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Abstract. In this paper, we study the classification problem in which we
have access to easily obtainable surrogate for true labels, namely comple-
mentary labels, which specify classes that observations do not belong to.
Let Y and Ȳ be the true and complementary labels, respectively. We first
model the annotation of complementary labels via transition probabili-
ties P (Ȳ = i|Y = j), i 6= j ∈ {1, · · · , c}, where c is the number of classes.
Previous methods implicitly assume that P (Ȳ = i|Y = j), ∀i 6= j, are
identical, which is not true in practice because humans are biased toward
their own experience. For example, as shown in Figure 1, if an annotator
is more familiar with monkeys than prairie dogs when providing comple-
mentary labels for meerkats, she is more likely to employ “monkey” as a
complementary label. We therefore reason that the transition probabil-
ities will be different. In this paper, we propose a framework that con-
tributes three main innovations to learning with biased complementary
labels: (1) It estimates transition probabilities with no bias. (2) It pro-
vides a general method to modify traditional loss functions and extends
standard deep neural network classifiers to learn with biased complemen-
tary labels. (3) It theoretically ensures that the classifier learned with
complementary labels converges to the optimal one learned with true la-
bels. Comprehensive experiments on several benchmark datasets validate
the superiority of our method to current state-of-the-art methods.

Keywords: Multi-class classification, biased complementary labels, tran-
sition matrix, modified loss function

1 Introduction

Large-scale training datasets translate supervised learning from theories and
algorithms to practice, especially in deep supervised learning. One major as-
sumption that guarantees this successful translation is that data are accurately
labeled. However, collecting true labels for large-scale datasets is often expen-
sive, time-consuming, and sometimes impossible. For this reason, some weak
but cheap supervision information has been exploited to boost learning perfor-
mance. Such supervision includes side information [33], privileged information
[29], and weakly supervised information [15] based on semi-supervised data [37,
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Fig. 1. A comparison between true labels (top) and complementary labels (bottom).

9, 6], positive and unlabeled data [23], or noisy labeled data [19, 30, 10, 11, 4,
8]. In this paper, we study another weak supervision: the complementary label
which specifies a class that an object does not belong to. Complementary labels
are sometimes easily obtainable, especially when the class set is relatively large.
Given an observation in multi-class classification, identifying a class label that is
incorrect for the observation is often much easier than identifying the true label.

Complementary labels carry useful information and are widely used in our
daily lives: for example, to identify a language we do not know, we may say
“not English”; to categorize a new movie without any fighting, we may say “not
action”; and to recognize an image of a previous American president, we may
say “not Trump”. Ishida et al. [13] then proposed learning from examples with
only complementary labels by assuming that a complementary label is uniformly
selected from the c−1 classes other than the true label class (c > 2). Specifically,
they designed an unbiased estimator such that learning with complementary
labels was asymptotically consistent with learning with true labels.

Sometimes, annotators provide complementary labels based on both the con-
tent of observations and their own experience, leading to the biases in comple-
mentary labels. Thus, complementary labels are mostly non-uniformly selected
from the remaining c − 1 classes, some of which even have no chance of being
selected for certain cases. Regarding the bias gov-
erned by the observation content, let us take labeling
digits 0-9 as an example. Since digit 1 is much more
dissimilar to digit 3 than digit 8, the complementary
labels of “3” are more likely to be assigned with “1”
rather than “8”. Regarding the bias governed by an-
notators’ experience, taking our example above, we
can see that if one is more familiar with monkeys
than other animals, she may be more likely to use “monkey” as a complemen-
tary label.

Motivated by the cause of biases, we here model the biased procedure of
annotating complementary labels via probabilities P (Ȳ = i|Y = j), i 6= j ∈
{1, · · · , c}. Note that the assumption that a complementary label is uniformly
selected from the remaining c−1 classes implies P (Ȳ = i|Y = j) = 1/(c−1), i 6=
j ∈ {1, · · · , c}. However, in real applications, the probabilities should not be
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1/(c−1) and can differ vastly. How to estimate the probabilities is a key problem
for learning with complementary labels.

We therefore address the problem of learning with biased complementary la-
bels. For effective learning, we propose to estimate the probabilities P (Ȳ = i|Y =
j), i 6= j ∈ {1, · · · , c} without biases. Specifically, we prove that given a clear ob-
servation xj for the j-th class, i.e., the observation satisfying P (Y = j|xj) = 1,
which can be easily identified by the annotator, it holds that P (Ȳ = i|Y =
j) = P (Ȳ = i|xj), i ∈ {1, · · · , j − 1, j, · · · , c}. This implies that probabilities
P (Ȳ = i|Y = j), i 6= j ∈ {1, · · · , c} can be estimated without biases by learning
P (Ȳ = i|xj) from the examples with complementary labels. To obtain these
clear observations, we assume that a small set of easily distinguishable instances
(e.g., 10 instances per class) is usually not expensive to obtain.

