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Abstract. Visual Question Answering (VQA) requires integration of feature maps

with drastically different structures. Image descriptors have structures at mul-

tiple spatial scales, while lexical inputs inherently follow a temporal sequence

and naturally cluster into semantically different question types. A lot of previous

works use complex models to extract feature representations but neglect to use

high-level information summary such as question types in learning. In this work,

we propose Question Type-guided Attention (QTA). It utilizes the information

of question type to dynamically balance between bottom-up and top-down vi-

sual features, respectively extracted from ResNet and Faster R-CNN networks.

We experiment with multiple VQA architectures with extensive input ablation

studies over the TDIUC dataset and show that QTA systematically improves the

performance by more than 5% across multiple question type categories such as

“Activity Recognition”, “Utility” and “Counting” on TDIUC dataset compared to

the state-of-art. By adding QTA on the state-of-art model MCB, we achieve 3%

improvement in overall accuracy. Finally, we propose a multi-task extension to

predict question types which generalizes QTA to applications that lack question

type, with a minimal performance loss.

Keywords: Visual question answering, Attention, Question type, Feature selec-

tion, Multi-task

1 Introduction

The relative maturity and flexibility of deep learning allow us to build upon the suc-

cess of computer vision [17] and natural language [13, 20] to face new complex and

multimodal tasks. Visual Question Answering(VQA) [4] focus on providing a natu-

ral language answer given any image and any free-form natural language question. To

achieve this goal, information from multiple modalities must be integrated. Visual and

lexical inputs are first processed using specialized encoding modules and then inte-

grated through differentiable operators. Image features are usually extracted by convo-

lution neural networks [7], while recurrent neural networks [13, 26] are used to extract

⋆ Work partially done while the author was working at Amazon AI
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question features. Additionally, attention mechanism [30–32] forces the system to look

at informative regions in both text and vision. Attention weight is calculated from the

correlation between language and vision features and then is multiplied to the original

feature.

Previous works explore new features to represent vision and language. Pre-trained

ResNet [12] and VGG [24] are commonly used in VQA vision feature extraction.

The authors in [27] show that post-processing CNN with region-specific image fea-

tures [3] such as Faster R-CNN [22] can lead to an improvement of VQA performance.

Along with generating language feature from either sentence-level or word-level us-

ing LSTM [13] or word embedding, Lu et al. [19] propose to model the question from

word-level, phrase-level, and entire question-level in a hierarchical fashion.

Through extensive experimentation and ablation studies, we notice that the role of

“raw” visual features from ResNet and processed region-specific features from Faster

R-CNN is complementary and leads to improvement over different subsets of question

types. However, we also notice that trivial information in VQA dataset: question/answer

type is omitted in training. Generally, each sample in any VQA dataset contains one

image file, one natural language question/answer and sometimes answer type. A lot of

work use the answer type to analyze accuracy per type in result [4] but neglect to use it

during learning. TDIUC [15] is a recently released dataset that contains question type

for each sample. Compared to answer type, question type has less variety and is easier

to interpret when we only have the question.

The focus of this work is the development of an attention mechanism that exploits

high-level semantic information on the question type to guide the visual encoding pro-

cess. This procedure introduces information leakage between modalities before the clas-

sical integration phase that improves the performance on VQA task. Specifically, We

introduce a novel VQA architecture Question Type-guided Attention(QTA) that dy-

namically gates the contribution of ResNet and Faster R-CNN features based on the

question type. Our results with QTA allow us to integrate the information from multiple

visual sources and obtain gains across all question types. A general VQA network with

our QTA is shown in Figure 1.

Q: “What’s her 

mustache made of?”

Vision Feature Extractor

Text Feature Extractor Combine

Predictor A: “Banana”

Question Type:

“Subordinate Object 

Recognition”

Question Type Guided 

Attention

Fig. 1: General VQA network with QTA
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The contributions of this paper are:(1) We propose question type-guided attention

to balance between bottom-up and top-down visual features, which are respectively

extracted from ResNet and Faster R-CNN networks. Our results show that QTA sys-

tematically improves the performance by more than 5% across multiple question type

categories such as “Activity Recognition”, “Utility” and “Counting” on TDIUC dataset.

