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Abstract. Neural style transfer is an emerging technique which is able
to endow daily-life images with attractive artistic styles. Previous work
has succeeded in applying convolutional neural networks (CNNs) to style
transfer for monocular images or videos. However, style transfer for
stereoscopic images is still a missing piece. Different from processing
a monocular image, the two views of a stylized stereoscopic pair are
required to be consistent to provide observers a comfortable visual ex-
perience. In this paper, we propose a novel dual path network for view-
consistent style transfer on stereoscopic images. While each view of the
stereoscopic pair is processed in an individual path, a novel feature ag-
gregation strategy is proposed to effectively share information between
the two paths. Besides a traditional perceptual loss being used for con-
trolling the style transfer quality in each view, a multi-layer view loss is
leveraged to enforce the network to coordinate the learning of both the
paths to generate view-consistent stylized results. Extensive experiments
show that, compared against previous methods, our proposed model can
produce stylized stereoscopic images which achieve decent view consis-
tency.
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1 Introduction

With the advancement of technologies, more and more novel devices provide
people various visual experiences. Among them, a device providing an immersive
visual experience is one of the most popular, including virtual reality devices [8],
augmented reality devices [21], 3D movie systems [11], and 3D televisions [17].
A common component shared by these devices is the stereo imaging technique,
which creates the illusion of depth in a stereo pair by means of stereopsis for
binocular vision. To provide more appealing visual experiences, lots of studies
strive to apply engrossing visual effects to stereoscopic images [1, 20, 3]. Neural
style transfer is one of the emerging techniques that can be used to achieve this
goal.

⋆ Work done while Xinyu Gong was a Research Intern with Tencent AI Lab.
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Fig. 1. Style transfer applied on stereoscopic images with and without view consistency.
The first row shows two input stereoscopic images and one reference style image. The
second row includes the stylized results generated by Johnson et al.’s method [12].
The middle columns show the zoom-in results, where apparent inconsistency appears
in Johnson et al.’s method, while our results showed in the third row maintain high
consistency.

Style transfer is a longstanding problem aiming to combine the content of one
image with the style of another. Recently, Gatys et al. [6] revisited this problem
and proposed an optimization-based solution utilizing features extracted by a
pre-trained convolutional neural network, dubbed Neural Style Transfer, which
generates the most fascinating results ever. Following this pioneering work, lots
of efforts have been devoted to boosting speed [12, 27], improving quality [28, 31],
extending to videos [7, 9, 4], and modeling multiple styles simultaneously [10, 29,
19]. However, the possibility of applying neural style transfer to stereoscopic im-
ages has not yet been sufficiently explored. For stereoscopic images, one straight-
forward solution is to apply single-image style transfer [12] to the left view and
right view separately. However, this method will introduce severe view inconsis-
tency which disturbs the original depth information incorporated in the stereo
pair and thus brings observers an uncomfortable visual experience [15]. Here view
inconsistency means that the stylized stereo pair has different stereo mappings
from the input. This is because single image style transfer is highly unstable.
A slight difference between the input stereo pair may be enormously amplified
in the stylized results. An example is shown in the second row of Fig. 1, where
stylized patterns of the same part in the two views are obviously inconsistent.
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In the literature of stereoscopic image editing, a number of methods have
been proposed to satisfy the need of maintaining view consistency. However, they
introduce visible artifacts [23] and require precise stereo matchings [1], while
being computationally expensive [20]. An intuitive approach is to run single-
image style transfer on the left view, and then warp the result according to the
estimated disparity to generate the style transfer of the right view. However, this
will introduce extremely annoying black regions due to the occluded regions in
a stereo pair. Even if filling the black regions with the right-view stylized result,
severe edge artifacts are still inevitable.

In this paper, we propose a novel dual path convolutional neural network for
the stereoscopic style transfer, which can generate view-consistent high-quality
stylized stereo image pairs. Our model takes a pair of stereoscopic images as input
simultaneously and stylizes each view of the stereo pair through an individual
path. The intermediate features of one path are aggregated with the features
from the other path via a trainable feature aggregation block. Specifically, a
gating operation is directly learned by the network to guide the feature aggrega-
tion process. Various feature aggregation strategies are explored to demonstrate
the superiority of our proposed feature aggregation block. Besides the traditional
perceptual loss used in the style transfer for monocular images [12], a multi-layer
view loss is leveraged to constrain the stylized outputs of both views to be con-
sistent in multiple scales. Employing the proposed view loss, our network is able
to coordinate the training of both the paths and guide the feature aggregation
block to learn the optimal feature fusion strategy for generating view-consistent
stylized stereo image pairs. Compared against previous methods, our method can
produce view-consistent stylized results, while achieving competitive quality.

