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Abstract. This paper addresses Weakly Supervised Object Localization
(WSOL) with only image-level supervision. We propose a Multi-view
Learning Localization Network (ML-LocNet) by incorporating multi-
view learning into a two-phase WSOL model. The multi-view learning
would benefit localization due to the complementary relationships among
the learned features from different views and the consensus property a-
mong the mined instances from each view. In the first phase, the represen-
tation is augmented by integrating features learned from multiple views,
and in the second phase, the model performs multi-view co-training to
enhance localization performance of one view with the help of instances
mined from other views, which thus effectively avoids early fitting. ML-
LocNet can be easily combined with existing WSOL models to further
improve the localization accuracy. Its effectiveness has been proved ex-
perimentally. Notably, it achieves 68.6% CorLoc and 49.7% mAP on
PASCAL VOC 2007, surpassing the state-of-the-arts by a large margin.

Keywords: Weakly Supervised Learning, Object Localization, Multi-
view Learning, Object Instance Mining

1 Introduction

In this paper, we tackle object localization under a weakly supervised paradigm,
where only image-level labels indicating the presence of an object are available
for training. Current Weakly Supervised Object Localization (WSOL) methods
[7], [15], [17], [26] usually model the missing object locations as latent variables,
and follow a two-phase learning procedure to infer the object locations. The
first phase generates object candidates for latent variable initialization, and the
second phase refines the candidates to optimize the localization model. Among
these optimization strategies, a typical solution is to alternate between model
re-training and object re-localization, which shares a similar spirit with Multiple
Instance Learning (MIL) [5], [17], [26]. Nevertheless, such optimization is non-
convex and easy to get stuck in local minima if the latent variables are not
properly initialized. As a result, they suffer limited performance, which is far
below that of their fully supervised counterparts [13], [20], [23].
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In this paper, we propose aMulti-view Learning LocalizationNetwork (ML-
LocNet) by incorporating multi-view learning into a two-phase WSOL model.
Our approach is motivated by the favorable properties in multi-view learning. In
particular, there exist complementary relationships among the learned features
from different views. Combining these features is beneficial to accurately de-
scribe the target regions. Besides, through co-training localization models from
multiple views, different object instances would be mined, and such differences
could be exploited to mitigate the over-fitting issue. In order to approach consen-

sus of multi-view co-training, the detectors from multiple views would become
increasingly similar as the co-training process proceeds, until the performance
cannot be further improved.

Our proposed ML-LocNet is able to consistently improve the localization ac-
curacy during each phase by exploiting the two properties of multi-view learning.
To enable multi-view representation, we intentionally branch the network into
several streams with different transforms, such that each stream can be treat-
ed as one view over the input. For the first phase, ML-LocNet augments the
feature representation by concatenating features learned from multiple views.
Benefiting from the complementary property, each view may contain knowledge
that other views do not have, and combining them is beneficial to accurate-
ly describe the target regions. For the second phase, we propose a multi-view
co-training algorithm which simultaneously trains multiple localization models
from multiple views. The models are optimized by mining object instances on
some views, and training the corresponding detectors on other views. In this
way, ML-LocNet avoids overfitting the initial instances and is able to learn more
general models. The two-phase learning procedure produces a powerful localiza-
tion framework. On benchmark dataset PASCAL VOC 2007, we achieve 68.6%
localization and 49.7% detection accuracy under weakly supervised paradigm,
surpassing the-state-of-the-arts by a large margin.

It is interesting to compare our multi-view learning strategy with multi-
fold MIL [5], a variant of MIL. Multi-fold MIL is reminiscent of K-fold cross
validation, which proceeds by dividing the training images into K disjoint folds,
and re-localize the objects in each fold images using a detector trained from
images in the other folds. In this way, Multi-fold MIL avoids convergence to
poor local optima. However, such cross validation method reduces the amount
of effective training data, and significantly increases the complexity since we
need to train K models during each iteration. As a result, it is impractical to
apply multi-fold MIL to train deep networks. Instead of dividing the training
data, we construct different views of the same image, which avoids overfitting
the initial samples without sacrificing the amount of training data, and makes
the training on deep networks tractable by sharing features over the lower layers.

Our method is also loosely related with model ensemble, a simple way to
improve the performance of deep networks. Model ensemble aims at training
different models on the same data and then averaging their predictions. However,
making predictions using model ensemble is cumbersome and computationally
expensive. Instead of training different models, we improve the performance by
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training models on different views. Our model can be treated as a kind of model
ensemble which shares representation at the lower layers and formulates a multi-
task learning by training multiple models simultaneously. In this manner, we are
able to compress the knowledge in an ensemble into a single model which does
not increase the complexity during training and test stages.

