]||1 (7)

Geometry-guided Loss Given an excellent geometry predictor, a high-
quality image should be able to produce desirable instance segmentation, depth
map and normal map. It is a useful criterion that judges whether I∗i is qualified
or not. An unqualified image (with artifacts, distorted structure) will induce
large geometry-guided loss (Geo Loss).

To achieve this goal, we pretrained the predictor with following formula:

[Is, In, Id] = P (I|ΦP ), (8)

It means given an input image I, with the parameter ΦP , the predictor can
output instance segmentation Is, normal map In and depth map Id respectively.
In the first few iterations, the predictor is pretrained with the rough image, that
is, I = Ir. When the generator starts to produce reasonable results, ΦP can be
updated with I = I∗. And then, the predictor is ready to supervise the generator,
and ΦG will be updated as follow:

LGeo(G,P ) = ||P (I∗i |ΦP ), [I
s-gt
i , I

n-gt
i , I

d-gt
i ]||22. (9)

In this equation, ΦP is not updated, and it is a ℓ2 loss.
Overall Objective Function In sum, our objective function can be ex-

pressed as:

min
ΦG

max
ΦD

λ1LGAN (G,D) + λ2LPMSE(G) + λ3Lrec(G) + λ4LGeo(G,P ),

min
ΦP

LGeo(G,P ).
(10)

It reveals the iterative optimization, as shown in Fig. 5.
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5.2 Implementation

Dual Path Generator (G) Our generator has dual forward data paths (color
path and geometry path), which help to integrate the color and geometry infor-
mation. For color path, input rough image will firstly pass three convolutional
layers, and then downsample to 64 × 64 and pass 6 resnet blocks [15]. After
that, output feature maps are upsampled to 256×256 with bilinear upsampling.
During upsampling, color information path will concatenate feature maps from
geometry information path.

Geometry information are firstly convolutioned to feature maps and concate-
nated together, resulting in a 3-dimensional 256×256 feature map before passing
to geometry path described below. After the last layer, we split the output of
the last layer into three parts, and produce three reconstruction images for three
kinds of geometric images.

Let 3n64s1 denote 3× 3-Convolution-InstanceNorm-ReLU layer with 64 fil-
ters and stride 1. Rk denotes a residual block that contains two 3 × 3 convo-
lutional layers with the same number of filters on both. upk denotes a bilinear
upsampling layer followed with a 3 × 3 Convolution-InstanceNorm-ReLU layer
with k filters and stride 1.

The generator architecture is:
color path: 7n3s1-3n64s2-3n128s2-R256-R256-R256-R256-R256-R256-up512-

up256
geometry path: 7n3s1-3n64s2-3n128s2-R256-R256-R256-R256-R256-R256-

up256-up128
Markovian Discriminator (D) The discriminator is a typical PatchGAN

or Markovian discriminator described in [20, 19, 16]. We also found 70×70 is a
proper receptive field size, hence the architecture is exactly like [16].

Geometry Predictor (P) FCN-like networks[23] or UNet[29] are good can-
didates for the geometry predictor. In implementation, we choose a UNet archi-
tecture. downk denotes a 3 × 3 Convolution-InstanceNorm-LeakyReLU layer
with k filters and stride 2, the slope of leaky ReLU is 0.2. upk denotes a bilinear
upsampling layer followed with a 3 × 3 Convolution-InstanceNorm-ReLU layer
with k filters and stride 1. k in upk is 2 times larger than that in downk, since a
skip connection between corresponding layers. After the last layer, feature maps
are split into three parts and convolution to a three dimension layer separately,
activated by tanh function.

The predictor architecture is: down64-down128-down256-down512-down512-
down512-up1024-up1024-up1024-up512-up256-up128

Training Details Adam optimizer[18] is used for all three “GDP” compo-
nents, with batch size of 1. G, D and P are trained from scratch. We firstly
trained geometry predictor with 5 epochs to get a good initialization, then be-
gan the iterative procedures. In the iterative procedures, learning rate for the
first 100 epochs are 0.0002 and linearly decay to zero in the next 100 epochs. All
training images are of size 256× 256.

