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Abstract. We aim to search for a target person from a gallery of whole
scene images for which the annotations of pedestrian bounding boxes
are unavailable. Previous approaches to this problem have relied on a
pedestrian proposal net, which may generate redundant proposals and
increase the computational burden. In this paper, we address this prob-
lem by training relational context-aware agents which learn the actions
to localize the target person from the gallery of whole scene images. We
incorporate the relational spatial and temporal contexts into the frame-
work. Specifically, we propose to use the target person as the query in
the query-dependent relational network. The agent determines the best
action to take at each time step by simultaneously considering the lo-
cal visual information, the relational and temporal contexts, together
with the target person. To validate the performance of our approach, we
conduct extensive experiments on the large-scale Person Search bench-
mark dataset and achieve significant improvements over the compared
approaches. It is also worth noting that the proposed model even per-
forms better than traditional methods with perfect pedestrian detectors.
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1 Introduction

Person re-identification (re-id) is an important research problem in which the
goal is to match the same person across different camera views or across time
within the same camera [1–5]. Its obvious applications include, but are not lim-
ited to, content-based video retrieval, video surveillance, and human-computer
interaction [6]. Due to its importance for these applications, it has attracted
increasing research attention in recent years. However, it remains challenging
and unsolved because of camera view changes, poor lighting conditions, severe
background clutter and occlusion, and so on.

Despite the considerable progress that has been made, person re-id still can-
not be directly applied to real-world applications. Most existing person re-id
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benchmark datasets and approaches focus on matching cropped person images
from multiple non-overlapping cameras [7–9]. Although these approaches have
achieved promising performance, they have major limitations for practical usage,
since they are built upon the assumption of precise person detection. In real-
world applications, precise bounding boxes are either unavailable or expensive to
obtain. The off-the-shelf person detection algorithms would inevitably generate
inaccurate proposals, thus deteriorating subsequent person re-id performance.

To close the gap between the research on person re-id and real-world appli-
cations, researchers have proposed the person search problem and several cor-
responding approaches [10–12]. We show the differences between person search
and person re-id in Figure 1. Xu et al. proposed to combine person detection and
person matching scores using a sliding window search method [10]. Their method
has several inherent drawbacks. Firstly, their algorithm is not scalable because
of the sliding window algorithm. Secondly, they conduct person detection and
search in two separate steps, which may lead to sub-optimal solution for person
search. To address these problems, Xiao et al. proposed a new deep learning
model to jointly conduct person detection and identification for person search
[12]. However, their model also required to train a person proposal network for
person candidate detection.

Query Target

(a) Person Search (b) Person Re-ID

Fig. 1: We show examples of person search and person re-identification. Person
search aims at finding a specified person from whole scene images, while per-
son re-id aims to match cropped person images from multiple non-overlapping
cameras. From the comparison, we can see that person search problem setting
is closer to real-world applications and more challenging.

Spatial and temporal context may provide additional crucial information but
still remains under-explored for person search. Spatial context has been proved
useful in tasks like visual question answering [13]. The target-person-dependent
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spatial relationships between objects in the whole scene image may contribute
to more discriminative representations. Additionally, the success of sequential
decision making in object detection [14] also sheds light for person re-id. An
agent making multi-step inferences may better locate the target person with
consideration of its temporal action and state memory.

In this work, we propose a top-down search strategy powered by a spatial
and temporal context-aware agent to address the limitations and opportunities
discussed above. Specifically, given the whole scene, its local image features,
and the query image, we leverage a target-person-dependent relational network
to extract the spatial context between objects. Then our deep reinforcement
learning agent selects the best action to narrow down the precise location of the
target person at each time step based on the spatial context and its temporal
action and state memory. The selected action is expected to keep the target
person within the target box while cutting off as much background as possible.
In this paper, we define 14 actions to perform the transitions of the target box.
This step is repeated until the optimal result is obtained (when the agent selects
the action “Terminate”). The whole framework comprises no person proposal
computing and is end-to-end trainable.

To summarize, we make the following contributions to the field of person
search.
– We make the earliest attempt to solve the person search problem as a condi-

tional decision-making process and build the first deep reinforcement learning
based person search framework.