Given the probabilities P (Ȳ |Y ), we modify traditional loss functions pro-
posed for learning with true labels so that the modifications can be employed
to efficiently learn with biased complementary labels. We also prove that by ex-
ploiting examples with complementary labels, the learned classifier converges to
the optimal one learned with true labels with a guaranteed rate. Moreover, we
also empirically show that the convergence of our method benefits more from
the biased setting than from the uniform assumption, meaning that we can use
a small training sample to achieve a high performance.

Comprehensive experiments are conducted on benchmark datasets including
UCI, MNIST, CIFAR, and Tiny ImageNet, which verifies that our method sig-
nificantly outperforms the state-of-the-art methods with accuracy gains of over
10%. We also compare the performance of classifiers learned with complemen-
tary labels to those learned with true labels. The results show that our method
almost attains the performance of learning with true labels in some situations.

2 Related Work

Learning with complementary labels. To the best of our knowledge, Ishida et
al. [13] is the first to study learning with complementary labels. They assumed
that the transition probabilities are identical and then proposed modifying tra-
ditional one-versus-all (OVA) and pairwise-comparison (PC) losses for learning
with complementary labels. The main differences between our method and [13]
are: (1) Our work is motivated by the fact that annotating complementary labels
are often affected by human biases. Thus, we study a different setting in which
transition probabilities are different. (2) In [13], modifying OVA and PC losses
is naturally suitable for the uniform setting and provides an unbiased estimator
for the expected risk of classification with true labels. In this paper, our method
can be generalized to many losses such as cross-entropy loss and directly pro-
vides an unbiased estimator for the risk minimizer. Due to these differences, [13]
often achieves promising performance in the uniform setting while our method
achieves good performance in both the uniform and non-uniform setting.

Learning with noisy labels. In the setting of label noise, transition probabilities
are introduced to statistically model the generation of noisy labels. In classifica-
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tion and transfer learning, methods [21, 18, 32, 35] employ transition probabilities
to modify loss functions such that they can be robust to noisy labels. Similar
strategies to modify deep neural networks by adding a transition layer have been
proposed in [26, 22]. However, this is the first time that this idea is applied to
the new problem of learning with biased complementary labels. Different from
label noise, here, all diagonal entries of the transition matrix are zeros and the
transition matrix sometimes may be not required to be invertible in empirical.

3 Problem Setup

In multi-class classification, let X ∈ R
d be the feature space and Y = [c] be the

label space, where d is the feature space dimension; [c] = {1, · · · , c}; and c > 2
is the number of classes. We assume that variables (X,Y, Ȳ ) are defined on the
space X ×Y ×Y with a joint probability measure P (X,Y, Ȳ ) (PXY Ȳ for short).

In practice, true labels are sometimes expensive but complementary labels are
cheap. This work thus studies the setting in which we have a large set of training
examples with biased complementary labels and a very small set of correctly
labeled examples. The latter is only used for estimating transition probabilities.
Our aim is to learn the optimal classifier with respect to the examples with true
labels by exploiting the examples with complementary labels.

For each example (x, y) ∈ X × Y, a complementary label ȳ is selected from
the complement set Y \ {y}. We assign a probability for each ȳ ∈ Y \ {y} to
indicate how likely it can be selected, i.e., P (Ȳ = ȳ|X = x, Y = y). In this paper,
we assume that Ȳ is independent of feature X conditioned on true label Y , i.e.,
P (Ȳ = ȳ|X = x, Y = y) = P (Ȳ = ȳ|Y = y). This assumption considers the
bias which depends only on the classes, e.g., if the annotator is not familiar with
the features in a specific class, she is likely to assign complementary labels that
she is more familiar with. We summarize all the probabilities into a transition
matrix Q ∈ R

c×c, where Qij = P (Ȳ = j|Y = i) and Qii = 0, ∀i, j ∈ [c]. Here,
Qij denotes the entry value in the i-th row and j-th column of Q. Note that
transition matrix is also widely exploited in Markov chains [7] and has many
applications in machine learning, such as learning with label noise [21, 26, 22].

If complementary labels are uniformly selected from the complement set,
then ∀i, j ∈ [c] and i 6= j, Qij = 1

c−1 . Previous work [13] has proven that the
optimal classifier can be found under the uniform assumption. Sometimes, this
is not true in practice due to human biases. Therefore, we focus on situations
in which Qij , ∀i 6= j, are different. We mainly study the following problems:
how to modify loss functions such that the classifier learned with these biased
complementary labels can converge to the optimal one learned with true labels;
the speed of the convergence; and how to estimate transition probabilities.

4 Methodology

In this section, we study how to learn with biased complementary labels. We first
review how to learn optimal classifiers from examples with true labels. Then,
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we modify loss functions for complementary labels and propose a deep learning
based model accordingly. Lastly, we theoretically prove that the classifier learned
by our method is consistent with the optimal classifier learned with true labels.