By adding QTA to the state-of-art model MCB, we achieve 3% improvement in over-

all accuracy. (2) We propose a multi-task extension that is trained to predict question

types from the lexical inputs during training time that do not require ground truth la-

bels during inference. We get more than 95% accuracy for the question type prediction

while keeping the VQA task accuracy almost same as before. (3) Our analysis reveals

some problems in the TDIUC VQA dataset. Though the “Absurd” question is intended

to help reduce bias, it contains too many similar questions, specifically, questions re-

garding color. This will mislead the machine to predict wrong question types. Our QTA

model gets 17% improvement on simple accuracy compared to the baseline in [15]

when we exclude absurd questions in training.

2 Related Works

VQA task is first proposed in [4]. It focuses on providing a natural language answer

given any image and any free-form natural language question. Collecting data and solv-

ing the task are equally challenging as they require the understanding of the joint rela-

tion between image and language without any bias.

Datasets VQA dataset v1 is first released by Antol et al. [4]. The dataset consists

of two subsets: real images and abstract scenes. However, the inherent structure of our

world is biased and it results in a biased dataset. In another word, a specific question

tends to have the same answer regardless of the image. For example, when people ask

about the color of the sky, the answer is most likely blue or black. It is unusual to

see the answer be yellow. This is the bottleneck when we give a yellow color sky and

ask the machine to answer it. Goyal et al. [10] release VQA dataset v2. This dataset

pairs the same question with similar images that lead to different answers to reduce the

sample bias. Agrawal et al. [2] also noticed that every question type has different prior

distributions of answers. Based on that they propose GVQA and new splits of the VQA

v1/v2. In the new split, the distribution of answers per question type is different in the

test data compared to the training data. Zhang et al. [33, 34] also propose a method

to reduce bias in abstract scenes dataset at question level. By extracting representative

word tuples from questions, they can identify and control the balance for each question.

Vizwiz [11] is another recently released dataset that uses pictures taken by blind people.

Some pictures are of poor quality, and the questions are spoken. These data collection

methods help reduce bias in the dataset.

Johnson et al. [14] introduce Compositional Language and Elementary Visual Rea-

soning (CLEVR) diagnostic dataset that focuses on reasoning. Strub et al. [25] propose

a two-player guessing game: guess a target in a given image with a sequence of ques-

tions and answers. This requires both visual question reasoning and spatial reasoning.

The Task Driven Image Understanding Challenge dataset(TDIUC) [15] contains a

total of over 1.6 million questions in 12 different types. It contains images and annota-
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tions from MSCOCO [18] and Visual genome [16]. The key difference between TDIUC

and the previous VQA v1/v2 dataset is the categorization of questions: Each question

belongs to one of the 12 categories. This allows a task-oriented evaluation such as per

question-type accuracies. They also include an “Absurd” question category in which

questions are irrelevant to the image contents to help balance the dataset.

Feature Selection VQA requires solving several tasks at once involving both visual

and textual inputs: visual perception, question understanding, and reasoning. Usually,

features are extracted respectively with convolutional neural networks [7] from the im-

age, and with recurrent neural networks [13, 26] from the text.

Pre-trained ResNet and VGG are commonly used in VQA vision feature extrac-

tion. The authors in [27] show that post-processing CNN with region-specific image

features [3] can lead to an improvement of VQA performance. Specifically, they use

pre-trained Faster R-CNN model to extract image features for VQA task. They won the

VQA challenge 2017.

On the language side, pre-trained word embeddings such as Word2Vec [20] are used

for text feature extraction. There is a discussion about the sufficiency of language input

for VQA task. Agrawal et al. [1] have shown that state-of-art VQA models converge to

the same answer even if only given half of the question compared to if given the whole

sentence.

Generic Methods Information of both modalities are used jointly through means of

combination, such as concatenation, product or sum. In [4], authors propose a baseline

that combines LSTM embedding of the question and CNN embedding of the image via

a point-wise multiplication followed by a multi-layer perceptron classifier.