– The proposed model is trained in an end-to-end fashion without proposal
computing, which could be redundant and noisy. It is interesting to notice
that our model even perform better than traditional methods with perfect
pedestrian proposal detectors.

– We incorporate relational spatial and temporal contexts into the training pro-
cedure, which guides the model to generate more informative “experience”.

2 Related Works

Person Re-Identification. Pioneer researchers have proposed many algorithms
to solve the re-id problem. These algorithms can be separated into two groups,
discriminate feature learning [15–17, 7] and distance metric learning [1, 18, 3, 19].
The discriminate feature learning methods aim to learn distinct and informa-
tive features from cropped pedestrian images, while the distance metric learning
methods usually learn distance metrics that are robust to sample variance.

Inspired by the phenomenal results achieved by deep learning networks in
many computer vision applications [20–22], many researchers have explored dif-
ferent deep convolutional neural network (DCNN) models to solve the person
re-id problem. Some researchers have employed a Siamese convolutional network
[23] for person re-id. For example, Ahmed et al. [24] and Li et al. [8] proposed
using pairs of cropped pedestrian images as input and training the network us-
ing a binary verification loss function. Other researchers have adopted a triplet
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framework to improve person re-id performance. Ding et al. [25] and Cheng et

al. [2] trained networks with triplet samples to make the features from the same
pedestrian close and the features from different pedestrians far apart. We also
notice that Zheng et al. also contributed a benchmark dataset for person search
[5]. However, they proposed separate detection and re-id methods with scores
re-weighting to solve the problem, while we propose a reinforcement learning
framework for joint detection and re-id.

Pedestrian Detection. Early works on pedestrian detectors were built upon hand-
crafted features and linear classifiers. Representative works include DPM [26],
ACF [27] and Checkerboards [28]. These off-the-shelf pedestrian detectors are
widely used for a variety of computer vision applications. Recently, various deep
learning models have been proposed to boost the performance of pedestrian
detection. For example, Cai et al. [29] proposed to seek an algorithm for opti-
mal cascade learning under a criterion that penalizes both detection errors and
complexity. Tian et al. [30] sought to jointly optimize pedestrian detection with
semantic tasks, including pedestrian attributes and scene attributes. Ouyang et

al. [31] proposed to handle occlusion by jointly learning features and the visibil-
ity of different body parts. They could effectively estimate the visibility of parts
at multiple layers and learn their relationship with the proposed discriminative
deep model. Luo et al. [32] propose to automatically learn hierarchical features,
salience maps, and mixture representations of different body parts. Their model
is able to explicitly model the complex mixture of visual variations at multiple
levels.

Deep Reinforcement Learning. Deep reinforcement learning (DRL) has attracted
much research attention over the last few years. Its goal is to learn a policy func-
tion that determines sequential actions by maximizing the cumulative future
rewards [33]. Many researchers have attempted to incorporate deep neural net-
works with RL algorithms [34, 35]. A common method is to use deep neural
networks to represent RL models. These researchers have achieved human-level
performance while playing Atari games [34] or Go [35]. Concurrently, some re-
searchers propose to apply DRL to computer vision tasks, such as action recog-
nition [36], object localization [14] and visual tracking [37].

Two widely used DRL methods are discussed in the literature, Deep Q-
Networks (DQN) and policy gradient. As an exemplar of Q-learning, DQN ap-
proximates the state-action value function with deep neural networks. The net-
work is trained by minimizing the temporal-difference errors [34]. To obtain
better performance and maintain stability, researchers have proposed different
network architectures based on DQN, i.e. Double DQN [38], DDQN [39], etc..

The goal of policy gradient methods is to use gradient descent to directly learn
the policy by optimizing the deep policy networks with respect to the expected
future reward. Williams et al. [40] proposed using the immediate reward to obtain
an estimation of the policy value. They called this method REINFORCE and
applied it to detect actions in videos.
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3 Relational Context-Aware Agents

3.1 Overview

Person search solves the problem of finding the precise position of the target
person from a gallery of whole scene images. The system dynamically locates the
target person by sequential actions that are determined by a spatial-temporal
context-aware agent. Our agent accepts the spatial and temporal context, the
local image feature and the query image as input, and predicts the best action to
take. The bounding box is transformed from its current state by the predicted
action, and the next action is predicted from the next state. This process is
repeated until we reach an optimal result. We show structure of the proposed
model in Figure 2.
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Fig. 2: The proposed relational spatial and temporal context-aware network. We
adopt the relational network to compute the relational spatial context, and con-
dition its processing on the target person. We encode the temporal context in
the state of the LSTM. We use blue line to denote normal one-step feed-forward,
and black line to denote action feedback loop.

