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Abstract. Deep metric learning aims to learn an embedding function,
modeled as deep neural network. This embedding function usually puts
semantically similar images close while dissimilar images far from each
other in the learned embedding space. Recently, ensemble has been ap-
plied to deep metric learning to yield state-of-the-art results. As one
important aspect of ensemble, the learners should be diverse in their fea-
ture embeddings. To this end, we propose an attention-based ensemble,
which uses multiple attention masks, so that each learner can attend to
different parts of the object. We also propose a divergence loss, which en-
courages diversity among the learners. The proposed method is applied
to the standard benchmarks of deep metric learning and experimental
results show that it outperforms the state-of-the-art methods by a sig-
nificant margin on image retrieval tasks.
Keywords: attention, ensemble, deep metric learning

1 Introduction

Deep metric learning has been actively researched recently. In deep metric learn-
ing, feature embedding function is modeled as a deep neural network. This fea-
ture embedding function embeds input images into feature embedding space
with a certain desired condition. In this condition, the feature embeddings of
similar images are required to be close to each other while those of dissimi-
lar images are required to be far from each other. To satisfy this condition,
many loss functions based on the distances between embeddings have been
proposed [3, 4, 6, 14, 25, 27–29, 33, 37]. Deep metric learning has been success-
fully applied in image retrieval task on popular benchmarks such as CARS-
196 [13], CUB-200-2011 [35], Stanford online products [29], and in-shop clothes
retrieval [18] datasets.

Ensemble is a widely used technique of training multiple learners to get a
combined model, which performs better than individual models. For deep met-
ric learning, ensemble concatenates the feature embeddings learned by multiple
learners which often leads to better embedding space under given constraints on
the distances between image pairs. The keys to success in ensemble are high per-
formance of individual learners as well as diversity among learners. To achieve
this objective, different methods have been proposed [22, 39]. However, there
has not been much research on optimal architecture to yield diversity of feature
embeddings in deep metric learning.
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Fig. 1. Difference between M -heads ensemble and attention-based ensemble. Both
assume shared parameters for bottom layers (S). (a) In M -heads ensemble, differ-
ent feature embedding functions are trained for different learners (G1, G2, G3). (b) In
attention-based ensemble, single feature embedding function (G) is trained while each
learner learns different attention modules (A1, A2, A3)

Our contribution is to propose a novel framework to encourage diversity in
feature embeddings. To this end, we design an architecture which has multiple
attention modules for multiple learners. By attending to different locations for
different learners, diverse feature embedding functions are trained. They are reg-
ularized with divergence loss which aims to differentiate the feature embeddings
from different learners. Equipped with it, we present M -way attention-based
ensemble (ABE-M) which learns feature embedding with M diverse attention
masks. The proposed architecture is represented in Fig. 1(b). We compare our
model to our M -heads ensemble baseline [16], in which different feature embed-
ding functions are trained for different learners (Fig. 1(a)), and experimentally
demonstrate that the proposed ABE-M shows significantly better results with
less number of parameters.

2 Related works

Deep metric learning and ensemble The aim of the deep metric learning
is to find an embedding function f : X → Y which maps samples x from a data
space X to a feature embedding space Y so that f(xi) and f(xj) are closer in
some metric when xi and xj are semantically similar. To achieve this goal, in
deep metric learning, contrastive [4, 6] and triplet [25, 37] losses are proposed.
Recently, more advanced losses are introduced such as lifted structured loss [29],
histogram loss [33], N-pair loss [27], and clustering loss [14, 28].