Pooling Methods Pooling methods are widely used in visual tasks to combine in-

formation for various streams into one final feature representation. Common pooling

methods such as average pooling and max pooling bring the property of translation in-

variance and robustness to elastic distortions at the cost of spatial locality. Bilinear pool-

ing can preserve spatial information, which is performed with the outer product between

two feature maps. However, this operation entails high output dimension(O(MN) for

feature maps of dimension M and N ). This exponential growth with respect to the

number of feature maps renders it too costly to be applied to huge real image datasets.

There have been several proposals for new pooling techniques to address this problem:

– Count sketch [5] is applied as a feature hashing operator to avoid dimension ex-

panding in bilinear pooling. Given a vector a ∈ Rn, random hash function f ∈ Rn:

[n] → [b] and binary variable s ∈ Rn: [n] → ±1, the count sketch [5] operator

cs(a, h, s) ∈ Rb is:

cs(a, f, s)[j] =
∑

f [i]=j

s[i]a[i], j ∈ 1, · · · , b (1)

Gao et al. [9] use convolution layers from two different neural networks as the

local descriptor extractors of the image and combine them using count sketch. “α-

pooling” [23] allows the network to learn the pooling strategy: a continuous transi-

tion between linear and polynomial pooling. They show that higher α gives larger

gain for fine-grained image recognition tasks. However, as α goes up, the compu-

tation complexity increases in polynomial order.
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– Fukui et al. [8] use count sketch as a pooling method in VQA tasks and obtains

the best results on VQA dataset v1 in VQA challenge 2016. They compute count

sketch approximation of the visual and textual representation at each spatial loca-

tion. Given text feature v ∈ RL and image features I ∈ RC×H×W , Fukui et al. [8]

propose MCB as:

MCB(I[:, h, w]⊗ v)[t1, h, w]

= (cs(I[:, h, w], f, s) ⋆ cs(v, f, s))[t1, h, w]

= IFFT1(FFT1(cs(I[:, h, w], f, s))[t1, h, w] ◦ FFT1(cs(v, f, s))[t1])

h ∈ {1, · · ·H}, w ∈ {1, · · ·W}, t1 ∈ {1, · · · , b} (2)

⊗ denotes outer product. ◦ denotes element-wise product. ⋆ denotes convolution

operator. This procedure preserves spatial information in the image feature.

Attention Focusing on the objects in the image that are related to the question is the key

to understand the correlation between the image and the question. Attention mechanism

is used to address this problem. There are soft attention and hard attention [31] based

on whether the attention term/loss function is differentiable or not. Yang et al. [32]

and Xu et al. [30] propose word guided spatial attention specifically for VQA task.

Attention weight at each spatial location is calculated by the correlation between the

embedded question feature and the embedded visual features. The attended pixels are at

the maximum correlations. Wang et al. [28] explore mechanisms of triplet attention that

interact between the image, question and candidate answers based on image-question

pairs.

3 Question Type Guided Visual Attention

Question type is very important in predicting the answer regardless whether we have

the corresponding image or not. For example, questions starting with “how many” will

mostly lead to numerical answers. Agrawal et al. [1] have shown that state-of-art VQA

models converge to the same answer even if only given half of the question compared

to if given the whole sentence. Besides that, inspired by [27], we are curious about

combining bottom-up and top-down visual features in VQA task. To get a deep under-

standing of visual feature preference for different questions, we try to find an attention

mechanism between these two. Since question type is representing the question, we

propose Question Type-guided Attention(QTA).

Given several independent image features F1, F2, · · ·Fk, such as features from

ResNet, VGG or Faster R-CNN, we concatenate them as one image feature: F =
[F1, F2, · · ·Fk] ∈ RM . Assume there are N different question types, QTA is defined as

F ◦WQ, where Q ∈ RN is the one-hot encoding of the question type, and W ∈ RM×N

is the hidden weight. We can learn the weight by back propagation through the network.