3.2 Relational Decision Making

The proposed model follows Markov Decision Process (MDP), which is well
suitable for modelling the sequential decision process. MDP is denoted as a
tuple of states (S, A, R, γ), where s ∈ S denotes a state of the environment,
a ∈ A denotes an action that the agent selects to transform the environment,
R : S × A denotes the reward function that maps a state-action pair (s, a) to
a reward r ∈ R, and γ ∈ (0, 1] denotes a discount factor determining the decay
rate in calculating the cumulative discounted reward of the entire trajectory. We
represent the state and action as st and at, for t = 1, · · · , T , where T denotes the
termination step. We define the bounding box as [xt, yt, wt, ht], where (xt, yt) is
the center position, wt and ht are the width and the height of the bounding box,
respectively.
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Action. We show the 14 actions in Figure 3. These actions can be grouped
into three categories. The first category is for translating the current bounding
box locally. The second category is for scaling the current bounding box to a
smaller size (0.55 times as the original bounding box). The last category has
only one action, namely “Terminate”, which means the optimal result has been
achieved. Similar to [14], the local translation group includes moving right/left
horizontally, moving up/down vertically, making fatter/thinner horizontally and
making fatter/thinner vertically. Each transformation action makes a discrete
change to the current bounding box by a factor δ, where δ ∈ (0, 1]. For example,
if the action “moving right horizontally” is selected, the bounding box will change
from [xt, yt, wt, ht] to [xt + δ ∗ wt, yt, wt, ht]. δ is set as 0.2 in our experiments,
since this value has been selected in the literature for its good trade-off between
speed and localization accuracy.

Local Translation Actions Scaling Actions

Terminate

Fig. 3: Illustration of the 14 actions for the agent. The blue window with solid line
denotes the bounding box after taking the corresponding action. The dashed line
represents the bounding box before the action. The termination action means
optimal result is reached.

State. At each time step, we define the environnt state as a combination of the
whole image, the current bounding box, and the query person. In this paper, we
initialize the bounding box as the whole image. We extract these features using
the ResNet-50 [22] which is pre-trained on the large-scale ImageNet dataset [41].
Our framework utilizes the convolutional layers from the ResNet-50, followed
by a ROI pooling layer [42, 43] to extract a set of feature maps for the region
proposal. We feed the whole image into the network, and obtain image feature
maps after several convolutional layers. Then we feed these feature maps into a
ROI pooling layer to extract the corresponding features for the object proposals.
Note that this is computationally efficient since we can share the computations
in convolutional layers for all region proposals in one image. For the whole image
and the query person image, we feed the feature maps into global average pooling
layers [22] to obtain the feature vectors.

Reward. The reward function R(st, at) is the improvement of localization per-
formance when the action at is taken at the state st. In the literature [43], re-
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searchers employ the Intersection-over-Union (IoU) between the current bound-
ing box and the ground-truth as the evaluation metric for its simplicity and
effectiveness. However, as claimed in [44], this simple reward function tends to
mislead the agent into learning suboptimal policies. It is essential to incorporate
a shaping reward function into the original reward function. The shaping reward
function is defined as:

F (st, at) = γΦ(st+1)− Φ(st), (1)

Φ(s) = IoU(st) (2)

where Φ(s) is a potential based reward. Following the literatures on deep rein-
forcement learning [45, 43], we set the discount factor γ to 0.99. Ng et al. has
proved that F is a necessary and sufficient condition to guarantee consistency
with the optimal policy [44].

When the local translation action or scaling action is selected, by incorpo-
rating the shaping reward function, we have the following reward function:

R(st, at) = R′(st, at) + F (st, at), (3)

where

R′(st, at) =

{

IoU(st+1), if IoU(st+1) > max IoU(sk)|
t
k=0

− p, otherwise
. (4)

The basic reward function R′(st, at) will return IoU(st+1) when the new state
st+1 has higher IoU value than any previous states. Otherwise, we will give a
penalty of −p to the agent. Empirically, we set p as 0.05.