Recently, there has been research in networks incorporated with ensemble
technique, which report better performances than those of single networks. Ear-
lier deep learning approaches are based on direct averaging of the same net-
works with different initializations [15, 24] or training with different subsets of
training samples [31, 32]. Following these former works, parameter sharing is
introduced by Bachman et al . [2] which is called pseudo-ensembles. Another pa-
rameter sharing ensemble approach is proposed by Lee et al . [16]. Dropout [30]
can be interpreted as an ensemble approach which takes exponential number of
networks with high correlation. In addition to dropout, Veit et al . [34] state that
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residual networks behave like ensembles of relatively shallow networks. Recently
the ensemble technique has been applied in deep metric learning as well. Yuan
et al . [39] propose to ensemble a set of models with different complexities in
cascaded manner. They train deeply supervised cascaded networks using easier
examples through earlier layers of the networks while harder examples are fur-
ther exploited in later layers. Opitz et al . [22] use online gradient boosting to
train each learner in ensemble. They try to reduce correlation among learners
using re-weighting of training samples. Opitz et al . [21] propose an efficient av-
eraging strategy with a novel DivLoss which encourages diversity of individual
learners.
Attention mechanism Attention mechanism has been used in various com-
puter vision problems. Earlier researches utilize RNN architectures for attention
modeling [1,19,26]. These RNN based attention models solve classification tasks
using object parts detection by sequentially selecting attention regions from im-
ages and then learning feature representations for each part. Besides RNN ap-
proaches, Liu et al . [17] propose fully convolutional attention networks, which
adopts hard attention from a region generator. And Zhao et al . [40] propose
diversified visual attention networks, which uses different scaling or cropping
of input images for different attention masks. However, our ABE-M is able to
learn diverse attention masks without relying on a region generator. In addition,
ABE-M uses soft attention, therefore, the parameter update is straightforward
by backpropagation in a fully gradient-based way while previous approaches
in [1,17,19,26,40] use hard attention which requires policy gradient estimation.

Jaderberg et al . [11] propose spatial transformer networks which models at-
tention mechanism using parameterized image transformations. Unlike afore-
mentioned approaches, their model is differentiable and thus can be trained
in a fully gradient-based way. However, their attention is limited to a set of
predefined and parameterized transformations which could not yield arbitrary
attention masks.

3 Attention-based ensemble

3.1 Deep metric learning
Let f : X → Y be an isometric embedding function between metric spaces X and
Y where X is a NX dimensional metric space with an unknown metric function
dX and Y is a NY dimensional metric space with a known metric function dY .
For example, Y could be a Euclidean space with Euclidean distance or the unit
sphere in a Euclidean space with angular distance.

Our goal is to approximate f with a deep neural network from a dataset
D = {(x(1), x(2), dX (x(1), x(2)))|x(1), x(2) ∈ X} which are samples from X . In
case we cannot get the samples of metric dX , we consider the label information
from the dataset with labels as the relative constraint of the metric dX . For
example, from a dataset DC = {(x, c)|x ∈ X , c ∈ C} where C is the set of labels,
for (xi, ci), (xj , cj) ∈ DC the contrastive metric constraint could be defined as
the following:

{

dX (xi, xj) = 0, if ci = cj ;

dX (xi, xj) > mc, if ci 6= cj ,
(1)
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where mc is an arbitrary margin. The triplet metric constraint for (xi, ci),
(xj , cj), (xk, ck) ∈ DC could be defined as the following:

dX (xi, xj) +mt < dX (xi, xk), ci = cj and ci 6= ck, (2)

where mt is a margin. Note that these metric constraints are some choices of
how to model dX , not those of how to model f .

An embedding function f is isometric or distance preserving embedding if
for every xi, xj ∈ X one has dX (xi, xj) = dY(f(xi), f(xj)). In order to have an
isometric embedding function f , we optimize f so that the points embedded into
Y produce exactly the same metric or obey the same metric constraint of dX .

3.2 Ensemble for deep metric learning

A classical ensemble for deep metric learning could be the method to average the
metric of multiple embedding functions. We define the ensemble metric function
densemble for deep metric learning as the following:

densemble,(f1,...,fM )(xi, xj) =
1

M

M
∑

m=1

dY(fm(xi), fm(xj)), (3)

where fm is an independently trained embedding function and we call it a learner.
In addition to the classical ensemble, we can consider the ensemble of two-step

embedding function. Consider a function s : X → Z which is an isometric em-
bedding function between metric spaces X and Z where X is a NX dimensional
metric space with an unknown metric function dX and Z is a NZ dimensional
metric space with an unknown metric function dZ . And we consider the isometric
embedding g : Z → Y where Y is a NY dimensional metric space with a known
metric function dY . If we combine them into one function b(x) = g(s(x)), x ∈ X ,
the combined function is also an isometric embedding b : X → Y between metric
spaces X and Y.