4.1 Learning with True Labels

The aim of multi-class classification is to learn a classifier f(x) that predicts a
label y for a given observation x. Typically, the classifier is of the following form:

f(X) = argmax
i∈[c]

gi(X), (1)

where g : X → R
c and gi(X) is the estimate of P (Y = i|X).

Various loss functions ℓ(f(X), Y ) have been proposed to measure the risk of
predicting f(X) for Y [1]. Formally, the expected risk is defined as.

R(f) = E(X,Y )∼PXY
[ℓ(f(X), Y )]. (2)

The optimal classifier is the one that minimizes the expected risk; that is,

f∗ = argmin
f∈F

R(f), (3)

where F is the space of f .
However, the distribution PXY is usually unknown. We then approximate

R(f) by using its empirical counterpart: Rn(f) = 1
n

∑n

i=1 ℓ(f(xi), yi), where
{(xi, yi)}1≤i≤n are i.i.d. examples drawn according to PXY .

Similarly, the optimal classifier is approximated by fn = argminf∈F Rn(f).

4.2 Learning with Complementary Labels

True labels, especially for large-scale datasets, are often laborious and expensive
to obtain. We thus study an easily obtainable surrogate; that is, complementary
labels. However, if we still use traditional loss functions ℓ when learning with
these complementary labels, similar to Eq.(1), we can only learn a mapping
q : X → Rc that tries to predict conditional probabilities P (Ȳ |X) and the
corresponding classifier that predicts a ȳ for a given observation x.

Therefore, we need to modify these loss functions such that the classifier
learned with biased complementary labels can converge to the optimal one
learned with true labels. Specifically, let ℓ̄ be the modified loss function. Then, the
expected and empirical risks with respect to complementary labels are defined as
R̄(f) = E(X,Ȳ )∼PXȲ

[ℓ̄(f(X), Ȳ )] and R̄n(f) =
1
n

∑n

i=1 ℓ̄(f(xi), ȳi)], respectively.
Here, {(xi, ȳi)}1≤i≤n are examples with complementary labels.

Denote f̄∗ and f̄n as the optimal solution obtained by minimizing R̄(f) and
R̄n(f), respectively. They are f̄

∗ = argminf∈F R̄(f) and f̄n = argminf∈F R̄n(f).

We hope that the modified loss function ℓ̄ can ensure that f̄n
n−→ f∗, which

implies that by learning with complementary labels, the classifier we obtain can
also approach to the optimal one defined in (3).
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Fig. 2. An overview of our method. We modify the deep neural network by adding a
layer that multiplies the output of the softmax function by Q⊤.

Recall that in transition matrix Q, Qij = P (Ȳ = j|Y = i) and Qii = P (Ȳ =
i|Y = i) = 0, ∀i ∈ [c]. We observe that P (Y |X) can be transferred to P (Ȳ |X)
by using the transition matrix Q; that is, ∀j ∈ [c],

P (Ȳ = j|X) =
∑

i 6=j

P (Ȳ = j, Y = i|X)

=
∑

i 6=j

P (Ȳ = j|Y = i,X)P (Y = i|X)

=
∑

i 6=j

P (Ȳ = j|Y = i)P (Y = i|X).

(4)

Intuitively, if qi(X) tries to predict the probability P (Ȳ = i|X), ∀i ∈ [c],
then Q−⊤q can predict the probability P (Y |X). To enable end-to-end learning
rather than transferring after training, we let

q(X) = Q⊤g(X), (5)

where g(X) is now an intermediate output, and f(X) = argmaxi∈[c] gi(X).
Then, the modified loss function ℓ̄ is

ℓ̄(f(X), Ȳ ) = ℓ(q(X), Ȳ ). (6)

In this way, if we can learn an optimal q∗ such that q∗i (X) = P (Ȳ = i|X), ∀i ∈ [c],
meanwhile, we can also find the optimal g∗ and the classifier f∗.

This loss modification method can be easily applied to deep learning. As
shown in Figure 2, we achieve this simply by adding a linear layer to the deep
neural network. This layer outputs q(X) by multiplying the output of the soft-
max function (i.e., g(X)) by the transposed transition matrix Q⊤. With suf-
ficient training examples with complementary labels, this deep neural network
often simultaneously learns good classifiers for both (X, Ȳ ) and (X,Y ).

Note that, in our modification, the forward process does not need to com-
pute Q−⊤. Even though the subsequent analysis for identification requires the
transition matrix to be invertible, sometimes, we may have no such requirement
in practice. We also show an example in the Supplementary Material that even
with singular transition matrices, high classification performance can also be
achieved if no column of Q is all-zero.
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5 Identification of the Optimal Classifier

In this section, we aim to prove that the proposed loss modification method
ensures the identifiability of the optimal classifier under a reasonable assumption:

Assumption 1 By minimizing the expected risk R(f), the optimal mapping g∗

satisfies g∗i (X) = P (Y = i|X), ∀i ∈ [c].