When the “Terminate” action is selected, the agent will receive a positive
reward η if IoU(sT ) > τ . Otherwise, a penalty will be given to the agent. The
reward function R(st, at) is defined as follows:

R(st, at) =

{

η if IoU(st) > τ

−η otherwise
. (5)

In this paper, τ and η are empirically set as 0.5 and 1.0, respectively.

3.3 Network Structure

Following the traditional reinforcement learning setting, our agent interacts with
the environment at each time step. We define a value function as V π(s) =
E[Rt|st = s], which measures the expected cumulative reward Rt for following a
policy function π from any state s. The policy function π(a|s) is used to select an
action s from a set of actions given a state s. We approximate the value function
and the policy function using a multi-layer neural network, which is a common
practice in DRL. The network has two outputs, i.e. the distribution π(a|s) over
the possible actions and value estimation V π(s).
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We employ the ResNet-50 [22] for feature extraction because it has demon-
strated its superiority in terms of person re-id [46]. To encode the relational
context information, we incorporate a Relational Network (RN) [13] to consider
all the relations across all pairs of objects in the image. The RN can be simply
defined as follows:

vRN = fφ(
∑

i,j

gθ(oi, oj)), (6)

where O = (o1, · · · , on) denote a set of “objects”, oi is the i-th object, and fφ
and gθ are functions with parameters φ and θ. Santoro et al. have demonstrated
that CNN embeddings can be used as a set of objects for an RN. We feed the
image into the ResNet-50 and get the k feature maps of size d× d from the final
convolutional layer, where k is the number of kernels in the final convolutional
layer. We tag each of the d2 k-dimensional cells in the d× d feature maps with
an arbitrary coordinate indicating its relative spatial position, and treat it as an
object for the RN. The existence and meaning of an object-object relation should
be relevant to the query person. Hence, we make the function gθ condition its
processing on the query person:

vRN = fφ(
∑

i,j

gθ(oi, oj , q)). (7)

We concatenate the whole scene image representation vRN and the local repre-
sentation vlocal, resulting in the scene representation vscene. We feed the feature
maps of the target person to global average pooling and achieve the target per-
son representation vtarget. We project both features into a ℓ2-normalized 256
dimensional subspace, and apply dot product and ℓ2-norm to v′scene and v′target.
For simplicity, we drop the apostrophe. Hence, we encode the observation of the
current state as:

v0 =
vscene · vtarget
||vscene · vtarget||

, (8)

where · denotes element-wise dot product.
To step further, the temporal context is explored to track the states that the

agent has encountered as well as all the actions that the agent has taken. In this
work, we record 50 previous actions, resulting in a history vector vhistory ∈ R

700.
We encode the relative location and size of the region using a 5-dimensional
vector:

vbbox = [
xt −

wt

2

wt

,
yt −

ht

2

ht

,
xt +

wt

2

wt

,
yt +

ht

2

ht

,
Sbbox

Simage
], (9)

where Sbbox is the size of bounding box and Simage is the size of the image. Then
we represent the state as a vector vs = [v0, vhistory, vbbox]. We pass the vector
representation of the state vs to two FC layers with the same output size of
1,024, following by using a Long Short-Term Memory (LSTM) cell with Layer
Normalization to track the past states. The temporal context for subsequent
decision making is encoded by the state inside the LSTM cell.
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3.4 Training

Although using a single agent to collect experiences may obtain promising re-
sults, it may achieve highly correlated data. Updating the system with these data
would lead the agent to learn a suboptimal solution. To avoid the suboptimal
solution, we employ the asynchronous advantage actor-critic (A3C) method [45]
which asynchronously execute multiple agents in parallel, on multiple instances
of the environment. A3C contains a policy function π(a|s; θπ) and an estimate
of the value function V (s; θv), where θπ and θv are the parameters of the policy
function and the value function, respectively. When we process one query, an
agent interacts with the environment constructed by the the query using the
current network, and generates an episode {(st, at, rt)}t=0,··· ,T for training. The
query is selected randomly during training. We update the network parameters
asynchronously.