Like the parameter sharing ensemble [16], with the independently trained
multiple gm and a single s, we can get multiple embedding functions bm : X → Y
as the following:

bm(x) = gm(s(x)). (4)

We are interested in another case where there are multiple embedding func-
tions bm : X → Y with multiple sm and a single g as the following:

bm(x) = g(sm(x)). (5)

Note that a point in X can be embedded into multiple points in Y by multiple
learners. In Eq. (5), sm does not have to preserve the label information while
it only has to preserve the metric. In other words, a point with a label could
be mapped to multiple locations in Z by multiple sm and finally would be
mapped to multiple locations in Y. If this were the ensemble of classification
models where g approximates the distribution of the labels, all sm should be
label preserving functions because the outputs of sm become the inputs of one
classification model g.

For the embedding function of Eq. (5), we want to make sm attends to the
diverse aspects of data x in X while maintaining a single embedding function g

which disentangles the complex manifold Z into Euclidean space. By exploiting
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Fig. 2. Illustration of feature embedding space and divergence loss. Different car brands
are represented as different colors: red, green and blue. Feature embeddings of each
learner are depicted as a square with different mask patterns. Divergence loss pulls
apart the feature embeddings of different learners using same input

the fact that a point x in X can be mapped to multiple locations in Y, we can
encourage each sm to map x into distinctive points zm in Z. Given an isometric
embedding g : Z → Y , if we enforce ym in Y mapped from x to be far from
each other, zm in Z mapped from x will be far from each other as well. Note
that we cannot apply this divergence constraint to zm because metric dz in Z
is unknown. We train each bm to be isometric function between X and Y while
applying the divergence constraint among ym in Y. If we apply the divergence
constraint to classical ensemble models or multihead ensemble models, they do
not necessarily induce the diversity because each fm or gm could arbitrarily
compose different metric spaces in Y (Refer to experimental results in Sec. 6.2).
With the attention-based ensemble, union of metric spaces by multiple sm is
mapped by a single embedding function g.

3.3 Attention-based ensemble model

As one implementation of Eq.(5), we propose the attention-based ensemble
model which is mainly composed of two parts: feature extraction module F (x)
and attention module A(x). For the feature extraction, we assume a general
multi-layer perceptron model as the following:

F (x) = hl(hl−1(· · · (h2(h1(x)))) (6)

We break it into two parts with a branching point at i, S(·) includes hl,
hl−1, . . . , hi+1, and G(·) includes hi, hi−1, . . . , h1. We call S(·) a spatial feature
extractor and G(·) a global feature embedding function with respect to the out-
put of each function. For attention module, we also assume a general multi-layer
perceptron model which outputs a three dimensional blob with channel, width,
and height as an attention mask. Each element in the attention masks is assumed
to have a value from 0 to 1. Given aforementioned two modules, the combined
embedding function Bm(x) for the learner m is defined as the following:

Bm(x) = G(S(x) ◦Am(S(x))), (7)

where ◦ denotes element-wise product (Fig. 1(b)).
Note that, same feature extraction module is shared across different learners

while individual learners have their own attention module Am(·). The attention
function Am(S(x)) outputs an attention mask with same size as output of S(x).
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This attention mask is applied to the output feature of S(x) with an element-
wise product. Attended feature output of S(x)◦Am(S(x)) is then fed into global
feature embedding function G(·) to generate an embedding feature vector. If
all the elements in the attention mask are 1, the model Bm(x) is reduced to a
conventional multi-layer perceptron model.

3.4 Loss

The loss for training aforementioned attention model is defined as:

L({(xi, ci)}) =
∑

m

Lmetric,(m)({(xi, ci)}) + λdivLdiv({xi}), (8)

where {(xi, ci)} is a set of all training samples and labels, Lmetric,(m)(·) is the
loss for the isometric embedding for the m-th learner, Ldiv(·) is regularizing term
for diversifying the feature embedding of each learner Bm(x) and λdiv is the
weighting parameter to control the strength of the regularizer. More specifically,
divergence loss Ldiv is defined as the following:

Ldiv({xi}) =
∑

i

∑

p,q

max(0,mdiv − dY(Bp(xi), Bq(xi))
2), (9)

where {xi} is set of all training samples, dY is the metric in Y and mdiv is a
margin. A pair (Bp(xi), Bq(xi)) represents feature embeddings of a single image
embedded by two different learners. We call it self pair from now on while positive
and negative pairs refer to pairs of feature embeddings with same labels and
different labels, respectively.