In other words, we learn a question type embedding and use it as attention weight.

QTA can be used in both generic and complex pooling models. In Figure 2, we

show a simple concatenation model with question type as input. We describe it in detail
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Fig. 2: Concatenation model with QTA structure

for VQA task(CATL-QTAW in Section 4)

Fig. 3: Concatenation model with QTA

structure for multi-task(CATL-QTA-

MW in Section 4)

in Section 4. To fully exploit image features in different channels and preserve spa-

tial information, we also propose MCB with question type-guided image attention in

Figure 4.

One obvious limitation of QTA is that it requires question type label. In the real

world scenario, the question type for each question may not be available. In this case,

it is still possible to predict the question type from the text, and use it as input to the

QTA network. Thus, we propose a multi-task model that focuses on VQA task along

with the prediction of the question type in Figure 3. This model operates in the setting

where true question type is available only at training time. In Section 5, we also show

through experiment that it is a relatively easy task to predict the question type from

question text, and thus making our method generalizable to those VQA settings that

lack question type.

Fig. 4: MCB model with QTA structure(MCB-QTA in Section 4)
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4 Experiments

In this section, we describe the dataset in Section 4.1, evaluation metrics in Section 4.2,

model features in Section 4.3, and model structures are explained in Section 4.4.

4.1 Dataset

Our experiments are conducted on the Task Driven Image Understanding Challenge

dataset(TDIUC) [15], which contains over 1.6 million questions in 12 different types.

This dataset includes VQA v1 and Visual Genome, with a total of 122429 training

images and 57565 test images. The annotation sources are MSCOCO (VQA v1), Visual

genome annotations, and manual annotations. TDIUC introduces absurd questions that

force an algorithm to determine if a question is valid for a given image. There are

1115299 total training questions and 538543 total test questions. The total number of

samples is 3 times larger than that in VQA v1 dataset.

4.2 Evaluation Metrics

There are total 12 different question types in TDIUC dataset as we mentioned in Sec-

tion 2. We calculate the simple accuracy for each type separately and also report the

arithmetic and harmonic means across all per question-type(MPT) accuracies.

4.3 Feature Representation

Image feature We use the output of “pool” of a 152-layer ResNet as an image feature

baseline. The output dimension is 2048×14×14. Faster R-CNN [22] focuses on object

detection and classification. Teney et al. [27] use it to extract object-oriented features for

VQA dataset and show better performance compared to the ones using ResNet feature.

We fix the number of detected objects to be 36 and extract the image features based

on their pre-trained Faster R-CNN model. As a result, the extracted image feature is

a 36 × 2048 matrix. To fit in MCB model, which requires spatial representation, we

reshape it into a 6× 6× 2048 tensor.

Text feature We use common word embedding library: 300-dim Word2Vec [20]

as a pre-trained text feature: we sum over the word embeddings for all words in the

sentence. A two-layer LSTM is used as an end-to-end text feature extractor. We also

use the encoder of google neural machine translation(NMT) system [29] as a pre-trained

text feature and compare it with Word2Vec. The pre-trained NMT model is trained on

UN parallel corpus 1.0 in MXnet [6]. Its BLEU score is 34. The output dimension of

the encoder is 1024.

4.4 Models

Baseline models Baseline models are based on a one-layer MLP: A fully connected

network classifier with one hidden layer with ReLu non-linearity, followed by a softmax

layer. The input is a concatenation of image and text feature. There are 8192 units in

the hidden state.
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Table 1: Baseline models

Name Image feature Text feature Model

CAT1 ResNet/Faster R-CNN vector feature Skipthought/NMT/Word2Vec pre-trined feature MLP

CAT1L ResNet/Faster R-CNN vector feature End-to-end 2-layer LSTM’s last hidden state MLP

CATL
Concatenation of ResNet

End-to-end 2-layer LSTM’s last hidden state MLP
and Faster R-CNN vector features

CAT2
Concatenation of ResNet

NMT pre-trined feature MLP
and Faster R-CNN vector features

To compare different image and text feature, we have CAT1, CAT1L and CATL. To

check the complementarity of different features between ResNet and Faster R-CNN and

show how they perform differently across question types, we set up baseline CAT2. In

LSTM, the hidden state length is 1024. The word embedding dimension is 300. Detailed

definitions are in Table 1.