Following [45], we empirically group every N consecutive experiences in every
episode. At each time step t, we convert the reward as

R′

t =

tm(t)−1
∑

k=t

γk−trk + γtm(t)−tV (stm(t)), (10)

if the condition t + N ≤ T is met. Note that tm(t) = ⌈ t
N
⌉ · N . Otherwise, we

convert the reward according to R′

t =
∑T

k=t γ
k−trk. We collect all the tuples in

parallel, and use them to optimize in batch mode. We train the network by the
ADAM optimizer [47], and optimize in batch mode as follows:

θπ ← θπ + α((R′

t − V (st; θv))▽θπ log π(at|st; θπ) (11)

+ β ▽θπ H(π(·|st; θπ)))

θv ← θv − α▽πv
(Rt − V (st; θv))

2, (12)

where α denotes the learning rate, H(π(·|st; θπ)) represents the entropy of the
policy [45], β is the hyper parameter, (R′

t − V (st; θv)) ▽θπ log π(at|st; θπ) is
policy gradient which calculates the direction to update the policy such that the
rewards of the agent will be improved.

4 Experiments

To evaluate the performance of the proposed model and study the impact of
various factors on person search performance, we conduct extensive experiments
on the large-scale person search dataset. In this section, we first describe the de-
tailed experimental setup in Section 4.1. Then we compare the proposed model
with the baseline algorithms in terms of Cumulative Matching Characteristics
(CMC Top-K) and mean average precision (mAP). Afterwards, we conduct ab-
lation study to analyze the effects of different components. Finally, we study the
influence of gallery size.
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Table 1: Statistics of the person search dataset with respect to training / test
splits.

Split # Images # Pedestrians # Identities

Training 11,206 55,272 5,532

Testing 6,978 40,871 2,900

Overall 18,184 96,143 8,432

4.1 Experimental Setup

Implementation Details: We use PyTorch to implement our model, and run the
experiments on the NVIDIA TITAN Xp GPU. During training, 50 separate
processes are used to run agents with environments, and one process to run
policy and value network. When the training is finished, we fix the policy and
value network for testing. A single agent is used to process each query for testing.
For each query, we rank all the value V and retrieve the top ranked results.

Dataset Description: We test on the large-scale person search benchmark dataset
provided by [12]. To the best of our knowledge, this is the only dataset available
for person search. This dataset contains 8,432 labeled identities, who appear
across different images. These people appear with full bodies and normal poses.
Since person search problem mainly rely on body shapes and clothes rather than
faces, the authors did not annotate people who change clothes and decorations in
different video frames. This dataset has rich variations of pedestrian scales. The
dataset is officially split into a training and a testing subset, without overlapping
images between them. The test identity instances are divided into queries and
galleries. We show the statistics of this dataset in Table 1.

Evaluation Protocols and Metrics: Following [12], we use two evaluation metrics
to measure the performance, namely cumulative matching characteristics (CMC
top-K) and mean averaged precision (mAP). The first metric has been widely
used for the person re-id problem, where a matching is counted if there is at least
one of the top-K predicted bounding boxes overlaps with the ground truths
with intersection-over-union (IoU) greater or equal to 0.5. The second metric
has been commonly used in the object detection tasks. The ILSVRC object
detection criterion is used to judege the correctness of predicted bounding boxes.
We calculate an averaged precision (AP) for each query based on the precision-
recall curve, and then average the APs across all the queries to get the final
result.

Compared Algorithms: To demonstrate the performance of our model, we first
compare with the convential methods for person search. These methods assume
perfect pedestrian detection and break person search down into two separate
tasks. We use two pedestrian detection methods and five pedestrian re-id ap-
proaches in the experiments. We use the the off-the-shelf deep learning CCF
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detector [48] and Faster-RCNN (CNN) [49] with ResNet-50, specifically fine-
tuned on the person search dataset. The ground trutth (GT) bounding boxes are
also used as the results a perfect detector. For pedestrian re-id, we used several
well-known feature representations in the field, namely DenseSIFT-ColorHist
(DSIFT) [16], Bag of Words (BoW) [50] and Local Maximal Occurrence (LOMO)
[51]. We use each of the feature representation together with a specific distance
metric learning algorithm, namely Euclidean, Cosine similarity, KISSME [52]
and XQDA [51].