Based on Assumption 1, we can prove that f̄∗ = f∗ by the following theorem:

Theorem 1 Suppose that Q is invertible and Assumption 1 is satisfied, then

the minimizer f̄∗ of R̄(f) is also the minimizer f∗ of R(f); that is, f̄∗ = f∗.

Please find the detailed proof in the Supplementary Material. Given sufficient
training data with complementary labels, f̄n can converge to f̄∗, which can be
proved in the next section. According to Theorem 1, this also implies that f̄n
also converges to the optimal classifier f∗.

Examples of Loss Functions. The proof of Theorem 1 relies on Assumption 1.
However, for many loss functions, Assumption 1 can be provably satisfied. Here,
we take the cross-entropy loss as an example to demonstrate this fact. The cross-
entropy loss is widely used in deep supervised learning and is defined as

ℓ(f(X), Y ) = −
c
∑

i=1

1(Y = i) log(gi(X)), (7)

where 1(·) is an indicator function; that is, if the input statement is true, it
outputs 1; otherwise, 0. For the cross-entropy loss, we have the following lemma:

Lemma 1 Suppose ℓ is the cross-entropy loss and g(X) ∈ ∆c−1, where ∆c−1

refers to a standard simplex in R
c; that is, ∀x ∈ ∆c−1, xi ≥ 0, ∀i ∈ [c] and

∑c

i=1 xi = 1. By minimizing the expected risk R(f), we have g∗i (X) = P (Y =
i|X), ∀i ∈ [c].

Please see the detailed proof in the Supplementary Material. In fact, losses
such as square-error loss ℓ(f(X), Y ) =

∑c

j=1(1(Y = j) − gj(X))2, also satisfy
Assumption 1. The readers can prove it themselves using similar strategy. Com-
bined with Theorem 1, we can see, by applying the proposed method to loss
functions such as cross-entropy loss, we can prove that the optimal classifier f∗

can be found even when learning with biased complementary labels.

6 Convergence Analysis

In this section, we show an upper bound for the estimation error of our method.
This upper bound illustrates a convergence rate for the classifier learned with
complementary labels to the optimal one learned with true labels. Moreover,
with the derived bound, we can clearly see that the estimation error could further
benefit from the setting of biased complementary labels under mild conditions.
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Since f̄∗ = f∗, we have |f̄n − f∗| = |f̄n − f̄∗|. We will upper bound the error
|f̄n − f̄∗| via upper bounding R̄(f̄n)− R̄(f̄∗); that is, when R̄(f̄n)− R̄(f̄∗) → 0,
|f̄n − f̄∗| → 0. Specifically, it has been proven that

R̄(f̄n)− R̄(f̄∗) = R̄(f̄n)− R̄n(f̄n) + R̄n(f̄n)− R̄n(f̄
∗) + R̄n(f̄

∗)− R̄(f̄∗)

≤ R̄(f̄n)− R̄n(f̄n) + R̄n(f̄
∗)− R̄(f̄∗)

≤ 2 sup
f∈F

|R̄(f)− R̄n(f)|,
(8)

where the first inequality holds because R̄n(f̄n) − R̄n(f̄
∗) ≤ 0 and the error in

the last line is called the generalization error.
Let (X1, Ȳ1), · · · , (Xn, Ȳn) be independent variables. By employing the con-

centration inequality [3], the generalization error can be upper bounded by using
the method of Rademacher complexity [2].

Theorem 2 ([2]) Let the loss function be upper bounded by M . Then, for any

δ > 0, with the probability 1− δ, we have

sup
f∈F

|R̄(f)− R̄n(f)| ≤ 2Rn(ℓ̄ ◦ F) +M

√

log 1/δ

2n
, (9)

where Rn(ℓ̄◦F) = E
[

supf∈F
1
n

∑n

i=1 σiℓ̄(f(Xi), Ȳi)
]

is the Rademacher complex-

ity; {σ1, · · · , σn} are Rademacher variables uniformly distributed from {−1, 1}.
Before upper bounding Rn(ℓ̄◦F), we need to discuss the specific form of the

employed loss function ℓ̄. By exploiting the well-defined binary loss functions,
one-versus-all and pairwise-comparison loss functions [36] have been proposed
for multi-class learning. In this section, we discuss the modified loss function ℓ̄
defined by Eqs. (6) and (7), which can be rewritten as,

ℓ̄(f(X), Ȳ ) = −
c
∑

i=1

1(Ȳ = i) log
(

(Q⊤g)i(X)
)

= −
c
∑

i=1

1(Ȳ = i) log

(

∑c

j=1 Qji exp(hj(X))
∑c

k=1 exp(hk(X))

)

,

(10)

where (Q⊤g)i denotes the i-th entry of Q⊤g; h : X → R
c, hi(X) ∈ H, ∀i ∈ [c];

and gi(X) = exp(hi(X))∑
c

k=1
exp(hk(X)) .

