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Abstract. Designing discriminative and invariant features is the key to
visual recognition. Recently, the bilinear pooled feature matrix of Con-
volutional Neural Network (CNN) has shown to achieve state-of-the-art
performance on a range of fine-grained visual recognition tasks. The bi-
linear feature matrix collects second-order statistics and is closely related
to the covariance matrix descriptor. However, the bilinear feature could
suffer from the visual burstiness phenomenon similar to other visual rep-
resentations such as VLAD and Fisher Vector. The reason is that the
bilinear feature matrix is sensitive to the magnitudes and correlations of
local CNN feature elements which can be measured by its singular values.
On the other hand, the singular vectors are more invariant and reason-
able to be adopted as the feature representation. Motivated by this point,
we advocate an alternative pooling method which transforms the CNN
feature matrix to an orthonormal matrix consists of its principal singular
vectors. Geometrically, such orthonormal matrix lies on the Grassmann
manifold, a Riemannian manifold whose points represent subspaces of
the Euclidean space. Similarity measurement of images reduces to com-
paring the principal angles between these “homogeneous” subspaces and
thus is independent of the magnitudes and correlations of local CNN
activations. In particular, we demonstrate that the projection distance
on the Grassmann manifold deduces a bilinear feature mapping without
explicitly computing the bilinear feature matrix, which enables a very
compact feature and classifier representation. Experimental results show
that our method achieves an excellent balance of model complexity and
accuracy on a variety of fine-grained image classification datasets.

Keywords: Fine-Grained Visual Classification; Bilinear Pooling; Sin-
gular Value Decomposition; Grassmann Manifold; Visual Burstiness

1 Introduction

Visual recognition problems mainly have two challenges: between-class similarity
and within-class variance. Thus, designing discriminative and invariant features
is the key to visual recognition [1–6]. The fine-grained image classification aims to
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recognize subordinate categories of some base categories, such as different models
of cars [7, 8], species of birds [9], variants of aircraft [10], kinds of foods [11], etc.
Compared to general image classification, fine-grained classification is even more
challenging since that visual differences between distinct fine-grained categories
could be very small and subtle.

An approach to deal with such challenges is to incorporate strong supervi-
sion, for example, part-level and attribute annotations [12–14]. These methods
first learn to detect semantic parts of the target object and then model the fea-
tures of the local part for classification. Methods with strong supervision have
shown to improve the fine-grained recognition accuracy significantly. However,
annotating object parts is obviously much more expensive than assigning class
labels. To avoid dependency on strong supervision, some have proposed to use
the attention models [15–17] for unsupervised discovery of discriminative part-
s. Another promising approach is to absorb the effectiveness of training with
web-scale datasets [18–20] via active learning.

Recently, a very simple method named bilinear pooling [21] has achieved
state-of-the-art performance on a range of fine-grained classification benchmarks.
The bilinear pooling method learns two separate CNNs whose outputs are mul-
tiplied using the outer product at each location and then summed to obtain a
holistic representation of an image. The bilinear pooled matrix captures second-
order statistics which is closely related to the covariance matrix descriptor [22].

A major drawback of the bilinear pooling is that the pooled feature is very
high-dimensional. Thus the research line of this topic has focused on reducing the
model complexity, both for the feature descriptor and classifier [23–25]. On the
other hand, little attention has been paid to address the burstiness problem [26],
where the feature elements may have large variances within the same class that
adversely disturb the similarity measurement. Actually, bilinear pooling [21] and
its variants [23–25] perform element-wise signed square root normalization to
compensate for burstiness, taking the idea from other feature representation-
s [26–28]. However, there is little analysis on how the bursts come into being in
this framework.

Another approach [29] applies matrix power normalization where the singu-
lar values of the bilinear feature matrix are element-wise square rooted. Such
normalization has shown to improve the performance of the bilinear feature. In
fact, this idea is partially consistent with our opinion. We argue that the sin-
gular values are sensitive to the burstiness of visual elements while the singular
vectors are more robust and reasonable to be considered as invariant features
for recognition.