All models are trained with λ1 = 2, λ2 = 5, λ3 = 10, λ4 = 3 in Eq. 10. The
generator is trained twice before the discriminator updates once.
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6 Instance-60K Building Process

As we found no existing Instance segmentation datasets [5, 22, 8] can benchmark
our task, we have to build a new dataset to benchmark our method.

Instance-60K is an ongoing effort to annotate instance segmentation for
scenes can be scanned. Currently it contains three representative scenes, namely
supermarket shelf, office desk and tote. These three scenes are chosen since they
potentially benefit real-world applications in the future. Supermarket cases are
well-suited to self-service supermarkets like Amazon Go3. Home robots will al-
ways meet the scene of an office desk. The tote is in the same setting as Amazon
Robotic Challenge.

Fig. 6. Representative images and manual annotations in the Instance-60K dataset.

To note that our pipeline does not restrict to these three scenes, technically
any scenes can be simulated are suitable to our pipeline.

Shelf scene has objects of 30 categories, which items such as soft drinks,
biscuits, and tissues. 15 categories for desk scene and tote scene. All are common
objects in the corresponding scenes. Objects and scenes are scanned for building
SOM dataset as described in section 3.

For instance-60K dataset, these objects are placed in corresponding scenes
and then videotaped by iPhone5s under various viewpoints. We arranged 10
layouts for the shelf, and over 100 layouts for desk and tote. Videos are then
sliced into 6000 images in total, 2000 for each scene. The number of labeled
instance is 60894, that is the reason why we call it instance-60K. We have average
966 instances per category. This scale is about three times larger than PASCAL
VOC [8] level (346 instances per category), so it is qualified to benchmark this
problem. Again, we found instance segmentation annotation is laborious, it took
more than 4000 man-hours on building this dataset. Some representative real
images and annotation are shown in Fig. 6. As we can see, annotating them is
time-consuming.

3 https://www.amazon.com/b?node=16008589011
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7 Evaluation

In this section, we evaluate our generated instance segmentation samples quan-
titatively and qualitatively.

shelf desk tote

real rough fake fakeplus real rough fake fakeplus real rough fake fakeplus
mAP@0.5 79.75 18.10 49.11 66.31 88.24 43.81 57.07 82.07 90.06 28.67 61.40 82.69

mAP@0.7 67.02 10.53 37.56 47.25 73.75 35.14 45.44 71.82 85.10 16.87 50.13 76.84

Table 1. mAP results on real, rough, fake, fakeplus models of different scenes with
Mask R-CNN.

Fig. 7. Refinement of GAN. Refined column is the result of GeoGAN and rough column
is the rendered image. Apparent improvement on lighting conditions and texture can
be observed.

7.1 Evaluation on Instance-60K

We employed instance segmentation tasks to evaluate on generated samples. To
prove that the proposed pipeline generally works, we will report results using
Mask R-CNN [14]. We train segmentation model on resulting images produced
by our GeoGAN. The trained model is denoted as “fake-model”. Likewise, model
trained on rough images is denoted as “rough-model”. One question we should
ask is that how “fake-model” compare to models train on real images. To answer
this question, we train models on training set of instance-60K dataset, which is
denoted as “real-model”. It is pre-trained on COCO dataset [22].

Training procedures on real images strictly follow the procedures mentioned
in [14]. We find the learning rate for real images is not workable to rough and
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GAN generated images, so we lower the learning rate and make it decay earlier.
All models are trained with 4500 images, though we can generate endless training
sample for “rough-model” and “fake-model”, since “real-model” only can train
on 4500 images in the training set of instance-60K dataset. Finally, all models
are evaluated on testing set of instance-60K dataset.

Experiment results shown in Tab. 1. Overall mAP of the rough image is
generally low, while “fake-model” significantly outperformed it. Noticeably, it
still has a clear gap between “fake-model” results and real one, though the gap
has been bridged a lot. Naturally, we would like to know how many refined
training images is sufficient to achieve comparable results with “real-model”.
Hence, we conducted experiments on 15000 GAN generated images, and named
model as “fakeplus-model”. As we can see from Tab. 1, “fakeplus” and “real” is
really close. We try to augment more training samples to “fakeplus-model”, but,
the improvement is marginal. In this way, our synthetic “images + annotation”
is comparable with “real image + human annotation” for instance segmentation.