In general, the main contributions of our paper are as follows:

– We propose a novel dual path network for stereoscopic style transfer, which
can simultaneously stylize a pair of stereoscopic images while maintaining
view consistency.

– Amulti-layer view loss is proposed to coordinate the training of the two paths
of our network, enabling the model, specifically the dual path network, to
yield view-consistent stylized results.

– A feature aggregation block is proposed to learn a proper feature fusion
strategy for improving the view consistency of the stylized results.

2 Related Work

In this work, we try to generate view-consistent stylized stereo pairs via a dual
path network, which is closely related to the existing literature on style transfer
and stereoscopic image editing.

Neural Style Transfer. The first neural style transfer method was proposed by
Gatys et al. [6], which iteratively optimizes the input image to minimize a content
loss and a style loss defined on a pretrained deep neural network. Although this
method achieves fascinating results for arbitrary styles, it is time consuming due
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to the optimization process. Afterwards, models based on feed-forward CNNs
were proposed to boost the speed [12, 27], which obtain real-time performance
without sacrificing too much style quality. Recently, efforts have been devoted to
extending singe-image neural style transfer to videos [24, 10, 4]. The main chal-
lenge for video neural style transfer lies in preventing flicker artifacts brought
by temporal inconsistency. To solve this problem, Ruder et al. [24] introduced
a temporal loss to the time-consuming optimization-based method proposed by
Gatys et al. [6]. By incorporating temporal consistency into a feed-forward CNN
in the training phase, Huang et al. [9] were able to generate temporally coherent
stylized videos in real time. Gupta et al. [7] also accomplished real-time video
neural style transfer by a recurrent convolutional network trained with a tem-
poral loss. Besides the extensive literature on neural style transfer for images
or videos, there is still a short of studies on stereoscopic style transfer. Apply-
ing single-image style transfer on stereoscopic images directly will cause view
inconsistency, which provides observers an uncomfortable visual experience. In
this paper, we propose a dual path network to share information between both
views, which can accomplish view-consistent stereoscopic style transfer.

Stereoscopic Image Editing. The main difficulty of stereoscopic image edit-
ing lies in maintaining the view consistency. Basha et al. [1] successfully extended
single image seam carving to stereoscopic images, by considering visibility rela-
tionships between pixels. A patch-based synthesis framework was presented by
Luo et al. [20] for stereoscopic images, which suggests a joint patch-pair search to
enhance the view consistency. Lee et al. [16] proposed a layer-based stereoscopic
image resizing method, leveraging image warping to handle the view correlation.
In [23], Northam et al. proposed a view-consistent stylization method for simple
image filters, but introducing severe artifacts due to layer-wise operations. Kim
et al. [13] presented a projection based stylization method for stereoscopic 3D
lines, which maps stroke textures information through the linked parameterized
stroke paths in each view. Stavrakis et al. [26] proposed a warping based image
stylization method, warping the left view of the stylized image to the right and
using a segment merging operation to fill the occluded regions. The above meth-
ods are either task specific or time-consuming, which are not able to generalize
to the neural style transfer problem. In this paper, we incorporate view consis-
tency into the training phase of a dual path convolutional neural network, thus
generating view-consistent style transfer results with very high efficiency.

3 Proposed Method

Generally, our model is composed of two parts: a dual path stylizing network and
a loss network (see Fig. 2). The dual path stylizing network takes a stereo pair
and processes each view in an individual path. A feature aggregation block is
embedded into the stylizing network to effectively share feature level information
between the two paths. The loss network computes a perceptual loss and a
multi-layer view loss to coordinate the training of both the paths of the stylizing
network for generating view-consistent stylized results.
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Fig. 2. An overview of our proposed model, which consists of a dual path stylizing
network and a loss network. The dual path stylizing network takes a pair of stereoscopic
images xL and xR as input, generating the corresponding stylized images x̂L and x̂R.
A feature aggregation block is proposed to share information between the two paths.
The loss network calculates the perceptual loss and the multi-layer view loss to guide
the training of the stylizing network.