The divergence loss encourages each learner to attend to the different part
of the input image by increasing the distance between the points embedded by
the input image (Fig. 2). Since the learners share the same functional module to
extract features, the only differentiating part is the attention module. Note that
our proposed loss is not directly applied to the attention masks. In other words,
the attention masks among the learners may overlap. And also it is possible to
have the attention masks some of which focus on small region while other focus
on larger region including small one.

4 Implementation

We perform all our experiments using GoogLeNet [32] as the base architec-
ture. As shown in Fig. 3, we use the output of max pooling layer following
the inception(3b) block as our spatial feature extractor S(·) and remaining
network as our global feature embedding function G(·). In our implementa-
tion, we simplify attention module Am(·) as A′

m(C(·)) where C(·) consists of
inception(4a) to inception(4e) from GoogLeNet, which is shared among all
M learners and A′

m(·) consists of a convolution layer of 480 kernels of size 1×1
to match the output of S(·) for the element-wise product. This is for efficiency
in terms of memory and computation time. Since C(·) is shared across different
learners, forward and backward propagation time, memory usage, and number
of parameters are decreased compared to having separate Am(·) for each learner
(without any shared part). Our preliminary experiments showed no performance
drop with this choice of implementation.
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Fig. 3. The implementation of attention-based ensemble (ABE-M) using GoogLeNet

We study the effects of different branching points and depth of attention
module in Sec. 6.3. We use contrastive loss [3, 4, 6] as our distance metric loss
function which is defined as the following:

Lmetric,(m)({(xi, ci)}) =
1

N

∑

i,j

(1− yi,j)[mc −D2
m,i,j ]+ + yi,jD

2
m,i,j ,

Dm,i,j = dY(Bm(xi), Bm(xj)),

(10)

where {(xi, ci)} is set of all training samples and corresponding labels, N is the
number of training sets, yi,j is a binary indicator of whether or not the label
ci is equal to cj , dY is the euclidean distance, [·]+ denotes the hinge function
max(0, ·) and mc is the margin for contrastive loss. Both of margins mc and mdiv

(in Eq. 8) is set to 1.
We implement the proposed ABE-M method using caffe [12] framework. Dur-

ing training, the network is initialized from a pre-trained network on ImageNet
ILSVRC dataset [24]. The final layer of the network and the convolution layer of
attention module are randomly initialized as proposed by Glorot et al . [5]. For
optimizer, we use stochastic gradient descent with momentum optimizer with
momentum as 0.9, and we select the base learning rate by tuning on validation
set of the dataset.

We follow earlier works [29,38] for preprocessing and unless stated otherwise,
we use the input image size of 224×224. All training and testing images are scaled
such that their longer side is 256, keeping the aspect ratio fixed, and padding
the shorter side to get 256×256 images. During training, we randomly crop
images to 224×224 and then randomly flip horizontally. During testing, we use
the center crop. We subtract the channel-wise mean of ImageNet dataset from
the images. For training and testing images of cropped datasets, we follow the
approach in [38]. For CARS-196 [13] cropped dataset, 256×256 scaled cropped
images are used; while for CUB-200-2011 [35] cropped dataset, 256×256 scaled
cropped images with fixed aspect ratio and shorter side padded are used.

We run our experiments on nVidia Tesla M40 GPU (24GBs GPU memory),
which limits our batch size to 64 for ABE-8 model. Unless stated otherwise,
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we use the batch size of 64 for our experiments. We sample our mini-batches by
first randomly sampling 32 images and then positive pairs for first 16 images and
negative pairs for next 16 images, thus making the mini-batch of size 64. Unless
mentioned otherwise, we report the results of our method using embedding size
of 512. This makes the embedding size for individual learners to be 512/M .