We thus advocate an alternative pooling method which transforms the CNN
feature matrix to an orthonormal matrix consists of its principal singular vectors.
Geometrically, such orthonormal matrix lies on the Grassmann manifold [30], a
Riemannian manifold whose points represent subspaces of the Euclidean space.
Similarity measurement of images reduces to comparing the principal angles
between these “homogeneous” subspaces and thus is independent of the magni-
tudes and correlations of local CNN activations. Specifically, we show that the
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projection distance [31, 32] of the Grassmann manifold deduces a bilinear feature
mapping without explicitly computing the bilinear feature matrix, which leads
to a very compact feature representation. Moreover, we also propose a Grass-
mann classifier that enjoys the same compact form which remarkably decreases
the parameter size of the classifier. Finally, we propose a Grassmann projection
approach in order to reduce the number of feature maps to compress our model
further. Our previous work [33] adopts a triplet network to deal with the task
of local patch matching. In this work, we focus on the basic image classification
problem and analysis the connections to the bilinear pooling method in depth.

2 Related Work

Tenenbaum and Freeman [34] first introduced the bilinear model to separate style
and content. Thereafter, second-order models have been studied in several com-
puter vision problems, such as object detection [22], semantic segmentation [35],
fine-grained classification [21], visual question answering [36], etc. Other feature
representations have also been explored for visual recognition. The Bag-of-Words
(BoW) framework [2, 3] used vector quantization for hard visual words assign-
ment. While sparse coding [4, 5] improved by linear encoding with the sparse
constraint. VLAD [37] and Fisher Vector [28] incorporated second-order infor-
mation in the descriptors beyond linear encoding. The key issue to a feature
representation is its discriminative and invariant power. Particularly, the bursti-
ness problem has drawn much attention from various feature representations.

2.1 Bilinear Pooling and Variants

In this section, we briefly review several related bilinear pooling methods. The
bilinear pooling [21] calculates second-order statistics of local features over the
whole image to form a holistic representation for recognition. An obvious dis-
advantage of the original bilinear pooling is that pooled feature is very high-
dimensional. To address this problem, Gao et al. [23] proposed two approximate
methods via Random Maclaurin [38] and Tensor Sketch [39] to obtain compact
bilinear representations. The compact models typically reduce the dimension-
ality up to 90% without losing noticeable classification accuracies. While the
compact approximations reduce feature dimension remarkably, they ignore the
matrix structure of the pooled feature matrix but vectorize it and apply a linear
classifier. Kong et al. [24] proposed to maintain the matrix structure and learn
a low-rank bilinear classifier. The resulting classifier can be evaluated without
explicitly computing the bilinear feature matrix which allows a large reduction
on the parameter size. Li et al. [25] proposed a similar idea to model pairwise
feature interaction by performing a quadratic transformation with the low-rank
constraint. They also proposed a regularization method to reduce the risk of
over-fitting for the bilinear pooling. Lin and Maji [29] explored several matrix
normalizations to increase the performance over the original bilinear feature.
They found that the matrix power normalization outperforms several alterna-
tive schemes such as the matrix logarithm normalization.
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2.2 On The Burstiness of Visual Representation

Elegant Tern Baklava

Hummer SUV 2000 Hawk T1

(a) Illumination and appearance changes (b) Repeated structures

Fig. 1. In general, visual burstiness corresponds to the problem that the feature repre-
sentation is not invariant enough where the feature elements have large variances within
the same class. The problem can be caused by (a) large illumination and appearance
changes and (b) correlated elements such as repeated structures

The phenomenon of burstiness of visual elements was first explored in the
BoW setting [26]: a given visual element appears many times in an image such
that it can strongly affect the similarity measurement between two images since
the contribution of other essential elements is substantially decreased. Generally
speaking, burstiness corresponds to the problem that the feature descriptor is not
invariant enough where the feature elements may have large variances within the
same class. The problem can be caused by large illumination and appearance
variations and correlated elements such as repeated structures, see Figure 1 for
some examples. Visual burstiness has found widespread and important in many
visual representations, from local patch descriptors to global image features.