To sum up, we make following contributions. First, we propose an ML-LocNet
model, which exploits the complementary and consensus properties of multiple
views, to consistently improve the localization accuracy in WSOL. Second, ML-
LocNet is independent of the backbone architecture and can be easily combined
with existing WSOL models [1], [15], [17], [26] to further improve the localization
accuracy. Using the WSDDN [1] and Fast-RCNN [13] as backbone architectures,
we achieve 68.6% localization CorLoc and 49.7% detection mAP on PASCAL
VOC 2007 benchmark, which surpasses the state-of-the-arts by a large margin.

2 Related Work

2.1 Weakly Supervised Localization

Most related works formulate WSOL as Multiple Instance Learning (MIL) [9], in
which labels are assigned to bags (a group of instances) rather than an individual
instance. These methods typically alternate between learning a discriminative
representation of the object and selecting the object samples in positive images
based on this representation [5], [21], [27]. However, MIL is sensitive to initializa-
tion and easy to get stuck in a local minimum. To solve this issue, many works
focus on improving the initialization. Song et al. [25] proposed a constrained
submodular algorithm to identify an initial set of image windows and part con-
figurations that are likely to contain the target object. Wang et al. [28] proposed
to discover the latent objects/parts via probabilistic latent semantic analysis on
the windows of positive samples. Li et al. [18] combined the activations of CNN
with the association rule mining technique to discover representative mid-level
visual patterns.

Another line of works tries to perform weakly supervised localization in an
end-to-end manner. Oquab et al. [22] proposed a weakly supervised object local-
ization method by explicitly searching over candidate object locations at different
scales during training. Zhou et al. [29] leveraged a simple global average pooling
to aggregate class-specific activations, which can effectively localize the discrim-
inative parts. Zhu et al. [30] incorporated a soft proposal module into a CNN to
guide the network to focus on the discriminative visual evidence. However, these
works are all based on aggregating pixel-level confidences for image-level classi-
fication, which tend to focus on the discriminative details and fail to distinguish
multiple objects from the same category. Differently, Bilen [1] et al. proposed
a WSDDN model, which aggregates region-level scores for image-level loss and
conveniently enables detection based on the region scores. Based on WSDDN
model, some works exploits context information [16] and MIL refinement [26]
to further improve the localization. Nevertheless, these methods also cannot get
out of being trapped in discriminative parts.
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Fig. 1. Illustration of the ML-LocNet architecture during the first phase learning. The
network is branched into three views with different convolutional parameters, and these
views are concatenated for final feature representation

2.2 Multi-view Learning

Multi-view learning is a classical semi-supervised learning algorithm, which rep-
resents examples using different feature sets or different views. By taking advan-
tage of the consensus and complementary principles of multiple view representa-
tions, learning models from multi-views will lead to an improvement in learning.
Blum et al. [2] first proposed the multi-view learning strategy and applied it to
the web document classification. Feng et al. [12] tackled the image annotating
problem by combining multi-view co-training and active learning. Considering
the complementary characteristic of different kinds of visual features, such as
color and texture features, Chen et al. [4] introduced a co-training algorithm to
conduct relevance feedback in content-based image retrieval.

3 ML-LocNet: Architecture and Training

In this section we introduce the proposed ML-LocNet with multi-view learn-
ing strategy. The model learning consists of two phases. In the first phase, we
augment region representation with multi-view feature concatenation, and mine
object instances with image-level supervision. In the second phase, we devel-
op a multi-view co-training algorithm to refine the localization model with the
mined instances from the first phase. In both phases, we adapt three views for
implementation. The two phase procedures will be elaborated as follows.

3.1 Phase One: Multi-view Representation Learning

In the first phase, the localization network aims at mining high quality object in-
stances with only image-level labels. As shown in Fig. 1, the model is based on a
feed-forward convolutional network that aggregates region scores for computing
classification loss. The early network layers are based on a pretrained network
for classification, truncated before any fully connected layers, which we call the
base network. Given an image, the base network takes the entire image as in-
put and applies a sequence of convolutional and pooling layers, giving feature
maps at the last convolutional block (known as conv5 ). We then add multi-view
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representation learning components to the base network to improve localization
with the following key features:

Multi-view Features. To enable the multi-view feature representation learn-
ing, we divide the base network into three branches, with each branch repre-
senting one view. We intentionally design different convolutional parameters for
different views to ensure the diversity. In particular, we add a convolutional block
to each view, which we refer to as the view adaptation block, and follow the fully
connected layers with different parameters. Formally, for a feature layer of size
m×n with pI channels, the view adaptation block is a 3×3×pI×pO small kernel
which produces an output feature map with size m × n × pO. The channel pO
is configured to be compatible with the first fully connected layer of that view.
Then each view is followed by an ROI pooling layer [13] which projects region
proposals R on the image to the feature maps and produces fixed length vectors
φi(x,R), i = 1, 2, 3. The features among different views are weightedly combined
to form the final representation φ(x,R) = [α1φ1(x,R) α2φ2(x,R) α3φ3(x,R)],
where αi (i = 1, 2, 3) is the weight factor that balances each view, and is auto-
matically learned by the network.

Two-stream Network. In the first phase learning, the only supervision is the
image-level labels. We need to combine the region-level features with image-level
classification. To this end, we employ the two-stream architecture of WSDDN [1],
which explicitly computes image-level classification loss via aggregating region
proposal scores. Formally, given an image x with region proposal R and image-
level label y ∈ {1,−1}C , where yc=1 (yc=−1) indicates the presence (absence)
of an object class c. The concatenated output φ(x,R) is branched into two data
streams fc8C and fc8R to obtain the category specific scores. Denote the output
of fc8C and fc8R layer as φ(x, fc8C) and φ(x, fc8R), respectively, which is of size
C×|R|. Here, C represents the number of categories and |R| denotes the number
of regions. The score of region r corresponding to class c is the dot product of
φ(x, fc8C) and φ(x, fc8R), normalized at different dimensions:

xcr =
eφ

cr(x,fc8C)

∑C

i=1 e
φir(x,fc8C)

. ∗
eφ

cr(x,fc8R)

∑|R|
j=1 e

φcj(x,fc8R)
. (1)

Thus we obtain the region score xcr representing the probability of region r
belonging to category c. Based on xcr, the probability output y w.r.t. category

c is defined as the sum of region-level scores φc(x,wcls) =
∑|R|

j=1 xcj , where
wcls denotes the non-linear mapping from input x to classification output. This
network is trained by back-propagating a binary log loss, denoted as

Lcls(x, y) =

C∑

i=1

log(yi(φ
i(x,wcls)− 1/2) + 1/2), (2)
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Fig. 2. Illustration of the ML-LocNet architecture during the second phase learning.
Given the mined object instances, we refine the localization network via a multi-view
co-training strategy. The network performs a multi-task learning procedure and is
optimized via iteratively mining new object instances among views

Region Dropout. The two-stream network employs a softmax operator to
normalize scores of different regions (r.f. Eqn. (1)), and is able to pick out the
one that contains the most salient region. However, since the network is trained
with classification loss, the high-score regions tend to focus on object parts in-
stead of the whole object. As a result, the network would quickly converge to
local minima due to overfitting a few region proposals. To solve this issue, we
introduce a simple region dropout strategy to avoid overfitting. During forward
propagation, we perform random dropout on region proposals R, and only pass
part of regions R′ to the ROI pooling layers. The advantages of using region
dropout are two-folds. First, the network is able to pick up different combina-
tions of regions, which can be treated as some sort of data augmentation and
effectively avoid network overfitting. Second, fewer regions at the fully connected
layers can efficiently reduce computation and accelerate the training process.

3.2 Phase Two: Multi-view Co-training

In the first phase localization, the network is trained by image-level loss, which
inevitably focuses on object parts or groups of multiple objects from the same
category. To solve this issue, we introduce a multi-view instance refinement pro-
cedure, which trains the network with instance-level loss, and refines the network
via a multi-view co-training strategy. The principle is that among the mined
object instances, the majority of them are reliable. We hope to transfer the suc-
cessful localization to those failure ones via a multi-view co-training strategy.
The second phase learning is based on the fast-RCNN [13] framework, but with
the following adjustments to improve the localization performance.