5 Evaluation

We use all commonly used image retrieval task datasets for our experiments and
Recall@K metric for our evaluation. During testing, we compute the feature
embeddings for all the test images from our network. For every test image, we
then retrieve top K similar images from the test set excluding test image itself.
Recall score for that test image is 1 if at least one image out ofK retrieved images
has the same label as the test image. We compute the average over whole test set
to get Recall@K. We evaluate the model after every 1000 iteration and report
the results for the iteration with highest Recall@1.

We show the effectiveness of the proposed ABE-M method on all the datasets
commonly used in image retrieval tasks. We follow same train-test split as [29]
for fair comparison with other works.

– CARS-196 [13] dataset contains images of 196 different classes of cars and
is primarily used for our experiments. The dataset is split into 8,144 training
images and 8,041 testing images (98 classes in both).

– CUB-200-2011 [35] dataset consists of 11,788 images of 200 different bird
species. We use the first 100 classes for training (5,864 images) and the
remaining 100 classes for testing (5,924 images).

– Stanford online products (SOP) [29] dataset has 22,634 classes with
120,053 product images. 11,318 classes are used for training (59,551 images)
while other 11,316 classes are for testing (60,502 images).

– In-shop clothes retrieval [18] dataset contains 11,735 classes of clothing
items with 54,642 images. Following similar protocol as [29], we use 3,997
classes for training (25,882 images) and other 3,985 classes for testing (28,760
images). The test set is partitioned into the query set of 3,985 classes (14,218
images) and the retrieval database set of 3,985 classes (12,612 images).

Since CARS-196 and CUB-200-2011 datasets consist of bounding boxes too,
we report the results using original images and cropped images both for fair
comparison.

6 Experiments

6.1 Comparison of ABE-M with M-heads

To show the effectiveness of our ABE-M method, we first compare the per-
formance of ABE-M and M -heads ensemble (Fig. 1(a)) with varying ensemble
embedding sizes (denoted with superscript) on CARS-196 dataset. As show in
Table 1 and Fig. 4, our method outperforms M -heads ensemble by a significant
margin. The number of model parameters for ABE-M is much less compared to
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Fig. 4. Recall@1 comparison with baseline on CARS-196 as a function of (a) number
of parameters and (b) flops. Both of ABE-M and M -heads has embedding size of 512

M -heads ensemble as the global feature extractor G(·) is shared among learners.
But, ABE-M requires higher flops because of extra computation of attention
modules. This difference becomes increasingly insignificant with increasing val-
ues of M .

ABE-1 contains only one attention module and hence is not an ensemble and
does not use divergence loss. ABE-1 performs similar to 1-head. We also report
the performance of individual learners of the ensemble. From Table 1, we can
see that the performance of ABE-M512 ensemble is increasing with increasing
M . The performance of individual learners is also increasing with increasing
M despite the decrease in embedding size of individual learners (512/M). The
same increase is not seen for the case of M -heads. Further, we can refer to
ABE-164, ABE-2128, ABE-4256 and ABE-8512, where all individual learners have
embedding size 64. We can see a clear increase in recall of individual learners
with increasing values of M .

Table 1. Recall@K(%) comparison with baseline on CARS-196. Superscript denotes
ensemble embedding size

Ensemble Individual Learners params flops

K 1 2 4 8 1 2 4 8 (×107) (×109)