Fig. 3. The architecture of the stylizing network, consisting of an encoder, a feature
aggregation block, and a decoder. Input images xL and xR are encoded to yield the
feature maps FL and FR. The feature aggregation block takes FL and FR as input
and aggregates them into AL. Then AL is decoded to yield the stylized result x̂L.

3.1 Dual Path Stylizing Network

Our stylizing network is composed of three parts: an encoder, a feature aggrega-
tion block, and a decoder. The architecture of the stylizing network is shown in
Fig. 3. For simplicity, we mainly illustrate the stylizing process of the left view,
which is identical to that of the right view. First, the encoder, which is shared by
both paths, takes the original images as input and extracts initial feature maps
FL and FR for both views. Second, in the feature aggregation block, FL and
FR are combined together to formulate an aggregated feature map AL. Finally,
AL is decoded to produce the stylized image of the left view x̂L.

Encoder-decoder. Our encoder downsamples the input images, and extracts
the corresponding features progressively. The extracted features are then fed to
the feature aggregation block. Finally, our decoder takes the aggregated feature
map AL as input, and decodes it into stylized images. Note that the encoder
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Fig. 4. The architecture of the feature aggregation block. The feature aggregation block
takes the input stereo pair xL and xR and the corresponding encoder’s outputs FL

and FR. Then, it computes the aggregated feature map AL. The proposed feature
aggregation block consists of three key components: a disparity sub-network, a gate
sub-network, and an aggregation.

and decoder are shared by both views. The specific architectures of the encoder
and decoder are shown in Sec. 4.1.

Feature Aggregation Block. As aforementioned, separately applying a single-
image style transfer algorithm on each view of a stereo image pair will cause view
inconsistency. Thus, we introduce a feature aggregation block to integrate the
features of both the paths, enabling our model to exploit more information from
both views to preserve view consistency.

The architecture of the feature aggregation block is shown in Fig. 4. Taking
the original stereoscopic images and the features extracted by the encoder as
input, the feature aggregation block outputs an aggregated feature map AL,
which absorbs information from both views.

Specifically, a disparity map is predicted by a pretrained disparity sub-
network. The predicted disparity map is used to warp the initial right-view
feature map FR to align with the initial left-view feature map FL, obtaining
the warped right-view feature map W ′(FR). Explicitly learning a warp opera-
tion in this way can reduce the complexity of extracting pixel correspondence
information for the model. However, instead of directly concatenating the warped
right-view feature map W ′(FR) with the initial left-view feature map FL, a gate
sub-network is adopted to learn a gating operation for guiding the refinement of
W ′(FR), to generate the refined right feature map FR

r . Finally, we concatenate
FR

r with FL along the channel axis to obtain the aggregated feature map AL.

Disparity Sub-network. Our disparity sub-network takes the concatenation
of both views of the stereoscopic pair as input, and outputs the estimated dis-
parity map. It is pretrained on the Driving dataset [22] in a supervised way,
which contains ground-truth disparity maps. To predict the disparity map for
the left view, both views of the stereoscopic pair are concatenated along the
channel axis to formulate {xR, xL}, which is thereafter fed to the disparity sub-
network. Similarly, {xL, xR} is the input for predicting the right disparity map.
The specific architecture of our disparity sub-network is shown in Sec. 4.1. The
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architecture of our disparity sub-network is simple; however, it is efficient and
does benefit the decrease of the view loss. It is undoubted that applying a more
advanced disparity estimation network can boost the performance further at the
cost of efficiency, which is out of the scope of this paper.

Gate Sub-network. The gate sub-network is proposed to generate a gate map
for guiding the refinement of W ′(FR). First, using bilinear interpolation, we
resize the input stereoscopic pair xL, xR to the same resolution as the initial left-
view feature map FL, which is denoted as r(xL) and r(xR). Then we calculate
the absolute difference between r(xL) and W ′(r(xR)):

DL =
∣∣r(xL)−W ′(r(xR))

∣∣ . (1)

Taking DL as input, the gate sub-network predicts a single channel gate map
GL, which has the same resolution as FL. The range of the pixel values lies in
[0, 1], which will be used to refine the warped right-view feature map W ′(FR)
later. The specific architecture of the gate sub-network is shown in Sec. 4.1.