Initial Object Instances. The first phase learning returns a series of region
scores representing their probabilities containing target objects. Since the top
scored region easily focuses on object parts, we do not over-optimistically con-
sider the top scored region to be accurate enough. Instead, we consider them to
be accurate enough as soft voters. To be specific, given a training image contain-
ing class c, we compute its object heat map Hc, which collectively returns the
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Algorithm 1 ML-LocNet for Weakly Supervised Object Localization

Input: Training set D={xi}
N

i=1 with image labels Y ={yi}
N

i=1, iteration times K;
First Phase Learning: Given an image x with region proposals R:

1) Perform region dropout R→R′;
2) Obtain multi-view features φ(x,R′)=[α1φ1(x,R

′) α2φ2(x,R
′) α3φ3(x,R

′)];
3) Train initial localization network with multi-view features φ(x,R′);

Second Phase Learning: Given an image x with region proposals R and mined
object instances xo, initialize xoi=xo for each view Vi:
for iter k = 1 to K do

1). Perform random mini-batch sampling R→Ri for view Vi;
2). Training localization model Mk with current object instances xoi for view Vi;
3). Relocalize object instances for view Vi with trained model on views {V \ Vi};

end for
Output: Localization model MK .

confidence that pixel p lies in an object, i.e., Hc(p) =
∑

r xcrDr(p)/Z, where
Dr(p)=1 when the r-th region contains pixel p, and Z is a normalization con-
stant such that maxHc(p) = 1. We binarize the heat map Hc with threshold
T (set as 0.5), and choose the tightest bounding box that encloses the largest
connect component as the mined object instance.

Multi-view Co-training. Due to lack of object annotations, the mined object
instances inevitably include false positive samples. Current approaches [17], [26]
simply treat these noisy pseudo annotations as ground truths, which are sub-
optimal and easy to overfit the bad initial seeds. This issue is especially critical
for a deep network due to its high fitting capacity. To overcome this issue, we
propose a multi-view co-training strategy which aims at mining object instances
on some views, while training the localization model on other view. In this way,
we are able to effectively avoid overfitting the initial seeds.

The essence of the multi-view co-training module is to design multiple views
and ensure the diversity of multi-view outputs. To this end, firstly we intention-
ally construct different views with different convolutional parameters, which is
similar with the first phase learning. The difference is that instead of concatenat-
ing multi-view features to enhance representation, we independently model the
outputs of each view with instance-level loss, and formulate the network training
as a multi-task learning procedure. Secondly, we introduce random mini-batch
sampling for each view, such that different views can see different positive and
negative samples during the same forward propagation. The above two design-
s ensure the diversity among views not only in network structure but also in
training samples, and we hope that different views are endowed with different
localization capacities. For instance mining, the mean localized outputs of any
two views are used for the mined object instance of the rest view during the
next training. Based on the consensus principle of multiple-view co-training, the
localization models from multiple views will become increasingly similar as the
co-training process proceeds, until the performance cannot be further improved.
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Weighted Loss. Due to the varying complexity of images, the mined object
instances cannot be all reliable. It is suboptimal to treat all these instances
equally important. Therefore, we penalize the network outputs with weighted
loss, considering the reliability of the mined instances. Formally, let xo

c be the
relocalized object with label yoc = 1, and φc(xo

c , w
k
loc) be the localization score

returned by network Mk, where wk
loc is the network parameter of Mk. The

weighted classification loss w.r.t. xo
c in the next retraining step is defined as

Lcls(x
o
c , y

o
c ,Mk+1)=−φc(xo

c , w
k
loc) log φ

c(xo
c , w

k+1
loc ). (3)

We employ the weighted loss on both classification and bounding box regression
branches, as shown in Fig. 2. The whole algorithm of two-phase learning is
summarized in Algorithm 1.

4 Experiments

We evaluate ML-LocNet for weakly supervised localization and detection, pro-
viding extensive design evaluation and making comparison with state-of-the-arts.

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate our approach on three widely
used detection benchmarks: 1) PASCAL VOC 2007 [11], containing totally 9,963
images of 20 object classes, of which 5,011 images are included in trainval and
the rest 4,952 in test ; 2) PASCAL VOC 2012 [10] that is an extended version of
PASCAL VOC 2007 and contains 11,540 images for trainval and 10,991 images
for test ; 3) Microsoft COCO 2014 [19], a large scale dataset that contains over
135k images spanning 80 categories, of which around 80k images are used for
train and around 40k for val. For PASCAL VOC datasets, We choose the trainval
split for training, and the test split for test, while for MS COCO, we choose the
train split for training, and the val split for test. For performance evaluation,
two kinds of measurements are used: 1) CorLoc [6] evaluated on the training
set; 2) the VOC protocol which measures detection performance with average
precision (AP) on the test set.