Usually, the convergence rates of generalization bounds of multi-class learning
are at most O(c2/

√
n) with respect to c and n [13, 20]. To reduce the dependence

on c of our derived convergence rate, we rewrite R̄(f) as follows:

R̄(f) =

∫

X

c
∑

i=1

P (Ȳ = i)P (X|Ȳ = i)ℓ̄(f(X), Ȳ = i)dX

=

c
∑

i=1

P (Ȳ = i)

∫

X

P (X|Ȳ = i)ℓ̄(f(X), Ȳ = i)dX

=

c
∑

i=1

π̄iR̄i(f),

(11)
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where R̄i(f) = EX∼P (X|Ȳ=i)ℓ̄(f(X), Ȳ = i) and π̄i = P (Ȳ = i).
Similar to Theorem 2, we have the following theorem.

Theorem 3 Suppose π̄i = P (Ȳ = i) is given. Let the loss function be upper

bounded by M . Then, for any δ > 0, with the probability 1− cδ, we have

R̄(f̄n)− R̄(f̄∗) ≤ 2 sup
f∈F

|R̄(f)− R̄n(f)|

≤ 2

c
∑

i=1

π̄i sup
f∈F

|R̄i(f)− R̄i,ni
(f)|

≤ 2

c
∑

i=1

π̄i



2Rni
(ℓ̄ ◦ F) +M

√

log 1/δ

2ni





=
c
∑

i=1



4π̄iRni
(ℓ̄ ◦ F) + 2π̄iM

√

log 1/δ

2ni



 ,

(12)

where Rni
(ℓ̄ ◦ F) = E

[

supf∈F
1
ni

∑ni

j=1 σj ℓ̄(f(Xj), Ȳj = i)
]

and R̄i,ni
(f) is the

empirical counterpart of R̄i(f), and ni, i ∈ [c], represents the numbers of X
whose complementary labels are Ȳ = i.

Due to the fact that ℓ̄ is actually defined with respect to h rather than f , we
would like to bound the error by the Rademacher complexity of H. We observe
that the relationship between Rni

(ℓ̄ ◦ F) and Rni
(H) is:

Lemma 2 Let ℓ̄(f(X), Ȳ = i) = − log
(∑

c

k=1
Qki exp(hk(X))

∑
c

k=1
exp(hk(X))

)

and suppose that

hi(X) ∈ H, ∀i ∈ [c], we have Rni
(ℓ̄ ◦ F) ≤ cRni

(H).

The detailed proof can be found in the Supplementary Material. Combine
Theorem 3 and Lemma 2, we have the final result:

Corollary 1 Suppose π̄i = P (Ȳ = i) is given. Let the loss function be upper

bounded by M . Then, for any δ > 0, with the probability 1− cδ, we have

R̄(f̄n)− R̄(f̄∗) ≤
c
∑

i=1



4cπ̄iRni
(H) + 2π̄iM

√

log 1/δ

2ni



 . (13)

In current state-of-the-art methods [13], the convergence rate ofRn(ℓ̄◦F) is of
order O(c2/

√
n) with respect to c and n while our derived bound

∑c

i 4cπ̄iRni
(H)

is of order maxi∈[c]O(c/
√
ni). Since our error bound depends on ni, the bound

would be loose if ni (or π̄i) is small. However, if π̄i is balanced and ni is about
n/c, our convergence rate is of order O(c

√
c/
√
n), which is smaller than the error

bounds provided by previous methods if c is very large.
Remark. Theorem 3 and Corollary 1 aim to provide the proof of uniform

convergence for general losses and show how the convergence rate can benefit
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from the biased setting under mild conditions. Thus, assuming the loss is upper-
bounded is reasonable for many loss functions such as the square-error loss. If
the readers would like to derive specific error bound for the cross-entropy loss,
strategies in [31] can be employed. If we assume that the transition matrix Q
is invertible, we can derive similar results as those in Lemma 1-3 [31] for the
modified loss function, which can be finally deployed to derive generalization
error bound similar to Corollary 1.

7 Estimating Q

In the aforementioned method, transition matrix Q is assumed to be known,
which is not true. Here, we thus provide an efficient method to estimate Q.