Root-SIFT. Root-SIFT [40] transforms the original SIFT descriptor [1] by first
L1 normalizing the SIFT vector and then square rooting each element. It is
shown that performing the scalar product in Root-SIFT space is equivalent to
computing the Hellinger kernel in the original space. Because SIFT calculates
the histogram of gradients, the effect of the Root-SIFT mapping can actually
reduce the dominance of large gradient values and increase the importance of
smaller but meaningful gradients.

Bag-of-Words (BoW). The BoW representation is obtained by quantizing
the local descriptors into the visual words, resulting in frequency vectors. As
noted by Jgou et al. [26], BoW can be very unbalanced caused by several high-
frequent elements, usually as repeated patterns. This problem can be alleviated
by discounting large values by element-wise square rooting the BoW vectors and
re-normalizing them.
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VLAD and Fisher Vector. In a similar manner, VLAD and Fisher Vector
are signed square root normalized [37, 28]. To further suppress bursts, another
kind of normalization termed intra-normalization was proposed in [27], where
the sum of residuals is L2 normalized within each VLAD block.

Bilinear Pooling. Similar to previous methods, the bilinear pooling method
and its variants [21, 23, 24] also find that proper feature normalization provides a
non-trivial improvement on performance. They consistently apply signed square
root and L2 normalization on the bilinear features. Another approach [29] com-
pares several matrix based normalizations and find that matrix power normal-
ization can improve the classification accuracy remarkably.

3 Grassmann Pooling as Compact Homogeneous Bilinear

Pooling

To compute the bilinear feature matrix for an image, we first extract dense
local image features by feeding it into a CNN. We take the output at a specific
convolution layer, and form it as a matrix A ∈ R

c×hw where each row i ∈
[0, c] represents the i′th feature map stacked to a 1D vector, and each column
j ∈ [0, hw] corresponds to a spatial location. The number, height, and width of
feature maps are denoted by c, h, and w, respectively. Thus the symmetric form
of bilinear pooling can be written in matrix notation by B = AAT .

3.1 Grassmann Pooling via Singular Value Decomposition

A major disadvantage of the bilinear pooling is that the produced feature is
of high dimensionality. In the original bilinear pooling method [21], the pooled

feature is reshaped into a vector z = vec(AAT ) ∈ R
c2 . Consider the VGG

network which has c = 512 feature maps at the last convolution layer. Thus the
dimensionality of the bilinear feature pooled at this layer is 218. Furthermore, if
c > hw, thus B = AAT is rank deficient. These reasons motivate us to find a
more compact form of the bilinear feature matrix. To achieve this goal, we resort
to Singular Value Decomposition (SVD) for low-rank matrix approximation.
Before describing the pooling method, we first introduce two simple Lemmas.

Lemma 1. Let A =
∑c

i=1 σiuiv
T
i be the SVD of A and σ1 ≥ σ2 ≥ · · · ≥ σc.

For k ∈ {1, 2, ..., c}, let Ak =
∑k

i=1 σiuiv
T
i be the sum truncated after k terms,

thus Ak has rank k. We have, for any matrix X of rank at most k, ‖A−Ak‖F ≤
‖A−X‖F , where ‖·‖F is the Frobenius norm.

Lemma 2. Let A =
∑c

i=1 σiuiv
T
i be the SVD of A, if B = AAT , then

B =
(

∑

i
σiuiv

T
i

)(

∑

j
σjujv

T
j

)T

=
∑

i

∑

j
σiσjuiv

T
i vju

T
j =

∑

i
σ2
i uiu

T
i

(1)
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Lemma 1 shows that Ak is the best rank k approximation to A when error
is measured by the Frobenius norm. Thus we can use SVD to find a low-rank
approximation of the bilinear feature matrix without losing much accuracy. Lem-
ma 2 gives two important information. First, the bilinear feature matrix B has
the same singular vectors as the original feature matrix A, and there is a one-
to-one mapping between their singular values. So instead of approximating the
bilinear feature matrix B, we can just compute the SVD on the raw feature
matrix A, which could reduce computation complexity when c > hw. Second,
the singular values of B change quadratically compared to those of A. We argue
that such phenomenon makes the bilinear feature matrix much more sensitive
to the magnitudes and correlations of local CNN activations, which may cause
the burstiness problem [26]. Consider that the original feature matrix A has a
large singular value, thus it will be amplified dramatically in B and dominate
the similarity measurement. To address this problem, we suggest the following
pooling method.