1-head512 67.2 77.4 85.3 90.7 - - - – 0.65 1.58

2-heads512 73.3 82.5 88.6 93.0 70.2±.03 79.8±.52 86.7±.01 91.9±.37 1.18 2.25

4-heads512 76.6 84.2 89.3 93.2 70.4±.80 79.9±.38 86.5±.43 91.4±.42 2.24 3.60

8-heads512 76.1 84.3 90.3 93.9 68.3±.39 78.5±.39 86.0±.37 91.3±.31 4.36 6.28

ABE-1512 67.3 77.3 85.3 90.9 - - - - 0.97 2.21

ABE-2512 76.8 84.9 90.2 94.0 70.9±.58 80.3±.04 87.1±.07 92.2±.20 0.98 2.96

ABE-4512 82.5 89.1 93.0 95.5 74.4±.51 83.1±.47 89.1±.34 93.2±.36 1.05 4.46

ABE-8512 85.2 90.5 93.9 96.1 75.0±.39 83.4±.24 89.2±.31 93.2±.24 1.20 7.46

ABE-164 65.9 76.5 83.7 89.3 - - - - 0.92 2.21

ABE-2128 75.5 84.0 89.4 93.6 68.6±.38 78.8±.38 85.7±.43 91.3±.16 0.96 2.96

ABE-4256 81.8 88.5 92.4 95.1 72.3±.68 81.4±.45 87.9±.23 92.3±.13 1.04 4.46

6.2 Effects of divergence loss

ABE-M without divergence loss To analyze the effectiveness of divergence
loss in ABE-M , we conduct experiments without divergence loss on CARS-196
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Fig. 5. Histograms of cosine similarity of positive (blue), negative (red), self (green)
pairs trained with different methods. Self pair refers to the pair of feature embeddings
from different learners using same image. (a) Attention-based ensemble (ABE-8) us-
ing proposed loss, (b) attention-based ensemble (ABE-8) without divergence loss, (c)
8-heads ensemble, (d) 8-heads ensemble with divergence loss. In the case of attention-
based ensemble, divergence loss is necessary for each learner to be trained to produce
different features by attending to different locations. Without divergence loss, one can
see all learners learn very similar embedding. Meanwhile, in the case of M -heads en-
semble, there is no effect of applying divergence loss.

Table 2. Recall@K(%) comparison in ABE-M ensemble without divergence loss Ldiv

on CARS-196

Ensemble Individual Learners
K 1 2 4 8 1 2 4 8

ABE-8512 85.2 90.5 93.9 96.1 75.0±0.39 83.4±0.24 89.2±0.31 93.2±0.24

ABE-8512

without Ldiv
69.7 78.8 86.2 91.5 69.5±0.11 78.8±0.14 86.1±0.15 91.5±0.09

and show the results in Table 2. As we can see, ABE-M without divergence loss
performs similar to its individual learners whereas there is significant gain in
ensemble performance of ABE-M compared to its individual learners.

We also calculate the cosine similarity between positive, negative, and self
pairs, and plot in Fig. 5. With divergence loss (Fig. 5(a)), all learners learn
diverse embedding function which leads to decrease in cosine similarity of self
pairs. Without divergence loss (Fig. 5(b)), all learners converge to very similar
embedding function so that the cosine similarity of self pairs is close to 1. This
could be because all learners end up learning similar attention masks which leads
to similar embeddings for all of them.

We visualize the learned attention masks of ABE-8 on CARS-196 in Fig. 6.
Due to the space limitation, results from only three learners out of eight and three
channels out of 480 are illustrated. The figure shows that different learners are
attending to different parts for the same channel. Qualitatively, our proposed
loss successfully diversify the attention masks produced by different learners.
They are attending to different parts of the car such as upper part, bottom part,
roof, tires, lights and so on. In 350th channel, for instance, learner 1 is focusing
on bottom part of car, learner 2 on roof and learner 3 on upper part including
roof. At the bottom of Fig. 6, the mean of the attention masks across all channels
shows that the learned embedding function focuses more on object areas than
the background.
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masked input images with 27th channel of attention masks

mean across channels of attention masks

masked input images with 118th channel of attention masks

masked input images with 350th channel of attention masks

input images

learner 1

learner 2

learner 3

learner 1

learner 2

learner 3

learner 1

learner 2

learner 3
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learner 2
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Fig. 6. The attention masks learned by each learner of ABE-8 on CARS-196. Due to
the space limitation, results from only three learners out of eight and three channels
out of 480 are illustrated. Each column shows the result of different input images.
Different learners attend to different parts of the car such as upper part, bottom part,
roof, tires, lights and so on

Divergence loss in M-heads We show the result of experiments of 8-heads
ensemble with divergence loss in Table 3. We can see that the divergence loss
does not improve the performance in 8-heads. From Fig. 5(c), we can notice that
cosine similarities of self pairs are close to zero for M -heads. Fig. 5(d) shows that
the divergence loss does not affect the cosine similarity of self pairs significantly.
As mentioned in Sec. 3.2, we hypothesize this is because each of Gm(·) could
arbitrarily compose different metric spaces in Y.