When learning with complementary labels, we completely lose the informa-
tion of true labels. Without any auxiliary information, it is impossible to estimate
the transition matrix which is associated with the class priors of true labels. On
the other hand, although it is costly to annotate a very large-scale dataset, a
small set of easily distinguishable observations are assumed to be available in
practice. This assumption is also widely used in estimating transition probabili-
ties in label noise problem [28] and class priors in semi-supervised learning [34].
Therefore, in order to estimate Q, we manually assign true labels to 5 or 10
observations in each class. Since these selected observations are often easy to
classify, we further assume that they satisfy the anchor set condition [18]:

Assumption 2 (Anchor Set Condition) For each class y, there exists an

anchor set Sx|y ⊂ X such that P (Y = y|X = x) = 1 and P (Y = y′|X = x) = 0,
∀y′ ∈ Y \ {y},x ∈ Sx|y.

Here, Sx|y is a subset of features in class y. Given several observations in Sx|y, y ∈
[c], we are ready to estimate the transition matrix Q. According to Eq. (4),

P (Ȳ = ȳ|X) =
∑

y′ 6=ȳ

P (Ȳ = ȳ|Y = y′)P (Y = y′|X). (14)

Suppose x ∈ Sx|y, then P (Y = y|X = x) = 1 and P (Y = y′|X = x) =
0, ∀y′ ∈ Y \ {y}. We have

P (Ȳ = ȳ|X = x) = P (Ȳ = ȳ|Y = y). (15)

That is, the probabilities in Q can be obtained via P (Ȳ |X) given the ob-
servations in the anchor set of each class. Thus, we need only to estimate this
conditional probability, which has been proven to be achievable in Lemma 1.
In this paper, with the training sample {(xi, ȳi)}1≤i≤n, we estimate P (Ȳ |X) by
training a deep neural network with the softmax function and cross-entropy loss.
After obtaining these conditional probabilities, each probability P (Ȳ = ȳ|Y = y)
in the transition matrix can be estimated by averaging the conditional probabil-
ities P (Ȳ = ȳ|X = x) on the anchor data x in class y.



Learning with Biased Complementary Labels 11

8 Experiments

We evaluate our algorithm on several benchmark datasets including the UCI
datasets, USPS, MNIST [16], CIFAR10, CIFAR100 [14], and Tiny ImageNet4.
All our experiments are trained on neural networks. For USPS and UCI datasets,
we employ a one-hidden-layer neural network (d-3-c) [13]. For MNIST, LeNet-5
[17] is deployed, and ResNet [12] is exploited for the other datasets. All models
are implemented in PyTorch5.

UCI and USPS. We first evaluate our method on USPS and six UCI
datasets: WAVEFORM1, WAVEFORM2, SATIMAGE, PENDIGITS, DRIVE,
and LETTER, downloaded from the UCI machine learning repository. We apply
the same strategies of annotating complementary labels, standardization, vali-
dation, and optimization with those in [13]. The learning rate is chosen from
{10−5, · · · , 10−1}, weight decay from {10−7, 10−4, 10−1}, batch size 100.

For fair comparison in these experiments, we assume the transition proba-
bilities are identical and known as prior. Thus, no examples with true labels
are required here. All results are shown in Table 1. Our loss modification (LM)
method is compared to a partial label (PL) method [5], a multi-label (ML)
method [24], and “PC/S” (the pairwise-comparison formulation with sigmoid
loss), which achieved the best performance in [12]. We can see, “PC/S” achieves
very good performances. The relatively higher performance of our method may
be due to that our method provides an unbiased estimator for risk minimizer.

MNIST. MNIST is a handwritten digit dataset including 60,000 training
images and 10,000 test images from 10 classes. To evaluate the effectiveness of
our method, we consider the following three settings: (1) for each image in class
y, the complementary label is uniformly selected from Y \ {y} (“uniform”); (2)
the complementary label is non-uniformly selected, but each label in Y \{y} has
non-zero probability to be selected (“without0”); (3) the complementary label
is non-uniformly selected from a small subset of Y \ {y} (“with0”).

To generate complementary labels, we first give the probability of each com-
plementary label to be selected. In the “uniform” setting, P (Ȳ = j|Y = i) =
1
9 , ∀i 6= j. In the “without0” setting, for each class y, we first randomly split
Y \{y} to three subsets, each containing three elements. Then, for each comple-
mentary label in these three subsets, the probabilities are set to 0.6

3 , 0.3
3 , and 0.1

3 ,
respectively. In the “with0” setting, for each class y, we first randomly selected
three labels in Y \ {y}, and then randomly assign them with three probabili-
ties whose summation is 1. After Q is given, we assign complementary label to
each image based on these probabilities. Finally, we randomly set aside 10% of
training data as validation set.

In all experiments, the learning rate is fixed to 1e− 4; batch size 128; weight
decay 1e−4; maximum iterations 60,000; and stochastic gradient descend (SGD)
with momentum γ = 0.9 [27] is applied to optimize deep models. Note that, as
shown in [13] and previous experiments, [13] and our method have surpassed

4 The dataset is available at http://cs231n.stanford.edu/tiny-imagenet-200.zip
5 http://pytorch.org
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Table 1. Classification accuracy on USPS and UCI datasets: the means and standard
deviations of classification accuracy over 20 trials in percentages are reported. “#train”
is the number of training and validation examples in each class. “#test” is the number
of test examples in each class.