Definition 1. (Grassmann/Subspace Pooling) Let A ∈ R
c×hw be the feature

maps at a specific convolution layer and A =
∑c

i=1 σiuiv
T
i be the SVD, the

Grassmann pooling or subspace pooling [33] reads: gk(A) = Uk = [u1|u2| · · · |uk].

That is, the pooling method transforms the CNN feature matrix A to an
orthonormal matrix consists of its k principal left singular vectors. In geome-
try, the pooled CNN features obtained in this manner are k-dimensional linear
subspaces of the c-dimensional Euclidean space, which lie on the (c, k) Grass-
mann manifold [30], denoted by Gk

c . Now the bilinear feature matrix becomes
B′ = UkU

T
k . When inserted into a CNN and trained in an end-to-end fasion,

this pooling method leads the model to learn only structural features which
are independent of the magnitudes and correlations of visual elements. Please
note that though singular values do not appear in this formulation, it does not
mean that we think singular values are completely useless and discard all the
information carried by them. Actually this representation can be understood as
B′ =

∑c
i=1 σ

′

iuiv
T
i , where σ

′

i = 1 for i ∈ {1, ..., k} and σ′

i = 0 for i ∈ {k+1, ..., c}.
We name bilinear pooling of the orthonormal matrix obtained in this manner as
homogeneous bilinear pooling. Moreover, our method is also compact since k < c.

Figure 2 illustrates the differences of conventional bilinear pooling [21, 24],
bilinear pooling with matrix power normalization [29] and our compact homoge-
neous bilinear pooling. Our pooling method has mainly two advantages. On the
one hand, for large singular values that correspond to the major feature struc-
tures, our pooling method does not cause the burstiness problem since they are
flattened to be ones. On the other hand, singular vectors correspond to the small
singular values are often trivial structures or even noises, therefore are discarded
by this representation which significantly reduces the feature size. Furthermore,
we shall explain later it is even unnecessary to compute the homogenous bilin-
ear feature matrix B′ = UkU

T
k ∈ R

c×c explicitly, but directly using the more
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Fig. 2. A comparison of conventional bilinear pooling, bilinear pooling with matrix
power normalization and our compact homogeneous bilinear pooling. Conventional bi-
linear pooling methods [21, 24] keep the whole spectrum and do not apply normaliza-
tion on the singular values. Thus their feature matrices could suffer from the burstiness
problem. The matrix power normalization [29] is proposed to handle this problem bet-
ter. However, when the exponent p is approaching to zero, all the singular values are
close to ones. Thus many trivial structures corresponding to the small singular values
are amplified excessively. On the contrary, our compact homogeneous bilinear pooling
adopts binary singular values, and its feature is compact which only contains the major
feature structures corresponding to the large singular values and does not cause the
burstiness problem

compact form Uk ∈ R
c×k, where k ≪ c in practice 3. The significance of this

property resides in two respects. 1) For retrieval based or distributed applications
which require features to be stored in a database, the storage can be substan-
tially decreased. 2) For classification problems, especially when the numbers of
categories is large, it can significantly reduce the parameter size of classifiers.
Before explaining how to avoid the computation of bilinear feature matrix, we
first make more analyses on the singular values and singular vectors.

3.2 Understanding Singular Values and Singular Vectors

To better understand the motivation of our pooling method, it is important to
show some properties of singular values and singular vectors, respectively. We
first consider two toy examples for analysis and then give some visualizations on
a real dataset.

Toy Examples We consider two toy examples that mimic the burstiness phe-
nomenon displayed in Figure 1 in a simplified way. This allows us to analyze the
behaviors of singular values and singular vectors in a closed-form.