We also compare with a joint detection and identification feature learning
algorithm [12], which jointly handles pedestrian detection and person re-id in
a single CNN. To the best of our knowledge, this is the state-of-the-art person
search algorithm in the literature. We drop the pedestrian proposal network,
and train the remaining net to classify identities with Softmax loss from cropped
pedestrian images, resulting another baseline method (IDNet), which has been
exploited in [53].

4.2 Performance Comparison

We report the experimental results in Table 2 and Table 3. We first compare
the proposed framework with the conventional person search algorithms that
break down the problem into two steps. From the experimental results shown
in Table 2 and Table 3, we can observe that our model performs much better
than the compared baseline algorithms. The experimental results indicate that
the pedestrian detector has a great impact on each person re-id algorithm. For
example, for DSIFT + Euclidean, if an off-the-shelf detector (CCF) is used
instead of a perfect detector (GT), the performance drops from 45.9% to 11.7%.
This phenomenon confirms that it does not make sense to directly apply off-
the-shelf pedestrian detector for the real-world person search problems. The
incorrect detection result of the detector will deteriorate the subsequent re-id
performance.

We can also find that the proposed model outperforms the joint detection
and identification method by a large margin. For example, the proposed model
outperforms Joint Detec. & Identifi. with mAP of 79.3 vs 75.7 on the benchmark
dataset. We attribute this improvement to the end-to-end model and its ability
to exploit relational context in the visual data. Also, since the proposed model
is proposal-free, it is more efficient than the proposal-based methods.

Interestingly, we notice that the proposed model even outperforms the base-
line algorithms using perfect pedestrian detectors (GT), which further confirms
the superiority of our model for person search problem. For example, the pro-
posed model outperforms Joint Detect. & Identifi. (with ground truth) with
mAP of 79.3 vs 77.9.

We show some examples of our result on the benchmark dataset in Figure 4.
From the examples we can see that given a target person, the system can cor-
rectly retrieve and localize the required person from the gallery set.
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Table 2: Experimental comparisons for person search on the large-scale bench-
mark dataset. Cumulative Matching Characteristics (CMC top-K) is used as
the evaluation metric. Results are shown in percentages. Larger CMC indicates
better performance. The best results are marked in bold.

CCF CNN GT

top-1top-5top-10top-20 top-1top-5top-10top-20 top-1top-5top-10top-20

DSIFT + Euclidean 11.7 31.4 45.8 63.9 39.4 65.2 77.6 81.8 45.9 67.2 78.1 86.3

DSIFT + KISSME 13.9 34.2 48.7 66.4 53.6 68.8 78.5 86.4 61.9 74.2 83.5 88.7

BoW + Cosine 29.3 54.2 71.5 86.8 62.3 74.7 82.1 88.2 67.2 76.8 85.8 89.9

LOMO + XQDA 46.4 67.2 78.5 87.6 74.1 79.8 85.6 91.1 76.7 84.7 88.4 92.2

IDNet 57.1 80.2 90.1 95.6 74.8 80.7 87.9 93.0 78.3 85.6 89.1 94.3

Joint Detec. & Identifi. – – – – 78.7 83.6 90.5 95.2 80.5 87.8 91.2 96.3

RCAA – – – – 81.3 88.2 92.4 97.6 – – – –

Table 3: Experimental comparisons for person search on the large-scale bench-
mark dataset. Mean average precision (mAP) is used as the evaluation metric.
Results are shown in percentages. Larger mAP indicates better performance.
The best results are marked in bold.

mAP (%) CCF CNN GT

DSIFT + Euclidean 11.3 34.5 41.1

DSIFT + KISSME 13.4 47.8 56.2

BoW + Cosine 26.9 56.9 62.5

LOMO + XQDA 41.2 68.9 72.4

IDNet 50.9 68.6 73.1

Joint Detec. & Identifi. – 75.7 77.9

RCAA – 79.3 –

4.3 Ablation Study

In this section, we conduct experiments to test the effect of the context, i.e. the
relational spatial context and the temporal context, in the reinforcement learning
algorithm. Note that the proposed model explores the relational context using
a Relational Network, and the temporal context using an LSTM. We train two
modified versions of the proposed model. The first one does not use the spatial
and temporal context, which is denoted as “w/o spatial & temporal”. The second
does not consider the spatial context, which is denoted as “w/o spatial”. The
experimental results are reported in Table 4. From the experimental results we
observe that both the spatial and temporal context plays a vital role in the
proposed model.