Aggregation. Under the guidance of the gate map generated by the gate sub-
network, we refine the warped right-view feature map W ′(FR) with the initial
left-view feature map FL to generate a refined right-view feature map:

FR
r = W ′(FR)⊙GL + FL ⊙ (1−GL), (2)

where ⊙ denotes element-wise multiplication. In our experiments, we find that
concatenating W ′(FR) with FL directly to formulate the final aggregated left-
view feature map AL will cause ghost artifacts in the stylized results. This is
because the mismatching between FL and W ′(FR) , which is caused by occlu-
sion and inaccurate disparity prediction, will incorrectly introduce right-view
information to the left view. Using the gating operation can avoid this issue.
Finally, the refined right-view feature map FR

r is concatenated with the initial
left-view feature map FL to formulate the aggregated left-view feature map AL.

3.2 Loss Network

Different from the single-image style transfer [12], the loss network used by our
method serves for two purposes. One is to evaluate the style quality of the
outputs, and the other is to enforce our network to incorporate view consistency
in the training phase. Thus, our loss network calculates a perceptual loss and a
multi-layer view loss to guide the training of the stylizing network:

Ltotal =
∑

d∈{L,R}

Lperceptual(s, x
d, x̂d) + λLview(x̂

L, x̂R,FL
k ,F

R
k ), (3)

where Fk denotes the k-th layer feature map of the decoder in the stylizing
network. s is the reference style image. The architecture of our loss network is
shown in Fig. 5. While the perceptual losses of the two views are calculated
separately, the multi-layer view loss is calculated based on the outputs and the
features of both views. By training with the proposed losses, the stylizing network
learns to coordinate the training of both the paths to leverage the information
from both views, eventually generating stylized and view-consistent results.
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Fig. 5. The architecture of the loss network. The perceptual losses of the two views are
calculated separately, while the multi-layer view loss is calculated based on the outputs
and the features of both views.

Perceptual Loss. We adopt the definition of the perceptual loss in [12], which
has been demonstrated effective in neural style transfer. The perceptual loss is
employed to evaluate the stylizing quality of the outputs, which consists of a
content loss and a style loss:

Lperceptual(s, x
d, x̂d) = αLcontent(x

d, x̂d) + βLstyle(s, x̂
d), (4)

where α, β are the trade-off weights. We adopt a pretrained VGG-16 network [25]
to extract features for calculating the perceptual loss.

The content loss is introduced to preserve the high-level content information
of the inputs:

Lcontent(x
d
, x̂

d) =
∑

l

1

HlW lCl

∥∥∥F l(xd)−F l(x̂d)
∥∥∥
2

2

, (5)

where F l denotes the feature map at layer l in the VGG-16 network. W l, H l, Cl

are the height, width, and channel size of the feature map at layer l, respectively.
The content loss constrains the feature maps of xd and x̂d to be similar, where
d = {L,R} represents different views.

The style loss is employed to evaluate the stylizing quality of the generated
images. Here we use the Gram matrix as the style representation, which has
been demonstrated effective in [6]:

Gl
ij(x

d) =
1

H lW l

Hl∑

h

W l∑

w

F l(xd)h,w,iF
l(xd)h,w,j , (6)

where Gl
ij denotes the i, j-th element of the Gram matrix of the feature map

at layer l. The style loss is defined as the mean square error between the Gram
matrices of the output and the reference style image:

Lstyle(s, x̂
d) =

∑

l

1

Cl

2 ∥∥Gl(s)−Gl(x̂d)
∥∥2
2
. (7)
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Matching the Gram matrices of feature maps has also been demonstrated to be
equivalent to minimizing the Maximum Mean Discrepancy (MMD) between the
output and the style reference [18].