3 For the rest of this paper, we use U instead of Uk for simplicity, and thereafter, the
subscript will represent different examples, e.g., U1 and U2.
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(a) Singular values (b) Singular vectors

Fig. 3. Visualizing singular values and singular vectors as feature descriptors using
t-SNE [41] using the original bilinear pooling method. (a) The singular values can be
influenced by the magnitudes and correlations of local CNN feature elements, and they
are wide-spread and mixed with different classes. (b) In contrast, the distributions of
singular vectors are much more compact and easier to distinguished from each class

1. Linear illumination transform: B = (sA)(sA)T = s2AAT =
∑

i s
2σ2

i uiu
T
i .

For a linear illumination transform when A is scaled by a scalar s, the
singular values of B are scaled by s2.

2. Repeated structures: B = [A|A] [A|A]
T
= 2AAT =

∑

i 2σ
2
i uiu

T
i . Consider

that two duplicated feature matrix A generated by a CNN are concatenated
together, thus the singular values of B are multiplied by a factor of 2.

As we can see from the two examples, singular values can actually reflect the
magnitudes of the matrix and correlations on elements and could even be more
sensitive to these factors when performing the bilinear pooling. On the other
hand, singular vectors are more robust than singular values. They have unit
norms, reflect only structural information and thus we believe should be more
reasonable to consider as invariant features for recognition. Of course, real cases
are much more complex than the toy examples where the illumination changes
and correlations may not occur globally. Nevertheless, such examples show that
how to pool CNN features in a more robust manner.

Real Cases We also make several visualizations on a real dataset. Specifically,
we use the fine-grained aircraft dataset [10] as a testbed. We train the original
bilinear pooling model on this dataset and extract the feature matrices of all the
images in the test set. We then perform SVD on each feature matrix and get
the singular values and singular vectors, respectively. We take vec(UUT ) and
[σ1, σ2, . . .] as two kinds of features and use the t-SNE [41] method to visualize
them. As we can see from Figure 3(a), the singular values for each class spread
widely and are mixed with different classes. On the contrary, the distributions
of singular vectors are much more compact and easier to distinguish from each
class as shown in Figure 3(b).
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3.3 Learning Grassmann Classifiers

The Grassmann pooling method described in Section 3.1 maps each feature ma-
trix to a subspace lies on the Grassmann manifold. The similarity measurement
of images reduces to comparing the principal angles between these subspaces.
For two points U1 and U2 on the Gk

c manifold, a popular distance measurement

is the projection distance [31, 32] defined by dP (U1,U2) = k−
∥

∥UT
1 U2

∥

∥

2

F
. Inter-

estingly, we show that the projection distance deduces a bilinear feature mapping
without explicitly computing the bilinear feature matrix, which leads to a very
compact feature representation. Moreover, we can also train a Grassmann clas-
sifier that enjoys the same compact form thus the number of parameters of the
classifier can be substantially reduced.

Lemma 3. The projection distance deduces an implicit bilinear mapping of B′

1 =
U1U

T
1 and B′

2 = U2U
T
2 :

dP (U1,U2) = k −
∥

∥UT
1 U2

∥

∥

2

F

=
1

2
tr(U1U

T
1 ) +

1

2
tr(U2U

T
2 )− tr(U1U

T
1 U2U

T
2 )

=
1

2
tr(U1U

T
1 U1U

T
1 +U2U

T
2 U2U

T
2 − 2U1U

T
1 U2U

T
2 )

=
1

2

∥

∥U1U
T
1 −U2U

T
2

∥

∥

2

F

(2)

Equation (2) indicates a valid similarity measurement between U1 and U2:
∥

∥UT
1 U2

∥

∥

2

F
, and we use this formula to define our classifier. For a K-way classifi-

cation problem, we aim to learn K classifiers Wi ∈ Gk
c , i ∈ [1,K]. In particular,

given an feature matrix U ∈ Gk
c , we compute a similarity score for each classifier

by
∥

∥WT
i U

∥

∥

2

F
and assign a label to the class which has the largest response.

This formulation has a similar form to the bilinear SVM classifier defined in [24]
but different in their meanings. The bilinear SVM [24] decomposes a classifier
Wi ∈ R

c×c, rank(Wi) = r,Wi = WT
i into two parts:

Wi = UiΣiU
T
i = Ui+Σi+U

T
i+ −Ui−|Σi−|U

T
i− = Ûi+Û

T
i+ − Ûi−Û

T
i− (3)

The two parts are further relaxed to lie on the Euclidean space, i.e., Ûi− and
Ûi+ ∈ R

c×r/2. For an input feature matrix X ∈ R
c×hw, the classification score

is defined as ||ÛT
i+X||2F − ||ÛT

i−X||2F . On the contrary, our method is exactly
derived from the projection distance on the Grassmann manifold.