Table 3. Recall@K(%) comparison in M -heads ensemble with divergence loss Ldiv on
CARS-196

K 1 2 4 8
8-heads 76.1 84.3 90.3 93.9
8-heads with Ldiv 76.0 84.6 89.7 93.5

6.3 Ablation study

To analyze the importance of various aspects of our model, we performed exper-
iments on CARS-196 dataset of ABE-8 model, varying a few hyperparameters
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Fig. 7. Recall@1 while varying hyperparameters and architectures: (a) number of incep-
tion blocks used for attention module Ak(·), (b) branching point of attention module,
and (c) weight λdiv. Here, inception(3a) is abbreviated as in(3a)

at a time and keeping others fixed. (More ablation study can be found in the
supplementary material.)

Sensitivity to depth of attention module We demonstrate the effect of
depth of attention module by changing the number of inception blocks in it. To
make sure that we can take the element wise product of the attention mask with
the input of attention module, the dimension of attention mask should match
the input dimension of attention module. Because of this we remove all the
pooling layers in our attention module. Fig. 7(a) shows Recall@1 with varying
number of inception blocks in attention module starting from 1 (inception(4a))
to 7 (inception(4a) to inception(5b)) in GoogLeNet. We can see that the
attention module with 5 inception blocks (inception(4a) to inception(4e))
performs the best.

Sensitivity to branching point of attention module The branching point
of the attention module is where we split the network between spatial feature
extractor S(·) and global feature embedding function G(·). To analyze the choice
of branching point of the attention module, we keep the number of inception
blocks in attention module same (i.e. 5) and change branching points from pool2

to inception(4b). From Fig. 7(b), we see that pool3 performs the best with
our architecture.

We carry out this experiment with batch size 40 for all the branching points.
For ABE-M model, the memory requirement for the G(·) is M times compared
to the individual learner. Since early branching point increases the depth of G(·)
while decreasing the depth for S(·), it would consequently increase the memory
requirement of the whole network. Due to the memory constraints of GPU, we
started the experiments from branching points pool2 and adjusted the batch
size.

Sensitivity to λdiv Fig. 7(c) shows the effect of λdiv on Recall@K for ABE-M
model. We can see that λdiv = 1 performs the best and lower values degrades
the performance quickly.
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6.4 Comparison with state of the art

We compare the results of our approach with current state-of-the-art techniques.
Our model performs the best on all the major benchmarks for image retrieval.
Table 4, 6 and 7 compare the results with previous methods such as Lifted-
Struct [29], HDC [39], Margin† [38], BIER [22], and A-BIER [22] on CARS-
196 [13], CUB-200-2011 [35], SOP [29], and in-shop clothes retrieval [18] datasets.
Results on the cropped datasets are listed in Table 5.

Table 4. Recall@K(%) score on CUB-200-2011 and CARS-196
CUB-200-2011 CARS-196

K 1 2 4 8 1 2 4 8

Contrastive128 [29] 26.4 37.7 49.8 62.3 21.7 32.3 46.1 58.9

LiftedStruct128 [29] 47.2 58.9 70.2 80.2 49.0 60.3 72.1 81.5

N-Pairs64 [27] 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6

Clustering64 [28] 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8

Proxy NCA†64 [20] 49.2 61.9 67.9 72.4 73.2 82.4 86.4 87.8

Smart Mining64 [7] 49.8 62.3 74.1 83.3 64.7 76.2 84.2 90.2

Margin†128 [38] 63.6 74.4 83.1 90.0 79.6 86.5 91.9 95.1

HDC384 [39] 53.6 65.7 77.0 85.6 73.7 83.2 89.5 93.8

Angular Loss512 [36] 54.7 66.3 76.0 83.9 71.4 81.4 87.5 92.1

A-Bier512 [23] 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1

ABE-2384 55.9 68.1 77.4 85.7 77.2 85.1 90.5 94.2

ABE-4384 57.8 69.0 78.8 86.5 82.2 88.6 92.6 95.6

ABE-8
384 60.2 71.4 80.5 87.7 83.8 89.7 93.2 95.5

ABE-2512 55.7 67.9 78.3 85.5 76.8 84.9 90.2 94.0

ABE-4512 57.9 69.3 79.5 86.9 82.5 89.1 93.0 95.5

ABE-8
512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1

Table 5. Recall@K(%) score on CUB-200-2011 (cropped) and CARS-196 (cropped)
CUB-200-2011 CARS-196