Fig. 8. Qualitative results visualization of rough, fake, fakeplus and real model respec-
tively.

The results for real-model may imply that our instance-60K is not that dif-
ficult for Mask R-CNN. Extension of the dataset is on-going. However, it is
undeniable that the dataset is capable of proving the ability of GeoGAN.

In contrast to exhausting annotation using over 1000 human-hours per scene,
our pipeline takes 0.7 human-hours per scene. Admittedly, the results suffer from
performance loss, but save the whole task 3-order of human-hours.

7.2 Comparison With Other Domain Adaptation Framework

Previous domain adaptation framework focus on different tasks, such as gaze and
hand pose estimation [32], object classification and 6D pose estimation [3]. To the
best of our knowledge, we are the first to propose a GAN-based framework to do
instance segmentation. Comparison with each other is indirect. We reproduced
the work of [32] and [3]. For [3], we substituted the task component with our
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Fig. 9. Qualitative comparison of our pipeline and [3], [32]. The background of gener-
ated images from [3] are damaged since they use a masked-PMSE loss.

P. The experiments are conducted on the scenes same in the paper. Results are
shown in Fig. 9 and Tab. 2.

mAP 0.5 0.7

Mask R-CNN

shelf
fakeplus,ours 66.31 47.25
fakeplus,[25] 31.46 20.88
fakeplus,[13] 56.16 36.04

desk
fakeplus,ours 82.07 71.82
fakeplus,[25] 44.33 29.93
fakeplus,[13] 69.54 57.27

tote
fakeplus,ours 82.69 76.84
fakeplus,[25] 42.50 33.61
fakeplus,[13] 70.73 62.68

Table 2. Quantitative comparison of our pipeline and [3], [32].

7.3 Ablation Study

Ablation study is carried out by removing geometry-guided loss and structure
loss separately. Extended ablation study on the specific geometric information
in the geometry path is reported in the supplementary file. We applied Mask
R-CNN to train the segmentation models on resulting images from GeoGAN
without geometry-guided loss (denoted as “fakeplus,w/o-geo-model”) or structure
loss (denoted as “fakeplus,w/o-pmse-model”). As we can see, it suffers a significant
performance loss when removing geometry-guided loss or structure loss. Besides,
we also need to prove the necessity of reasoning system. After removing reasoning
system, resulting in unrealistic images and performance loss. Results are shown
in Tab. 3.
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mAP 0.5 0.7

Mask R-CNN

shelf

fakeplus 66.31 47.25
fakeplus,w/o-geo 48.52 31.17
fakeplus,w/o-pmse 27.33 19.24
fakeplus,w/o-reason 15.21 8.44

desk

fakeplus 82.07 71.82
fakeplus,w/o-geo 63.99 55.23
fakeplus,w/o-pmse 45.05 34.51
fakeplus,w/o-reason 18.36 9.71

tote

fakeplus 82.69 76.84
fakeplus,w/o-geo 64.22 53.31
fakeplus,w/o-pmse 46.44 35.62
fakeplus,w/o-reason 20.05 12.43

Table 3. mAP results of ablation study on Mask R-CNN.

Fig. 10. Samples to illustrate the efficacy of structure loss, geometry-guided loss in
GeoGAN and reasoning system in our pipeline.

8 Limitations and Future Work

If the environmental background changes dynamically, we should scan a large
number of environmental backgrounds to cover this variance and take much ef-
fort. Due to the limitations of the physics engine, it is hard to handle highly
non-rigid objects such as a towel. For another limitation, our method does not
consider illumination effects in rendering, since it is much more complicated. Ge-
oGAN that transfers illumination conditions of the real image may partially ad-
dress this problem, but it is still imperfect. In addition, the size of our benchmark
dataset is relatively small in comparison with COCO. Future work is necessary
to address these limitations.
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