To learn a Grassmann classifier Wi ∈ Gk
c , we first initialize a random matrix

Mi ∈ R
c×k and then perform SVD on Mi, assigning the left singular vectors to

Wi. Thus we train the classifiers end-to-end using the error back-propagation
training method. Another better initialization of Wi is assigning each classifier
to the center of its feature cluster. Specifically, for each class in the training set,
the center is calculated by first summing all the features

∑

j UjU
T
j , and then

taking the singular vectors. We find that the later initialization facilitates CNN
training and needs fewer epochs to convergence.
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Fig. 4. Our GP method compares to the LRBP method [24]. Our GP mainly differs
from LRBP in two respects: 1) pooling: GP transforms CNN features to the compact
Grassmann manifold while LRBP uses the conventional (or does not explicitly com-
pute) bilinear feature matrix. This directly matters on the feature dimension: 1K/4K
vs. 10K/78K. 2) classifier: the classifier of GP is exactly derived from the projection
distance of the Grassmann manifold; while for LRBP, it is derived from the bilinear
SVM and is further approximated in the Euclidean space

3.4 Learning A Grassmann Projection for Model Compression

Typically, reducing the number of feature maps in CNN is performed by a
1×1 conv layer, setting a smaller number of the output feature maps. Mathemat-
ically, for a spatial location crosses all the channels of the feature maps, noted
by a vector x ∈ R

c. The 1 × 1 conv layer learns a weight matrix M ∈ R
c×c′

and gives the output y = MTx ∈ R
c′ at each spatial location. This operation is

equivalent to applying weighted sums along the channels of feature maps, and
thus the outputs are linear combinations of the inputs. However, there may be
correlations on these linear combinations such that the output feature maps are
degenerate in terms of diversity.

To address this problem, we propose to learn c′ (c′ < c) orthonormal bases
W ∈ Gc′

c for dimension reduction. This approach is inspired by PCA which per-
forms dimension reduction by mapping data using their principal orthonormal
directions. The main difference between PCA and our method is that the pro-
posed approach is supervised and trained end-to-end. To train the orthonormal
directions, we first initialize a matrix M, and set W to the left singular vectors of
M, similar to training the Grassmann classifiers. We will show in the experiment
section that this dimension reduction approach performs favourably against the
1× 1 conv operation.

The overall pipeline of our approach and a comparison with the LRBP
method [24] is illustrated in Figure 4. Our method relies on SVD in sever-
al respects. The SVD operation is differentiable, thus the whole pipeline can
be trained end-to-end using the standard back-propagation training procedure.
However, computing the gradients with respect to SVD for back-propagation
is non-trivial. Previously, Catalin et al. [42] have explored such matrix back-
propagation in CNN which is also adopted in this work. We refer readers to [42]
for the details of derivation.
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4 Experimental Evaluation

In this section, we first provide details about the implementation of our method.
We then compare our approach to several baselines on four widely used fine-
grained classification benchmarks.

4.1 Implementation

We implement our method using the PyTorch library. We remove the fully con-
nected layer of the original backbone network, and add our dimension reduction
layer, pooling layer and classification layer. The stochastic gradient descent (S-
GD) optimization is used to train our model. We use an initial learning rate of
0.1 which linearly decreases to 0, weight decay of 0.0001 and momentum of 0.9.
We perform random horizontal flipping as data augmentation for training. At
the testing stage, we pass the original image and its horizontal flip to the CNN
independently and use their average as the final classification score.

4.2 Baseline Methods

We now describe several baseline methods which we compare our approach with.
To make a fair comparison, we choose the VGG-16 [43] network pre-trained on
ImageNet as the backbone model which is the same as all the related bilinear
methods. All the methods use the same K-way softmax loss function except for
the low-rank bilinear pooling, which was specifically designed to incorporate a
low-rank hinge loss [24].