K 1 2 4 8 1 2 4 8

PDDM + Triplet128 [9] 50.9 62.1 73.2 82.5 46.4 58.2 70.3 80.1

PDDM + Quadruplet128 [9] 58.3 69.2 79.0 88.4 57.4 68.6 80.1 89.4

HDC384 [39] 60.7 72.4 81.9 89.2 83.8 89.8 93.6 96.2

Margin†128 [38] 63.9 75.3 84.4 90.6 86.9 92.7 95.6 97.6

A-BIER512 [23] 65.5 75.8 83.9 90.2 90.3 94.1 96.8 97.9

ABE-2512 64.9 76.2 84.2 90.0 88.2 92.8 95.6 97.3

ABE-4512 68.0 77.8 86.3 92.1 91.6 95.1 96.8 97.8

ABE-8
512

70.6 79.8 86.9 92.2 93.0 95.9 97.5 98.5

†All compared methods use GoogLeNet architecture except Margin which uses
ResNet-50 [8] and Proxy-NCA uses IncpeptionBN [10]



14 W. Kim, B. Goyal, K. Chawla, J. Lee, K. Kwon

Table 6. Recall@K(%) score on Stanford online products dataset (SOP)

K 1 10 100 1000

Contrastive128 [29] 42.0 58.2 73.8 89.1

LiftedStruct512 [29] 62.1 79.8 91.3 97.4

N-Pairs512 [27] 67.7 83.8 93.0 97.8

Clustering64 [28] 67.0 83.7 93.2 -

Proxy NCA†64 [20] 73.7 - - -

Margin†128 [38] 72.7 86.2 93.8 98.0

HDC384 [39] 69.5 84.4 92.8 97.7

A-Bier512 [23] 74.2 86.9 94.0 97.8

ABE-2512 75.4 88.0 94.7 98.2

ABE-4512 75.9 88.3 94.8 98.2

ABE-8
512

76.3 88.4 94.8 98.2

Table 7. Recall@K(%) score on in-shop clothes retrieval dataset

K 1 10 20 30 40 50

FasionNet+Joints4096 [18] 41.0 64.0 68.0 71.0 73.0 73.5

FasionNet+Poselets4096 [18] 42.0 65.0 70.0 72.0 72.0 75.0

FasionNet4096 [18] 53.0 73.0 76.0 77.0 79.0 80.0

HDC384 [39] 62.1 84.9 89.0 91.2 92.3 93.1

A-BIER512 [23] 83.1 95.1 96.9 97.5 97.8 98.0

ABE-2512 85.2 96.0 97.2 97.8 98.2 98.4

ABE-4512 86.7 96.4 97.6 98.0 98.4 98.6

ABE-8
512

87.3 96.7 97.9 98.2 98.5 98.7

7 Conclusion

In this work, we present a new framework for ensemble in the domain of deep
metric learning. It uses attention-based architecture that attends to parts of the
image. We use multiple such attention-based learners for our ensemble. Since
ensemble benefits from diverse learners, we further introduce a divergence loss
to diversify the feature embeddings learned by each learner. The divergence loss
encourages that the attended parts of the image for each learner are different.
Experimental results demonstrate that the divergence loss not only increases
the performance of ensemble but also increases each individual learners’ perfor-
mance compared to the baseline. We demonstrate that our method outperforms
the current state-of-the-art techniques by significant margin on several image
retrieval benchmarks including CARS-196 [13], CUB-200-2011 [35], SOP [29],
and in-shop clothes retrieval [18] datasets.
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