Multi-layer View Loss. Besides a perceptual loss, a novel multi-layer view
loss is proposed to encode view consistency into our model in the training phase.
The definition of the multi-layer view loss is:

Lview = Limg
view + Lfeat

view, (8)

where the image-level view loss constrains the outputs to be view-consistent, and
the feature-level view loss constrains the feature maps in the stylizing network
to be consistent. The image-level view loss is defined as:

Limg
view =

1∑
i,j M

L
i,j

∥∥ML ⊙ (x̂L −W (x̂R))
∥∥2
2

+
1∑

i,j M
R
i,j

∥∥MR ⊙ (x̂R −W (x̂L))
∥∥2
2
,

(9)

where M is the per-pixel confidence mask of the disparity map, which has the
same shape as stylized images. The value of Mi,j is either 0 or 1, where 0 in
mismatched areas, and 1 in well-matched corresponding areas. x̂L and x̂R are
stylized results. We use W to denote the warp operation using the ground-truth
disparity map, provided by the Scene Flow Datasets [22]. Thus, W (x̂L) and
W (x̂R) are a warped stylized stereo pair, using the ground-truth disparity map.

In order to enhance view consistency of stylized images further, we also en-
force the corresponding activation values on intermediate feature maps of left
and right content images to be identical. Thus, the feature-level view loss is
introduced. Similarly, the feature-level view loss is defined as follow:

Lfeat
view =

1∑
i,j m

L
i,j

∥∥mL ⊙ [FL
k −W (FR

k )]
∥∥2
2

+
1∑

i,j m
R
i,j

∥∥mR ⊙ [FR
k −W (FL

k )]
∥∥2
2
,

(10)

where m is the resized version of M , sharing the same resolution as the k-th
layer’s feature map in the decoder. FL

k and FR
k are the feature maps fetched out

from the k-th layer in the stylizing network. Similarly, W (FL
k ) and W (FR

k ) are
the warped feature maps using the ground-truth disparity map.

4 Experiments

4.1 Implementation

The specific configuration of the encoder and the decoder of our model is shown
in Tab. 1. We use Conv to denote Convolution-BatchNorm-Activation block. Cin
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Table 1. Model configuration.

Layer Kernel Stride Cin Cout Acitivation

Encoder

Conv 3×3 1 3 16 ReLU
Conv 3×3 2 16 32 ReLU
Conv 3×3 2 32 48 ReLU

Decoder

Conv 3×3 1 96 96 ReLU
Conv 3×3 1 96 48 ReLU

Res × 5 48 48 ReLU
Deconv 3×3 0.5 48 32 ReLU
Deconv 3×3 0.5 32 16 ReLU
Conv 3×3 1 16 3 tanh

Layer Kernel Stride Cin Cout Acitivation

Disparity Sub-network

Conv 3×3 1 6 32 ReLU
Conv 3×3 2 32 64 ReLU
Conv 3×3 2 64 48 ReLU

Res × 5 48 48 ReLU
Deconv 3×3 0.5 48 24 ReLU
Deconv 3×3 0.5 24 8 ReLU
Conv 3×3 1 8 3 ReLU
Conv 3×3 1 3 1 -

Gate Sub-network

Conv 3×3 1 3 6 ReLU
Conv 1×1 1 6 12 ReLU
Conv 1×1 1 12 6 ReLU
Conv 1×1 1 6 3 ReLU
Conv 1×1 1 3 1 tanh

and Cout denote the channel numbers of the input and the output respectively.
Res denotes the Residual block, following a similar configuration to [12]. Deconv

denotes Deconvolution-BatchNorm-Activation block.
We use Driving in the Scene Flow Datasets [22] as our dataset, which contains

4.4k pairs of stereoscopic images. 440 pairs of them are used as testing samples,
while the rest are used as training samples. Besides, we also use the stereo images
from Flickr [5], Driving test set and Sintel [2] to show the visual quality of
our results in Sec.4.2. In addition, images from Waterloo-IVC 3D database [30]
are used to conduct our user study. Testing on various datasets in this way
demonstrates the generalization ability of our model. The loss network (VGG-
16) is pretrained on the image classification task [25]. Note that during the
training phase, the multi-layer view loss is calculated using the ground-truth
disparity map provided by the Scene Flow Datasets [22] to warp fetched feature
maps and stylized images. Specifically, we fetch feature maps at 7-th layer of
decoder to calculate feature-level view loss according to our experiments.