Fully Connected layers (FC) [43]: This is the original VGG-16 network pre-
trained on ImageNet. The last fully connected layer of VGG-16 is replaced with
a randomly initialized K-way classification layer and then fine-tuned on each
fine-grained classification dataset. Since VGG-16 requires a fixed input image
size of 224× 224, all input images are resized to this resolution for this method.

Full Bilinear Pooling (FBP) [21]: The full bilinear pooling is applied over
the conv5 3 feature maps, which is the best-performed B-CNN [D, D] in [21].
Before the final classification layer, an element-wise square root normalization
and L2 normalization layer is added as suggested in [21].

Compact Bilinear Pooling (CBP-RM and CBP-TS) [23]: We compare
two compact methods proposed in [23] using Random Maclaurin [38] and Tensor
Sketch [39]. The element-wise signed square root normalization and L2 normal-
ization are also used as the full bilinear model. The projection dimension is set
to d = 8192, which is shown to be sufficient to achieve competitive performance
as full bilinear pooling.

Low-Rank Bilinear Pooling (LRBP) [24]: This is the compression method
using the bilinear SVM classifier. Following the original paper, the projection
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Fig. 5. A comparison of feature dimension/parameter size and accuracy for bilinear
pooling methods. Accuracy is the average classification accuracy of the four datasets

dimension is set to m = 100 and its rank r = 8. The dimensionality reduction
layer is initialized using PCA on the feature maps of training set, and a scaled
square root is applied with a factor of 2× 105 over the conv5 3 feature maps.

Improved Bilinear Pooling (IBP) [29]: This corresponds to the bilinear
pooling with matrix square root normalization. Following the original paper,
after fine-tuning the last layer is replaced by K one-vs-rest linear SVMs for
classification.

4.3 Analysis of Model Complexity

In this section, we study the model and computational complexity for each
method. For our Grassmann Pooling (GP) method, we use two different numbers
of feature channels c1 = 256 and c2 = 64 (GP-256 and GP-64) and set k = 16
which is enough to achieve near maximum accuracy.

Table 1 provides a comprehensive comparison with respect to the feature di-
mension, the computational complexity for generating features and classification
scores, and the parameter sizes of feature extractor (after the last convolution
layer) and classifiers. For the CBP method, d = 8192 is used to achieve the best
performance as reported in [23]. And for the LRBP method, m = 100 and r = 8
is enough to achieve similar or better performance than CBP. From Table 1 we
can see that CBP-TS, LRBP, and our GP are most competitive with respect to
model complexity. The feature dimension and parameter size are significantly
smaller than FBP and IBP.

4.4 Performance Comparison on Benchmarks

We compare our method with related bilinear methods on four widely used fine-
grained classification datasets, CUB Bird-200 [9], Stanford Car [7], Aircraft [10]
and Food-101 [11]. All the datasets provide a fixed train and test split. We train
our models only using the fine-grained class labels without any part or bounding
box annotation provided by the datasets. The images are resized to 448 × 448
of all the datasets except for Food-101, which are resized to 224× 224.



Grassmann Pooling as Compact Homogeneous Bilinear Pooling 13

Table 1. A comparison of different bilinear pooling methods in terms of dimension-
ality, number of parameters, and computational complexity. The bilinear features are
computed over feature maps of dimension c×h×w for a K-way classification problem.
For the VGG-16 [43] network on an input image of size 448×448, we have c = 512 and
h = w = 28. FBP [21] and IBP [29] generate a full bilinear map which has a very high
dimensionality. The CBP [23]: RM and TS use the polynomial kernel approximation,
generating a feature vector of dimension d. Typically, the two methods can achieve
near-maximum performance with d = 8192. LRBP [24] uses reduced feature dimen-
sion m = 100 and a low-rank classifier r = 8 to compress the bilinear model. We test
two configurations of our method, setting k = 16 and c1 = 256, c2 = 64, respectively.
Numbers in brackets indicate typical values when bilinear pooling is applied after the
last convolutional layer of VGG-16 model over the CUB Bird-200 dataset [9] where
K = 200. Model size only counts the parameters after the last convolutional layer

Feature Dim. Feature Comp. Classifier Comp. Feature Param. Classifier Param.