To further exam and explain our QTA proposal, we use more sophisticate feature

integration operators as a strong baseline to compare with. MCB-A, as we mentioned

in Section 2, is proposed in [8]. RAU [21] is a framework that combines the embed-

ding, attention and predicts operation together inside a recurrent network. We reference

results of these two models from [15].

QTA models From the baseline analysis, we realize that ResNet and Faster R-CNN

features are complementary to each other. Using question type as guidance for image

feature selection is the key to make image feature stronger. Therefore, we propose QTA

networks in MLP model(CATL-QTA) and MCB model(MCB-QTA). The out dimen-

sion of the count sketch in the MCB is 8000. The structures are in Figure 2, 4. The

descriptions are in Table 2.

To check whether the model benefits from the QTA mechanism or from added ques-

tion type information itself, we design a network that only uses question type embed-

ding without attention. CAT-QT and CATL-QT are the two proposed network using

Word2Vec and LSTM lexical features.

As mentions in Section 3, we propose a multi-task network for QTA in case we don’t

have question type label at inference. CATL-QTA-M is a multi-task model based on

CATL-QTA. The output of LSTM is connected to a one-layer MLP to predict question

type for the input question. The prediction result is then fed into QTA part through

argmax. The Multi-task MLP is in Figure 3.

5 Results and Analysis

We first focus in Sections 5.1 and 5.2 on results concerning the complementarity of

different features across question category types. For the visual domain, we explore the

use of Faster R-CNN and ResNet features, while for the lexical domain we use NMT,
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Table 2: QTA models

Name Image feature Text feature Model

CATL-QTA
QTA weighted pre-trained vector features

End-to-end 2-layer LSTM’s last hidden state MLP
from ResNet and Faster R-CNN

MCB-QTA
QTA weighted pre-trained spatial features

End-to-end 2-layer LSTM’s last hidden state MCB
from ResNet and Faster R-CNN

CAT-QT
Concatenation of ResNet Concatenation of Word2Vec pre-trined feature

MLP
and Faster R-CNN vector features and a 1024-dim question type embedding

CATL-QT
Concatenation of ResNet Concatenation of end-to-end 2-layer LSTM’s last

MLP
hidden state and Faster R-CNN vector features and a 1024-dim question type embedding

CATL-QTA-M
QTA weighted pre-trained spatial features

End-to-end 2-layer LSTM’s last hidden state Multi-task MLP
from ResNet and Faster R-CNN

LSTM and pre-trained Word2Vec features. We then analyze the effect of question type

both as input and with QTA in VQA tasks in Section 5.3. Finally, in the remaining

subsections, we extend the basic concatenation QTA model to MCB style pooling; in-

troduce question type as both input and output during training such that the network can

produce predicted question types during inference; and study more in depth the effect

of the question category “Absurd” on the overall model performance across categories.

5.1 Faster R-CNN and ResNet Features

Table 3 reports our extensive ablation analysis of simple concatenation models using

multiple visual and lexical feature sources. From the results in the second and third

columns, we see that overall the model with Faster R-CNN features outperform the one

using ResNet features when using NMT features. We show in column 4 that the features

sources are complementary, and their combination is better across most categories (in

bold) with respect to the single source models in columns 2 and 3. In columns 5,6; 7,8

and 9,10 we replicate the same comparison between ResNet and R-CNN features using

more sophisticate models to embed the lexical information. We reach more than 10 %

accuracy increase, from 69.53 % to 80.16 % using a simple concatenation model with

an accurate selection of the feature type.

5.2 Pre-trained and Jointly-trained Text Feature Extractors

The first four columns in Table 3 show the results of models with text features from

NMT. To fully explore the text feature extractor in VQA system, we substitute the NMT

pre-trained language feature extractor with a jointly-trained two layer LSTM model.