We also compare with the global context proposed proposed in [22]. We feed
the feature maps into a RoI pooling layer, following by a global average pooling
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Query Results Retrieved from Gallery Results Retrieved from GalleryQuery

Fig. 4: Example from the testing set of the benchmark dataset. The ground truth
is the yellow bounding box. And the predicted box is the blue box. Best viewed
in color.

Table 4: Comparison between our model and other variants for person search
problem. CMC Top-K and mAP are reported in this table. Performance is re-
ported in percentages. Larger number indicates better performance. The best
performance is marked in bold.

CMC Top-K mAP

top-1 top-5 top-10 top-20

(w/o both) 72.5 79.4 83.2 86.9 69.8

(w/o relational spatial) 74.8 81.6 85.5 88.2 71.4

(w. global + temporal ) 78.9 85.7 89.4 93.6 76.7

(ours full) 81.3 88.2 92.4 97.6 79.3

layer, resulting in global feature. We replaced the relational feature with the
global feature, which is denoted as “w. global + temporal”. The experimental
results shown in Table 4 confirms that relational context achieves better perfor-
mance than global context for person search problem.

4.4 The Influence of Gallery Size

Intuitively, the person search problem will become extremely challenging when
the gallery size increases sharply. In this section, we vary the gallery size from
50 to full set of 6,978 images to test the influence of gallery size. We report the
experimental results in terms of CMC top-1 and mAP in Figure 5. When we
process each query, we randomly select the corresponding gallery images from
the full set.

From the experimental results, we have the following observations: (1) as the
gallery size increases, the performance of all the compared algorithms decreases;
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(2) the proposed model outperforms the other compared algorithms by a large
margin with right to different gallery sizes.
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Fig. 5: The performance variance with right to different gallery sizes. The per-
formance is reported in percentages.

5 Conclusions and Future Work

In this paper, we have made the earliest attempt to address the person search
problem and built the first deep reinforcement learning based person search
framework. Unlike previous works which rely on pedestrian proposal net, our
approach leverages the relational context information and exploits the visual
information and the query person a priori in a joint framework. We have con-
ducted extensive experiments to evaluate the performance of our model. The
experimental results confirm its superiority.

In the future we plan to exploit lenient learning [54] in our framework as
stored transitions can become outdated due to agents updating their respective
policies in parallel.

Acknowledgements

This work was supported in part by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior/ Interior Business Center (DOI/IBC)
contract number D17PC00340, in part by China National 973 program 2014CB340301,
and in part by the Data to Decisions CRC (D2D CRC) and the Cooperative Re-
search Centres Programme. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right annotation/herein. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of IARPA,
DOI/IBC, or the U.S. Government.



RCAA: Relational Context-Aware Agents for Person Search 15

References

1. Cheng, D., Chang, X., Liu, L., Hauptmann, A.G., Gong, Y., Zheng, N.: Discrimina-
tive dictionary learning with ranking metric embedded for person re-identification.
In: IJCAI. (2017)

2. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by
multi-channel parts-based CNN with improved triplet loss function. In: CVPR.
(2016)

3. Zheng, W., Gong, S., Xiang, T.: Person re-identification by probabilistic relative
distance comparison. In: CVPR. (2011)

4. Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., Tian, Q.: MARS: A video
benchmark for large-scale person re-identification. In: ECCV. (2016)

5. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Tian, Q.: Person re-identification
in the wild. CoRR abs/1604.02531 (2016)

6. Yu, S., Yang, Y., Hauptmann, A.G.: Harry potter’s marauder’s map: Localizing
and tracking multiple persons-of-interest by nonnegative discretization. In: CVPR.
(2013)

7. Li, W., Wang, X.: Locally aligned feature transforms across views. In: CVPR.
(2013)

8. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: Deep filter pairing neural network
for person re-identification. In: CVPR. (2014)