Dataset c d #train #test PC/S PL ML LM (ours)
WAVEFORM1 1 ∼ 3 21 1226 398 85.8 (0.5) 85.7 (0.9) 79.3 (4.8) 85.1 (0.6)
WAVEFORM2 1 ∼ 3 40 1227 408 84.7 (1.3) 84.6 (0.8) 74.9 (5.2) 85.5 (1.1)
SATIMAGE 1 ∼ 7 36 415 211 68.7 (5.4) 60.7 (3.7) 33.6 (6.2) 69.3 (3.6)

PENDIGITS

1 ∼ 5

16

719 336 87.0 (2.9) 76.2 (3.3) 44.7 (9.6) 92.7 (3.7)
6 ∼ 10 719 335 78.4 (4.6) 71.1 (3.3) 38.4 (9.6) 85.8 (1.3)
even # 719 336 90.8 (2.4) 76.8 (1.6) 43.8 (5.1) 90.0 (1.0)
odd # 719 335 76.0 (5.4) 67.4 (2.6) 40.2 (8.0) 86.5 (0.5)
1 ∼ 10 719 335 38.0 (4.3) 33.2 (3.8) 16.1 (4.6) 62.8 (5.6)

DRIVE

1 ∼ 5

48

3955 1326 89.1 (4.0) 77.7 (1.5) 31.1 (3.5) 93.3 (4.6)
6 ∼ 10 3923 1313 88.8 (1.8) 78.5 (2.6) 30.4 (7.2) 92.8 (0.9)
even # 3925 1283 81.8 (3.4) 63.9 (1.8) 29.7 (6.3) 84.3 (0.7)
odd # 3939 1278 85.4 (4.2) 74.9 (3.2) 27.6 (5.8) 85.9 (2.1)
1 ∼ 10 3925 1269 40.8 (4.3) 32.0 (4.1) 12.7 (3.1) 75.1 (3.2)

LETTER

1 ∼ 5

16

565 171 79.7 (5.4) 75.1 (4.4) 28.3 (10.4) 84.3 (1.5)
6 ∼ 10 550 178 76.2 (6.2) 66.8 (2.5) 34.0 (6.9) 84.4 (1.0)
11 ∼ 15 556 177 78.3 (4.1) 67.4 (3.4) 28.6 (5.0) 88.3 (1.9)
16 ∼ 20 550 184 77.2 (3.2) 68.4 (2.1) 32.7 (6.4) 85.2 (0.7)
21 ∼ 25 585 167 80.4 (4.2) 75.1 (1.9) 32.0 (5.7) 82.5 (1.0)
1 ∼ 25 550 167 5.1 (2.1) 5.0 (1.0) 5.2 (1.1) 7.0 (3.6)

USPS

1 ∼ 5

256

652 166 79.1 (3.1) 70.3 (3.2) 44.4 (8.9) 86.4 (4.5)
6 ∼ 10 542 147 69.5 (6.5) 66.1 (2.4) 37.3 (8.8) 88.1 (2.7)
even # 556 147 67.4 (5.4) 66.2 (2.3) 35.7 (6.6) 79.5 (5.4)
odd # 542 147 77.5 (4.5) 69.3 (3.1) 36.6 (7.5) 86.3 (3.1)
1 ∼ 10 542 127 30.7 (4.4) 26.0 (3.5) 13.3 (5.4) 37.2 (5.4)

Table 2. Classification accuracy on MNIST: the means and standard deviations of
classification accuracy over five trials in percentages are reported. “TL” denotes the
result of learning with true labels. “LM/T” and “LM/E” refer to our method with the
true Q and the estimated one, respectively.

Method Uniform Without0 With0

TL 99.12 99.12 99.12
PC/S 86.59± 3.99 76.03± 3.34 29.12± 1.94
LM/T 97.18± 0.45 97.65± 0.15 98.63± 0.05
LM/E 96.33± 0.31 97.04± 0.31 98.61± 0.05

baseline methods such as PL and ML. In the following experiments, we will not
again make comparisons with these baselines.

The results are shown in Table 2. The means and standard deviations of clas-
sification accuracy over five trials are reported. Note that the digit data features
are not too entangled, making it easier to learn a good classifier. However, we
can still see the differences in the performance caused by the change of settings
for annotating complementary labels. According to the results shown in Table
2, “PC/S” [13] works relatively well under the uniform assumption but the ac-
curacy deteriorates in other settings. Our method performs well in all settings.
It can also be seen that due to the accurate estimates of these probabilities,
“LM/E” with the estimated transition matrix Q is competitive with “LM/T”
which exploits the true one.
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Table 3. Classification accuracy on CIFAR10: the means and standard deviations of
classification accuracy over five trials in percentages are reported. “TL” denotes the
result of learning with true labels. “LM/T” and “LM/E” refer to our method with the
true Q and the estimated one, respectively.