Models. We choose three models to evaluate our approach: 1) VGG-CNN-F [3],
denoted as model S, meaning “small”; 2) VGG-CNN-M [3], denoted as model
M, for “medium”; 3) VGG-VD [24] (the 16-layer model), denoted as model L,
meaning “large”. The base network is initialized from each pretrained model,
truncated before any fully connected layers, while the multi-view module is ini-
tialized from the fully connected layers of three models. Our model contains
three different views, which nearly triples the network parameters. For efficien-
cy, we reduce the parameters on the fully connected fc6 and fc7 layers via a
truncated SVD decomposition [13]. Specifically, each fc layer with parameters
W ∈ d × 4096 (d is the dimension of input features) is decomposed into two
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sub-layers fc-1 and fc-2, with weights W1 ∈ d × 1024 and W2 ∈ 1024 × 4096.
We copy the parameters of the reduced fully connected layers to each view for
network initialization. This leads to roughly the same amount of parameters for
model M (1.6× for model S, and 0.75× for model L).

Implementation Details. We choose edge boxes [31] to generate |R|≈2500 re-
gion proposals per image on average. For VOC dataset, we choose five-scales with
s = {384, 512, 640, 768, 896} for training and testing, while for COCO dataset,
we only use a single scale with s=640. We denote the length of its shortest side
as the scale s of an image, and cap the longest side at 1500 pixels to avoid ex-
ceeding GPU memory. In the first phase learning, we randomly drop half regions
of an image during each forward propagation. The training epoch is 20, with a
learning rate of 10−5 for the first 10 epoches and reduced to 10−6 for the last
10 epoches. In the second phase learning, following [13], we regard all propos-
als that have IoU ≥ 0.5 with the mined objects as positive, and the proposals
that have IoU ∈ [0.1, 0.5) are treated as hard negative samples. The mini-batch
sampling is constructed from N = 2 images with a mini-batch size of Ri = 128.
The training epoch is 16, with a learning rate of 10−4 for the first 8 epoches and
reduced by a factor of 10 for the last 8 epoches. During multi-view co-training,
the iteration times K is set as K = 3. The mean outputs of the multi-views are
used for performance evaluation.

4.2 Design Evaluation

We conduct experiments to understand how ML-LocNet works, as well as to
evaluate the necessity of multi-view designs. Without loss of generality, all ex-
periments in this section are based on VOC 2007 with model S.

Model Analysis. We first conduct experiments with different configurations
to reveal how each component affects the performance. The localization results
are shown in Table 1. From the table we make the following observations:
Multi-view learning is crucial. Multi-view learning is able to consistently im-
prove the localization accuracy during both phase learning. For the first phase,
multi-view feature concatenation brings up to 4.6% (52.5% → 57.1%) improve-
ment, which demonstrates that features from multiple views are complementary
and are beneficial to accurately describing image regions; For the second phase,
Multi-view co-training algorithm brings another 3.7% (57.9% → 61.6%) im-
provement. We find that simply training fast-RCNN alike models in the second
phase brings negligible gain (57.9% → 58.2%), since the network is easy to focus
on the initial seeds. By introducing multi-view co-training mechanism, instances
are mined from some views but used for training for other view, thus the network
can effectively avoid overfitting.
Region dropout makes the model training faster and better. Region dropout im-
proves accuracy by 0.8% (57.1%→ 57.9%), since it selects different regions of
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Table 1. Effects of various design choices during two phase learning

Phase One Phase Two

Multi-views?
√ √ √ √ √

Region Dropout ?
√

Random Mini-batch Sampling?
√ √

Weighted Loss?
√

PASCAL VOC 2007 CorLoc (%) 52.5 57.1 57.9 58.2 61.6 62.8 63.7

an image for classification loss, and can be treated as data augmentation. An-
other advantage is that the training is faster due to a reduced number of region
proposals feeded to the fully connected layers.
Random mini-batch sampling is helpful. Introducing random mini-batch sam-
pling helps improve the localization accuracy, with a gain of 1.2% (61.6% →
62.8%). This is achieved by increasing the diversity among views, such that
different views can exchange localization knowledge to boost the model.
Weighted loss helps. Introducing weighted loss brings about another 0.9% per-
formance gain. This demonstrates that considering the confidence of the mined
object instances is able to avoid focusing on the less reliable instances and help
boost the performance.

Why Using Different Multi-view Learning Strategies in Two Phases?