9. Zheng, W., Gong, S., Xiang, T.: Associating groups of people. In: BMVC. (2009)

10. Xu, Y., Ma, B., Huang, R., Lin, L.: Person search in a scene by jointly modeling
people commonness and person uniqueness. In: ACM MM. (2014)

11. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: End-to-end deep learning for person
search. CoRR abs/1604.01850 (2016)

12. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification
feature learning for person search. In: CVPR. (2017)

13. Santoro, A., Raposo, D., Barrett, D.G.T., Malinowski, M., Pascanu, R., Battaglia,
P., Lillicrap, T.P.: A simple neural network module for relational reasoning. CoRR
abs/1706.01427 (2017)

14. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement
learning. In: ICCV. (2015)

15. Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.H.: Shape and appearance
context modeling. In: ICCV. (2007)

16. Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-
identification. In: CVPR. (2013)

17. Khamis, S., Kuo, C., Singh, V.K., Shet, V.D., Davis, L.S.: Joint learning for
attribute-consistent person re-identification. In: ECCV 2014 Workshops. (2014)

18. Liao, S., Li, S.Z.: Efficient PSD constrained asymmetric metric learning for person
re-identification. In: ICCV. (2015)

19. Pedagadi, S., Orwell, J., Velastin, S.A., Boghossian, B.A.: Local fisher discriminant
analysis for pedestrian re-identification. In: CVPR. (2013)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS. (2012)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR. (2015)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. (2016)



16 X. Chang et al.

23. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification.
In: ICPR. (2014)

24. Ahmed, E., Jones, M.J., Marks, T.K.: An improved deep learning architecture for
person re-identification. In: CVPR. (2015)

25. Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance
comparison for person re-identification. Pattern Recognition 48(10) (2015) 2993–
3003

26. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detec-
tion with discriminatively trained part-based models. IEEE Trans. Pattern Anal.
Mach. Intell. 32(9) (2010) 1627–1645

27. Dollár, P., Appel, R., Belongie, S.J., Perona, P.: Fast feature pyramids for object
detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8) (2014) 1532–1545

28. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian de-
tection. In: CVPR. (2015)

29. Cai, Z., Saberian, M.J., Vasconcelos, N.: Learning complexity-aware cascades for
deep pedestrian detection. In: ICCV. (2015)

30. Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning
semantic tasks. In: CVPR. (2015)

31. Ouyang, W., Wang, X.: A discriminative deep model for pedestrian detection with
occlusion handling. In: CVPR

32. Luo, P., Tian, Y., Wang, X., Tang, X.: Switchable deep network for pedestrian
detection. In: CVPR. (2014)

33. Sutton, R.S.: Introduction to reinforcement learning. Volume 135.
34. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR (2013)
35. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,

etal.: Mastering the game of go with deep neural networks and tree search. Nature
529(7587) (2016) 484–489

36. Jayaraman, D., Grauman, K.: Look-ahead before you leap: End-to-end active
recognition by forecasting the effect of motion. In: ECCV. (2016)

37. Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y.: Action-decision networks for visual
tracking with deep reinforcement learning. In: ICCV. (2017)

38. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: AAAI. (2016)

39. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.:
Dueling network architectures for deep reinforcement learning. In: ICML. (2016)

40. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8 (1992) 229–256

41. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., etal.: Imagenet large
scale visual recognition challenge. International Journal of Computer Vision 115(3)
(2015) 211–252

42. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9)
(2015) 1904–1916

43. Jie, Z., Liang, X., Feng, J., Jin, X., Lu, W., Yan, S.: Tree-structured reinforcement
learning for sequential object localization. In: NIPS. (2016)

44. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In: Proceedings of the Sixteenth
International Conference on Machine Learning (ICML 1999), Bled, Slovenia, June
27 - 30, 1999. (1999) 278–287



RCAA: Relational Context-Aware Agents for Person Search 17

45. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
ICML. (2016)

46. Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-
identification. CoRR abs/1611.05244 (2016)

47. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR.
(2015)

48. Yang, B., Yan, J., Lei, Z., Li, S.Z.: Convolutional channel features. In: ICCV.
(2015)

49. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS. (2015)

50. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person
re-identification: A benchmark. In: ICCV. (2015)

51. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal
occurrence representation and metric learning. In: CVPR. (2015)
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