Method Uniform Without0 With0

TL 90.78 90.78 90.78
PC/S 41.19± 0.04 42.97± 3.00 18.12± 1.45
LM/T 73.38± 1.06 78.80± 0.45 85.32± 1.11
LM/E 42.96± 0.76 70.56± 0.34 84.60± 0.14

CIFAR10. We evaluate our method on the CIFAR10 dataset under the
aforementioned three settings. CIFAR10 has totally 10 classes of tiny images,
which includes 50,000 training images and 10,000 test images. We leave out 10%
of the training data as validation set. In these experiments, ResNet-18 [12] is
deployed. We start with an initial learning rate 0.01 and divide it by 10 after
40 and 80 epochs. The weight decay is set to 5e− 4, and other settings are the
same as those for MNIST. Early stopping is applied to avoid overfitting.

We apply the same process as MNIST to generate complementary labels.
The results in Table 3 verify the effectiveness of our method. “PC/S” achieves
promising performance when complementary labels are uniformly selected, and
our method outperforms “PC/S” in other settings. In the “uniform” setting,
P (Ȳ |X) is not well estimated. As a result, the transition matrix is also poorly
estimated. “LM/E” thus performs relatively badly.

The results of our method under the “uniform” and “without0” settings
(shown in Table 3) are usually worse than that of “with0”. For a certain amount
of training images, the empirical results show that in the“uniform” and “with-
out0” setting, the proposed method converges at a slower rate than in the
“with0” setting. This phenomenon may be caused by the fact that the un-
certainty involved with the transition procedure in the “with0” setting is less
than that in “uniform” and “without0” settings, making it easier to learn in the
former setting. This phenomenon also indicates that, for images in each class,
annotators need not to assign all possible complementary labels, but can pro-
vide the labels following the criteria, i.e., each label in the label space should be
assigned as complementary label for images in at least one class. In this way, we
can reduce the number of training examples to achieve high performance.

CIFAR100. CIFAR100 also presents a collection of tiny images including
50,000 training images and 10,000 test images. But CIFAR100 has totally 100
classes, each with only 500 training images. Due to the label space being very
large and the number of training data being limited, in both “uniform” and
“without0” settings, few training data are assigned as j for images in each class
i, ∀i 6= j. Both the proposed method and “PC/S” cannot converge. Here, we only
conduct the experiments under the “with0” setting. To generate complementary
labels, for each class y, we randomly selected 5 labels from Y \ {y}, and assign
them with non-zero probabilities. Others have no chance to be selected.
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Table 4. Classification accuracy on CIFAR100 and Tiny ImageNet under the setting
“with0”: the means and standard deviations of classification accuracy over five trials in
percentages are reported. “TL” denotes the result of learning with true labels. “LM/T”
and “LM/E” refer to our method with the true Q and the estimated one, respectively.

Method CIFAR100 Tiny ImageNet

TL 69.55 63.26
PC/S 8.95± 1.47 N/A
LM/T 62.84± 0.30 52.71± 0.71
LM/E 60.27± 0.28 49.70± 0.78

In these experiments, ResNet-34 is deployed. Other experimental settings are
the same with those in CIFAR10. Results are shown in the second column of
Table 4. “PC/S” can hardly obtains a good classifier, but our method achieves
high accuracies that are comparable to learning with true labels.

Tiny ImageNet. Tiny ImageNet represents 200 classes with 500 images in
each class from ImageNet dataset [25]. Images are cropped to 64× 64. Detailed
information is lost during the down-sampling process, making it more difficult to
learn. ResNet-18 for ImageNet [12] is deployed. Instead of using the original first
convolutional layer with a 7 × 7 kernel and the subsequent max pooling layer,
we replace them with a convolutional layer with a 3× 3 kernel, stride=1, and no
padding. The initial learning rate is 0.1, divided by 10 after 20,000 and 40,000
iterations. The batch size is 256 and weight decay is 5e − 4. Other settings are
the same as CIFAR100. The experimental results are shown in the third column
of Table 4. We also only test our method under the setting “with0”. “PC/S”
cannot converge here, but our method still achieves promising performance.

9 Conclusion

We address the problem of learning with biased complementary labels. Specif-
ically, we consider the setting that the transition probabilities P (Ȳ = j|Y =
i), ∀i 6= j vary and most of them are zeros. We devise an effective method to
estimate the transition matrix given a small amount of data in the anchor set.
Based on the transition matrix, we proposed to modify traditional loss functions
such that learning with complementary labels can theoretically converge to the
optimal classifier learned from examples with true labels. Comprehensive exper-
iments on a wide range of datasets verify that the proposed method is superior
to the current state-of-the-art methods.
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