The improved performance of jointly-training text feature extractor can be appreciated

by comparing the results of the 1-4 and 5-10 columns in Table 3. For example, compar-

ing second column and fifth column in Table 3, we get 6% improvement using LSTM

while keeping image feature and network same.

We obtain the best model by concatenating the output of the LSTM and the pre-

trained NMT/Word2Vec feature, as shown in Table 3. It gives us 10% improvement for

“Utility and Affordances” when we look at the fifth and seventh column. We find the
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Table 3: Benchmark results of concatenation models on TDIUC dataset using different image

features and pre-trained language feature. 1: Use ResNet feature and SkipGram feature 2: Use

ResNet feature and NMT feature 3: Use Faster R-CNN feature and NMT feature 4: Use ResNet

feature and end-to-end LSTM feature 5: Use Faster R-CNN feature and end-to-end LSTM fea-

ture. N denotes that additional NMT embedding is concatenated to LSTM output. W denotes that

additional Word2Vec embedding is concatenated to LSTM output(Following tables also use the

same notation)

Columns 1 2 3 4 5 6 7 8 9 10

Accuracy(%) CAT11 [15] CAT12 CAT13 CAT2 CAT1L4 CAT1L5 CAT1L4N CAT1L5N CAT1L4W CAT1L5W

Scene Recognition 72.19 68.51 68.81 69.06 91.62 92.27 91.16 92.33 91.57 92.45

Sport Recognition 85.16 89.67 92.36 93.15 90.94 93.84 89.62 93.52 90.77 94.05

Color Attributes 43.69 32.90 34.35 34.99 45.62 49.43 44.07 47.78 47.33 49.47

Other Attributes 42.89 38.05 39.76 39.67 40.89 43.49 39.60 42.35 41.92 45.19

Activity Recognition 24.16 39.34 45.75 46.87 42.95 49.25 40.12 44.11 42.13 49.25

Positional Reasoning 25.15 25.63 27.16 28.02 26.22 29.35 24.17 27.50 25.72 28.59

Sub. Object Recognition 80.92 83.94 85.67 86.78 82.20 85.06 81.85 84.47 82.52 85.05

Absurd 96.96 94.98 94.77 95.82 90.87 87.10 95.38 93.28 93.59 91.95

Utility and Affordances 24.56 25.93 27.78 27.16 15.43 25.93 25.31 18.52 16.05 17.28

Object Presence 69.43 77.21 77.90 78.29 89.40 91.14 90.13 91.95 91.08 91.81

Counting 44.82 48.46 52.18 52.57 45.95 50.27 44.26 49.24 44.93 51.30

Sentiment Understanding 53.00 43.45 46.49 47.28 46.49 48.72 41.85 42.81 44.89 46.01

Overall (Arithmetic MPT) 55.25 55.67 57.57 58.31 59.05 62.15 58.96 60.66 59.38 61.80

Overall (Harmonic MPT) 44.13 45.37 47.99 48.44 44.09 51.66 46.84 46.84 44.42 47.70

Overall Accuracy 69.53 71.41 72.44 73.05 77.55 78.66 78.35 79.94 78.94 80.16

use of Word2Vec is better than NMT feature in last four columns in Table 3. We think

the better performance of Word2Vec with respect to the NMT encoder, might be due

to the more similar structure of single sentence samples of Word2Vec training set with

those from classical VQA dataset with respect to those used for training NMT models.
Accuracy(%) CATL CATL-QTA CATLW CATL-QTAW