The disparity sub-network is first pretrained and fixed thereafter. Then, we
train the other parts of the stylizing network for 2 epochs. The input image
resolution is 960× 540. We set α = 1, β = 500, λ = 100. The batch size is set to
1. The learning rate is fixed as 1e− 3. For optimization we use Adam [14].

4.2 Qualitative Results

We apply the trained model to some stereoscopic pictures from Flickr [5] to show
the visual qualities of different styles. In Fig. 6, stylized results in four different
styles are presented, from which we can see that the semantic content of the
input images are preserved, while the texture and color are transferred from the
reference style images successfully. Besides, view consistency is also maintained.

4.3 Comparison

In this section, we compare our method with the single image style transfer
method [12]. Though there are many alternative baseline designed for single im-
age neural style transfer, both of them will suffer from similar view inconsistency
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Fig. 6. Visual results of our proposed stereoscopic style transfer method. While the
high-level contents of the inputs are well preserved, the style details are successfully
transferred from the given style images. Meanwhile, view consistency is maintained.

artifacts as Johnson’s method [12]. Hence, we only choose [12] as a representa-
tive. Also, we testify the effectiveness of the multi-layer view loss and the feature
aggregation block.

As the evaluation metric, we define a term called the mean view loss MV L:

MV L =
1

N

N∑

n=1

Limg
view(In), (11)

where N is the total number of test images, In is the n-th image in the test
dataset, Limg

view is the image-level view loss defined in Equation 9. In other words,
MV L is employed to evaluate the average of the image-level view losses over the
whole test dataset. Similarly, we also define mean style loss (MSL) and mean
content loss (MCL) :

MSL =
1

N

N∑

n=1

Lstyle(In), (12)

MCL =
1

N

N∑

n=1

Lcontent(In). (13)

For clarity, the single image style transfer method is named as SingleImage,
where the single image method trained with image-level view loss is named as
SingleImage-IV. Our full model with a feature aggregation block trained with
a multi-layer view loss is named as Stereo-FA-MV. The variant model with a
feature aggregation block but trained with an image-level view loss is named
as Stereo-FA-IV. We evaluate the MV L, MSL and MCL of the above models
across four styles: Fish, Mosaic, Candy and Dream, where the MSLs are coordi-
nated into a similar level. In Tab. 2, we can see that the mean view loss MV L of
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Table 2. MV L, MSL and MCL of five different models over 4 styles, where MSLs
are coordinated into a similar level.

Model SingleImage SingleImage-IV Stereo-FA-IV Stereo-FA-dp-IV Stereo-FA-MV

MSL 426 424 410 407 417
MVL 2033 1121 1028 1022 1014

MCL 424153 485089 481056 478413 445336

our full model Stereo-FA-MV is the smallest. The result of the single image style
transfer method is the worst. Comparing Stereo-FA-IV with SingleImage-IV, we
know that the feature aggregation block benefits the view consistency. Compar-
ing Stereo-FA-MV with Stereo-FA-IV, we find that constraining the view loss in
the feature level besides the image level improves the view consistency further.
We also conduct the experiment with fine-tuning the whole network together
instead of freezing the disparity sub-network Stereo-FA-dp-IV, which performs
comparably with Stereo-FA-IV.

In order to give a more intuitive comparison, we visualize the view inconsis-
tency maps of the single image style transfer method and our proposed method
in Fig. 7. The view inconsistency map is defined as:

V L =
∑

c

∣∣x̂L
c −W (x̂R)c

∣∣⊙ML, (14)

where x̂L
c and W (x̂R)c denote c-th channel of x̂L and W (x̂R) respectively. M

is the per-pixel confidence mask of disparity map which is illustrated in Sec.3.2
. Note that W denotes the warp operation using the ground-truth disparity
map, provided by the Scene Flow Datasets [22]. Compared with the results of
SingleImage, a larger number of blue pixels in our results indicate that our
method can preserve the view consistency better.