In our two phase learning, the multi-view strategy is implemented in two different
ways. One question is that why bother to train models with different strategies,
and is it possible to simply choose the same one, i.e., training both networks with
multiple losses as in Fig. 2? We tried this setting, and trained the network in Fig.
1 with losses from multiple views, but the localization performance is limited,
with only 54.6%, 3.3% lower than the concatenation method. The possible reason
is that the losses from multiple views are hard to optimize with only image-level
supervision, since the object instances are mined implicitly from the intermediate
layers. Instead, enhancing feature representation is an effective method and is
relatively easier to be optimized.

Does Performance Improvement Come from Multi-view Learning?

The essence of ML-LocNet is to design multiple views and introduce several
modules to ensure the view diversity. It is in doubt that does the performance
improvement really come from the diversity of multiple views, or is it the in-
creased parameters (the model is 1.6× larger with multi-view design) that help?
To validate this issue, we initialize different views with the same parameters
(fully connected layers of model S), and without conducting model compression.
As a result, the network is nearly 2× larger than ML-LocNet. Then we replace
ML-LocNet with the above designed network during each phase learning, re-
spectively. For the first phase, the localization performance drops from 57.9% to
56.2%, while for the second phase, it drops rapidly, from 63.7% to 58.9%. The
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Fig. 3. Localization visualization on VOC 2007 trainval split. The top row shows local-
izations before (red) and after (green) multi-view co-training. The bottom row shows
the localizations of multiple views during training

results demonstrate that the multi-view mechanism is especially important for
the second phase learning. As an illustration, Fig. 3 shows the localization results
before and after the second phase learning (top row), together with the interme-
diate localization of multiple views (bottom row). It can be seen that multi-view
co-training is effective to refine the localization by exchanging knowledge from
the diversified views.

4.3 Results and Comparisons

PASCAL VOC 2007. This is a widely used dataset for weakly supervised
localization and detection, and we conduct detailed comparisons on this dataset.

CorLoc evaluation. Table 2 shows the localization results on PASCAL VOC 2007
trainval split in terms of CorLoc [6]. Our method achieves an accuracy of 63.7%
with model S, which is 8.1% better than previous best result [8] (55.6%) using
the same model, and even outperforms the-state-of-the-art [26] (60.6%) that
using deeper model. Replacing with model L, we achieve a CorLoc of 67.0%,
6.4% better than the best-performing result. Finally, using the mean outputs
of three models, we train another model based on model L, which we refer to
as ML-LocNet-L+. We obtain an accuracy of 68.6%, which is 4.3% higher than
[26] (64.3%) using the same training strategy. Note that ML-LocNet-L+ is based
on the outputs of a single model, which is different from model ensemble that
combines the outputs of multiple models during test stages. Another advantage
is that our best results are based on a reduced fully connected layers, and the
network scale is only 0.75× as the original model L used in previous works.

AP evaluation. Table 3 shows the detection performance on VOC 2007 test split.
Just using model S, our method achieves an accuracy of 44.4%, 5.1% higher than
the best-performing method [8] (39.3%) using model S. When switching to model
L, the detection accuracy increases to 48.4%, which is about 4.1% better than
the best-performing result [8] (44.3%). Using the mean localization outputs for
model initialization, we obtain a detection accuracy as high as 49.7%, and is
2.7% better than [26] (47.0%) using the same training mechanism. This is a
promising result considering the challenge of this task.



12 X. Zhang et al.

Table 2. Localization precision (%) comparisons on PASCAL VOC 2007 trainval split

method aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

WSDDN[1] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

ODGA-S[8] 83.5 70.9 65.4 42.4 39.0 63.9 80.8 58.6 30.2 69.5 24.8 51.0 66.2 78.4 25.2 48.7 66.6 26.7 63.3 55.9 55.6

DSD[15] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.0 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1

ConLocNet[7] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

ODGA[8] 85.5 75.0 66.9 47.5 43.6 67.4 83.6 61.7 36.8 75.1 29.8 55.9 70.4 80.6 29.0 52.9 71.0 31.2 66.9 58.1 59.4

OICR[26] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

ML-LocNet-S 76.9 78.2 65.8 39.8 45.9 78.0 85.1 57.0 16.9 70.9 68.5 56.5 77.0 90.6 47.4 52.2 65.6 60.7 75.5 65.2 63.7

ML-LocNet-M 78.0 78.5 66.2 43.2 51.5 76.5 86.8 65.7 34.9 69.5 59.7 55.1 79.5 88.1 40.3 58.3 71.5 64.0 77.0 61.6 65.3

ML-LocNet-L 78.6 82.3 68.2 42.0 53.3 78.5 88.5 70.3 36.4 70.2 60.5 58.0 80.5 88.2 38.8 59.2 75.0 69.0 78.2 64.5 67.0