FBP [21] c2 [256K] O(hwc2) O(Kc2) 0 Kc2 [K·1MB]

CBP-RM [23] d [8K] O(hwcd) O(Kd) 2cd [40MB] Kd [K·32KB]

CBP-TS [23] d [8K] O(hw(c+d log d)) O(Kd) 2c [4KB] Kd [K·32KB]

LRBP [24] m2 [10K] O(hwmc+hwm2) O(Krm2) cm [200KB] Krm [K·3KB]

IBP [29] c2 [256K] O(hwc2+c3) O(Kc2) 0 Kc2 [K·1MB]

Our GP-256 kc1 [4K] O(hwcc1+c3
1
) O(Kkc1) cc1 [512KB] Kkc1 [K·16KB]

Our GP-64 kc2 [1K] O(hwcc2+c3
2
) O(Kkc2) cc2 [128KB] Kkc2 [K·4KB]

As can be seen from Table 2, all the bilinear pooling methods outperform
the basic VGG-16 model a significant margin, especially for our GP-256 method
which has the same feature dimension. The feature dimension of GP-256 is 64
times smaller than those of FBP and IBP with improved performance. LRBP
has the smallest model among the baseline methods, while GP-64 outperforms
it both in terms of accuracy and feature dimension with similar model size. The
feature dimension of our GP-64 is only 10% of that of LRBP. An illustration of
model size vs. classification accuracy for the bilinear pooling methods is displayed
in Figure 5.

We also compare our Grassmann projection approach with the conventional
1× 1 conv operation for dimension reduction. As can be seen from Table 3, the
proposed Grassmann projection approach generally performs better than the
1 × 1 conv. It can reduce the number of feature maps by a factor of 2 of the
original VGG-16 model, without losing noticeable classification accuracy.

5 Conclusions

This paper presents detailed analysis on the burstiness problem of the bilinear
feature representation. We show that the bilinear feature matrix is sensitive
to the magnitudes and correlations of local CNN feature elements which can be
measured by its singular values. Thus we advocate an alternative pooling method
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Table 2. Fine-grained image classification benchmark results. We compare our method
with a fully connected network of VGG-16 [43], original bilinear pooling [21], Random
Maclaurin and Tensor Sketch of the compact bilinear pooling [23], low-rank bilinear
pooling [24], factorized bilinear pooling [25] and improved bilinear pooling [29] on four
fine-grained classification datasets. We also list the feature dimension and parameter
size for each method

Bird [9] Car [7] Aircraft [10] Food [11] Feature Dim. Parameters

FC [43] 70.4 76.8 74.1 80.9 4K 3MB

FBP [21] 84.1 90.6 86.9 82.4 256K 200MB

CBP-RM [23] 83.9 90.5 84.3 82.2 8K 38MB

CBP-TS [23] 84.0 91.2 84.1 82.4 8K 6.3MB

LRBP [24] 84.2 90.9 87.3 82.3 10K 0.8MB

IBP [29] 85.8 92.0 88.5 84.2 256K 200MB

Our GP-256 85.8 92.8 89.8 85.7 4K 3.6MB

Our GP-64 85.4 91.7 88.1 84.6 1K 0.9MB

Table 3. A comparison of dimension reduction methods. We compare our Grassmann
projection approach with a 1× 1 conv layer for reducing the number of feature maps.
The results are reported using the proposed pooling method with k = 16 on the
Aircraft [10] dataset. Values in the bracket are the numbers of feature maps and 1×
indicates the original VGG-16 model which has 512 feature maps

1×[512] 2×[256] 4×[128] 8×[64]

1× 1 conv
89.8

89.2 88.5 87.7

our method 89.8 88.9 88.1

that does not suffer from such a problem. Another advantage of our method is
that it avoids to explicitly computing the bilinear feature matrix, which not
only leads to a compact feature representation but also enables to train compact
classifiers. Our method achieves an excellent balance of model complexity and
accuracy on a variety of benchmarks for fine-grained image classification.
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