Moreover, a user study is conducted to compare SingleImage with our method.
Specifically, a total number of 21 participants take part in our experiment. Ten
stereo pairs are randomly picked up from the Waterloo-IVC 3D database [30].
For each of the stereo pair, we apply style transfer using three different style
images (candy, fish, mosaic). As a result, 3 × 10 stylized stereoscopic pairs are
generated for each model. Each time, a participant is shown the stylized results
of the two methods on a 3D TV with a pair of 3D glasses, and asked to vote
for the preferred one (which is more view-comfortable). Specifically, the original
stereo pairs are shown before the stylized results of the two methods, in order
to give participants the correct sense of depth as references. Tab. 3 shows the
final results. 73% votes are cast to the stylized results generated by our method,
which demonstrates that our method achieves better view consistency and pro-
vides more satisfactory visual experience.

4.4 Ablation Study on Feature Aggregation

To testify the effectiveness of the proposed feature aggregation block, we set up
an ablation study. Our feature aggregation block consists of three key operations:
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Fig. 7. Visualization of the view inconsistency. The second column shows view incon-
sistency maps of the single-image style transfer method [12]. The third column shows
our results. The last column is the color map of view inconsistency maps. Obviously,
our results are more view-consistent.

Table 3. User preferences.

Style Prefer ours Prefer Johnson et al.’s Equal

Candy 143 29 38
Fish 166 14 30

Mosaic 152 24 34

warping, gating and concatenation. We test 3 variant models with different set-
tings of these key operations for obtaining the final aggregated feature maps AL

and AR. For simplicity, we only describe the process of obtaining AL.

The first model is SingleImage-IV, where the single image method trained
with image-level view loss and perceptual loss. In the second model CON-IV,
AL is obtained by concatenating FR with FL. The last model W-G-CON-IV

uses our proposed feature aggregation block, which is equal to Stereo-FA-IV as
mentioned before. Here we consider warping-gating as an indivisible operation,
as the warping operation will inevitably introduce hollow areas in the occluded
region, and the gating operation is used to localize the hollow areas and guide a
feature aggregation process to fill the holes. All models above are trained with
the perceptual loss and view loss, using Fish, Mosaic, Candy and Dream as the
reference style images.

Tab. 4 shows the mean view loss of the 3 variant models. Comparing CON-IV

with SingleImage-IV, we can see that concatenating FR with FL does help the
decrease of the MVL, which demonstrates that the concatenated skip connection
is essential. Comparing W-G-CON-IV with CON-IV, W-G-CON-IV achieves
better performance. This is because that FR

r is aligned with FL along the channel
axis, which relieves the need of learning pixel correspondences.

In order to give an intuitive understanding of the gate maps, we visualize sev-
eral gate maps in Fig.8. Recalling that the Equation 2, the refined feature map
FR

r is a linear combination of the initial feature map FL and the warped feature
map W ′(FR), under the guidance of the gate map. For simplicity, we only illus-
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Table 4. MV L, MSL and MCL of three different feature aggregation blocks. Our
proposed feature aggregation block architecture achieves the smallest MV L and MCL,
indicating the best view consistency and content preservation.

Model SingleImage-IV CON-IV W-G-CON-IV

MSL 424 328 410
MVL 1121 1068 1028

MCL 485089 489555 481056

Fig. 8. Visualization of gate maps. The left and middle columns are two input stereo
pairs. The right column shows the left-view gate map generated by the gate sub-
network.

trate the gate maps for the left view. Generated gate maps are shown in the right
column. The black regions in the gate maps indicate the mismatching between
FL and W ′(FR). Here, the mismatching is caused by occlusion and inaccurate
disparity estimation. For the mismatched areas, the gate sub-network learns to
predict 0 values to enforce the refined feature map FR

r directly copy values from
FL to avoid inaccurately incorporating information from the occluded regions
in the right view.

5 Conclusion

In this paper, we proposed a novel dual path network to deal with style trans-
fer on stereoscopic images. While each view of an input stereo pair has been
processed in an individual path to transfer the style from a reference image, a
novel feature aggregation block was proposed to propagate the information from
one path to another. Multiple feature aggregation strategies were investigated
and compared to demonstrate the advantage of our proposed feature aggrega-
tion block. To coordinate the learning of both the paths for gaining better view
consistency, a multi-layer view loss was introduced to constrain the stylized out-
puts of both views to be consistent in multiple scales. The extensive experiments
demonstrate that our method is able to yield stylized results with better view
consistency than those achieved by the previous methods.
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