OICR-L+[26] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 64.3

ML-LocNet-L+ 81.7 82.9 68.7 44.4 53.9 80.3 88.9 70.5 32.6 74.0 62.7 61.7 81.4 91.6 46.0 60.6 75.2 69.2 78.7 65.8 68.6

Table 3. Detection precision (%) comparisons on PASCAL VOC 2007 test split

method aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

WSDDN[1] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

ConLocNet[7] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

ODGA-S [8] 45.7 58.1 37.2 24.8 19 64.8 53.7 35.2 9.7 44.8 22.6 33.7 50.4 57.8 15.9 21.7 40.8 48.2 55.4 45.8 39.3

OICR[26] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

DSD[15] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

ODGA[8] 50.9 61.2 40.5 31.4 21.1 71.6 58.1 42.9 11.7 46.4 30.7 44.5 48.3 64.9 16.8 24.8 47.1 55.7 61.7 55.8 44.3

ML-LocNet-S 57.0 64.0 42.6 22.1 17.9 59.3 64.0 39.5 2.2 47.6 55.0 38.9 66.4 68.1 30.6 23.5 43.2 44.1 55.4 46.3 44.4

ML-LocNet-M 57.2 64.6 44.5 26.3 21.1 65.7 67.1 56.4 16.1 51.7 50.5 37.2 64.2 69.4 24.5 25.4 51.9 51.3 56.9 42.2 47.2

ML-LocNet-L 59.3 68.9 45.7 29.0 24.5 64.8 68.4 59.3 18.6 49.1 50.2 43.1 65.8 70.2 19.9 24.3 48.1 54.2 62.8 41.8 48.4

OICR-L+[26] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

ML-LocNet-L+ 60.8 70.6 47.8 30.2 24.8 64.9 68.4 57.9 11.0 51.3 55.5 48.1 68.7 69.5 28.3 25.2 51.3 56.5 60.0 43.1 49.7

Fast-RCNN[13] 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

Table 4. Localization precision (%) comparisons on PASCAL VOC 2012 trainval split

method aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

ConLocNet[7] 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8

DSD[15] 82.4 68.1 54.5 38.9 35.9 84.7 73.1 64.8 17.1 78.3 22.5 57.0 70.8 86.6 18.7 49.7 80.7 45.3 70.1 77.3 58.8

OICR[26] 86.2 84.2 68.7 55.4 46.5 82.8 74.9 32.2 46.7 82.8 42.9 41.0 68.1 89.6 9.2 53.9 81.0 52.9 59.5 83.2 62.1

ML-LocNet-L 87.0 84.8 69.8 47.1 58.9 88.8 77.0 47.3 41.7 79.9 30.3 62.1 83.2 91.4 33.5 63.6 76.9 60.4 72.6 70.3 66.3

OICR-L+[26] 89.3 86.3 75.2 57.9 53.5 84.0 79.5 35.2 47.2 87.4 43.4 43.8 77.0 91.0 10.4 60.7 86.8 55.7 62.0 84.7 65.6

ML-LocNet-L+ 88.1 85.5 71.2 49.4 57.4 90.7 77.6 53.5 42.6 79.6 34.1 69.1 81.7 91.9 35.4 64.6 79.3 64.3 79.3 69.6 68.2

Table 5. Detection precision (%) comparisons on PASCAL VOC 2012 test split

method aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

ConLocNet[7] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3

DSD[15] 60.8 54.2 34.1 14.9 13.1 54.3 53.4 58.6 3.7 53.1 8.3 43.4 49.8 69.2 4.1 17.5 43.8 25.6 55.0 50.1 38.3

OICR[26] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9

ML-LocNet-L 68.1 63.3 43.7 19.9 26.5 61.1 53.0 36.7 14.8 45.8 11.9 46.1 58.4 73.4 16.8 26.9 42.5 35.3 54.5 45.4 42.2

OICR-L+[26] 71.4 69.4 55.1 29.8 28.1 55.0 57.9 24.4 17.2 59.1 21.8 26.6 57.8 71.3 1.0 23.1 52.7 37.5 33.5 56.6 42.5

ML-LocNet-L+ 53.9 60.4 40.4 23.3 18.7 58.7 63.3 52.5 13.3 49.1 46.8 33.5 61.0 65.8 21.3 22.9 46.8 48.1 52.6 40.4 43.6