Scene Recognition 93.18 93.45 93.31 93.80

Sport Recognition 94.69 95.45 94.96 95.55

Color Attributes 54.66 56.08 57.59 60.16

Other Attributes 48.52 50.30 52.25 54.36

Activity Recognition 53.36 58.43 54.59 60.10

Positional Reasoning 32.73 31.94 33.63 34.71

Sub. Object Recognition 86.56 86.76 86.52 86.98

Absurd 95.03 100.00 98.01 100.00

Utility and Affordances 29.01 23.46 29.01 31.48

Object Presence 93.34 93.48 94.13 94.55

Counting 50.08 49.93 52.97 53.25

Sentiment Understanding 56.23 56.87 62.62 64.38

Overall (Arithmetic MPT) 65.62 66.34 67.46 69.11

Overall (Harmonic MPT) 55.95 54.60 57.83 60.08

Overall Accuracy 82.23 83.62 83.92 85.03

Table 4: QTA in concatenation models

on TDIUC dataset

Fig. 5: Evaluation of different ways to utilize in-

formation from question type

5.3 QTA in concatenation models

We use QTA in concatenation models to study the effect of QTA. The framework is

in Figure 2. We compare the network using a weighted feature with the same network

using an unweighted concatenated image feature in Table 4. As we can see, the model
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using the weighted feature has more power than the one using the unweighted feature.

9 out of 12 categories get improved results. “Color” and “Activity Recognition” get

around 2% and 6% accuracy increases.

To ensure that the improvement is not because of the added question type informa-

tion but the attention mechanism using question type, we show the comparison of QTA

with QT in Figure 5. With same text feature and image feature and approximately same

number of parameters in the network, QTA is 3-5% better than QT.

We show the effect of QTA on image feature norms in Figure 6. By weighing the

image features by question type, we find that our model relies more on Faster R-CNN

features for “Absurd” question samples while it relies more on ResNet features for

“Color” questions.

Fig. 6: Effects of weighting by QTA. Top: raw feature norms, Middle: feature norms weighted

by QTA, Bottom: differences of norms after weighting vs before weighting. For color questions,

the feature norms shift towards ResNet features, while for absurd questions they shift towards

Faster-RCNN features.

The best setting we get in concatenation model is using a weighted image feature

concatenated with the output of the LSTM and Word2Vec feature(CATL-QTAW ). It

gets 5% improvement compared to complicated deep network such as RAU and MCB-

A in Table 5.

5.4 QTA in pooling models

To show how to combine QTA with more complicated feature integration operator,

we propose MCB-QTA structure. Even though MCB-QTA in Table 5 doesn’t win with

simple accuracy, it shows great performance in many categories such as “Object Recog-

nition” and “Counting”. Accuracy in “Utility and Affordances” is improved by 6%

compared to our CATL-QTA model. It gets 8% improvement in “Activity recognition”
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Table 5: Results of QTA models on TDIUC dataset compared to state-of-art models

Accuracy(%) CATL-QTAW MCB-QTA MCB-A [15] RAU [15]

Scene Recognition 93.80 93.56 93.06 93.96

Sport Recognition 95.55 95.70 92.77 93.47

Color Attributes 60.16 59.82 68.54 66.86

Other Attributes 54.36 54.06 56.72 56.49

Activity Recognition 60.10 60.55 52.35 51.60

Positional Reasoning 34.71 34.00 35.40 35.26

Sub. Object Recognition 86.98 87.00 85.54 86.11

Absurd 100.00 100.00 84.82 96.08

Utility and Affordances 31.48 37.04 35.09 31.58

Object Presence 94.55 94.34 93.64 94.38

Counting 53.25 53.99 51.01 48.43

Sentiment Understanding 64.38 65.65 66.25 60.09

Overall (Arithmetic MPT) 69.11 69.69 67.90 67.81

Overall (Harmonic MPT) 60.08 61.56 60.47 59.00

Overall Accuracy 85.03 84.97 81.86 84.26

compared to state-of-art model MCB-A and also gets the best Arithmetic and Harmonic

MPT value.

5.5 Multi-task analysis

In this part, we will discuss how we use QTA when we have questions without specific

question types. It is quite easy to predict the question type from the question itself.

We use a 2-layer LSTM followed by a classifier and the test accuracy is 96% after 9

epochs. The problem is whether we can predict the question type while keeping the

same performance for VQA task or not. As described in Figure 3, we use the predicted

question type as input of the QTA network in a multi-task setting. We get 84.33% test

simple accuracy for VQA task as shown in Table 9. When we compare it to MCB-A

or RAU in Table 5, though accuracy gets a little affected for most of the categories, we

still get 2% improvement in “Sports Recognition” and “Counting”.