Error analysis. To analysis the detection performance of our model in more de-
tails, we use the analysis tool from [14] to diagnose the detector errors. Fig. 4
shows the error analysis on VOC 2007 test split with model L+ (49.7% mAP).
The classes are categorized into four categories, animals, vehicles, furniture, and
person. Our method achieves promising results on categories animals and vehi-

cles, but it does not work well on detecting furniture and person. This is mainly
because furniture are usually in cluttered scenes, thus very hard to pick out for
model training, and the error distribution is scattered. While for person, the
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Fig. 4. Detection error analysis [14] of ML-LocNet on VOC 2007 test split. The de-
tections are categorized as correct (Cor), false positive due to poor localization (Loc),
confusion with similar categories (Sim), with others (Oth), and with background (BG)

Fig. 5. Example detections on PASCAL VOC 2007 (top row) and MS COCO 2014
(bottom row). The successful detections (IoU ≥ 0.5) are marked with green bounding
boxes, and the failed ones are marked with red. We show all detections with scores
≥ 0.7 and use nms to remove duplicate detections

majority of errors come from inaccurate localization (blue regions). As an il-
lustration, we show some detection results in Fig. 5. The correct detections are
marked with green bounding boxes, while the failed ones are marked with red.
Our detectors are able to successfully detect objects in images with relatively
simple background, and is fine for vehicles even in complex images. However,
detections are easy to fail in complex scenes for other categories, and are often
focus on object parts, or grouping multiple objects from the same class.
Comparing with fully supervised fast-RCNN. It is interesting to compare our
weakly supervised detections with the fast-RCNN [13] method, which makes
use of ground truth bounding boxes for training. As shown in Table 3, the
performance of ML-LocNet is around 17% lower than fast-RCNN. However, for
vehicles such as bicycle and motorbike, the performance approaches the fully
supervised one (70.6% vs 78.3% for bicycle and 70.2% vs 73.0% for motorbike).
This implies that it is possible to train corresponding detection models on these
classes without requiring object annotations. However, for classes such as chair
and person, the performance gap is still large. It remains a further research
direction to correctly localize these objects for detection model training.

PASCAL VOC 2012. We choose the same settings as in VOC 2007 experi-
ments, and evaluate the performance on VOC 2012. Table 4 and Table 5 show
the localization and detection results, respectively. We see the same performance
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Table 6. Localization and detection precision comparisons on MS COCO 2014

Methods CorLoc(%) mAP (%)

WSDDN[1] 26.1 11.5

WCCN [7] - 12.3

ODGA[8] - 12.8

ML-LocNet-S 34.7 16.2

trend as we observed on VOC 2007. For localization, ML-LocNet achieves an ac-
curacy of 66.3% with model L, 4.2% point better than previous best result [26]
(62.1%). The accuracy improves to 68.2% with ML-LocNet-L+ model. For de-
tection, the result is 42.2% with model L, 3.9% more accurate than [15] (38.3%).
The result can be further improved to 43.6% with ML-LocNet-L+ model.

MS COCO 2014. To further validate the ML-LocNet model, we evaluate
the performance on a much larger dataset MS COCO 2014. Comparing with
PASCAL VOC 2012, MS COCO is more challenging: it includes more images
(135k vs 22k), more categories (80 vs 20), more complex scenes (7.7 instances
per image vs 2.3 instances per image, in average), and more images with smaller
objects. As far as we know, few works have reported results on MS COCO under
weakly supervised paradigm. Table 6 shows the localization and detection results
with model S. On this challenging dataset, we obtain 34.7% localization accuracy,
improving the baseline WSDDN [1] by 8.6%. For detection, the result is 16.2%,
which is 3.4% better than [8] (12.8%). Fig. 5 shows some detection results on this
dataset. Although objects are usually within more complex scenes, our model is
still able to successfully detect rigid objects such as book and refrigerator.

5 Conclusions

This paper proposed a multi-view learning strategy to improve the localization
accuracy in WSOL. Our method incorporates multi-view learning into a two-
phase WSOL model, and is able to consistently improve the localization for
both phases. In the first phase, we augment feature representation by concate-
nating features learned from multiple views, which is effective in describing image
regions. In the second phase, we develop a multi-view co-training algorithm to
refine the localization models. The models are optimized by iteratively mining
new object instances among different views, thus effectually avoiding overfitting
the initial seeds. Our method can be easily combined with other techniques to
further improve the performance. Experiments conducted on PASCAL VOC and
MS COCO benchmarks demonstrate the effectiveness of the proposed approach.
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