We fine-tune our model on VQA v1 using a pre-trained multi-task model that was

trained on TDIUC. We use the question type predictor in the multi-task model as the

input of QTA. Our model’s performance is better than MCB in Table 6 with an approx-

imately same number of parameters in the network.

5.6 Findings on TDIUC dataset

To further analyze the effects of the question type prediction part in this multi-task

framework, we list the confusion matrix for the question type prediction results in Ta-

ble 7. “Color” and “Absurd” question type predictions are most often bi-directionally

confused. The reason for this is that among all absurd questions, more than 60% are

questions start with “What color”. To avoid this bias, we remove all absurd questions

and run our multi-task model again. In this setting, our question type prediction did

much better than before. Almost all categories get 99% accuracy as shown in Table 8.
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Table 6: Results of test-dev accuracy on VQA v1. Models are trained on the VQA v1 train split

and tested on test-dev

Accuracy(%)

Element-wise Sum [8] 56.50

Concatenation [8] 57.49

Concatenation + FC [8] 58.40

Element-wise Product [8] 58.57

Element-wise Product + FC [8] 56.44

MCB(2048 × 2048 → 16K) [8] 59.83

CATL-QTA-M + FC 60.32

We also compare our QTA models’ performance without absurd questions in Table 9.

In CATL-QTA network, removing absurd questions doesn’t help much because in test

we feed in the true question type labels. But it is useful when we consider the multi-

task model. From fourth and fifth columns, we see that without absurd questions, we

get improved performance among all categories. This is because we remove the absurd

questions that may mislead the network to predict “color” question type in the test.

Table 7: Confusion matrix for test question types prediction in CATL-QTA-M using TDIUC

dataset. 1. Other Attributes 2. Sentiment Understanding 3. Sports Recognition 4. Position Rea-

soning 5. Object Utilities/Affordances 6. Activity Recognition 7. Scene Classification 8. Color 9.

Object Recognition 10.Object Presence 11.Counting 12. Absurd

Target Predicted Acc(%)

1 2 3 4 5 6 7 8 9 10 11 12 95.66

1 77.76 0.00 0.89 3.20 0.00 0.08 0.42 1.15 0.12 0.00 0.00 16.38

2 0.80 60.51 1.77 8.83 0.00 2.25 2.57 0.00 1.44 0.96 0.16 20.71

3 0.31 0.00 73.08 0.37 0.00 0.17 0.00 0.03 0.02 0.00 0.01 26.01

4 2.95 0.02 0.01 89.52 0.00 0.01 0.02 0.19 1.88 0.03 0.03 5.35

5 12.50 0.63 3.12 45.62 0.00 0.00 3.12 0.00 11.25 0.00 0.00 23.75

6 0.79 0.00 14.56 1.76 0.00 13.18 0.00 0.00 2.21 0.00 0.07 67.43

7 0.04 0.00 0.04 0.40 0.00 0.01 99.40 0.02 0.00 0.00 0.06 0.03

8 0.32 0.00 0.18 0.13 0.00 0.00 0.00 86.10 0.00 0.00 0.00 13.28

9 0.01 0.00 0.00 0.31 0.00 0.00 0.00 0.00 98.96 0.01 0.00 0.71

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

11 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.02 0.05 99.90 0.00

12 0.35 0.00 0.18 0.41 0.00 0.03 0.00 3.18 0.40 0.00 0.00 95.46

6 Conclusion

We propose a question type-guided visual attention (QTA) network. We show empiri-

cally that with the question type information, models can balance between bottom-up

and top-down visual features and achieve state-of-the-art performance. Our results show

that QTA systematically improves the performance by more than 5% across multiple
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Table 8: Confusion matrix for test question types prediction in CATL-QTA-M using TDIUC

dataset without absurd questions. Numbers represent same categories as in Table 7

Target Predicted Acc(%)

1 2 3 4 5 6 7 8 9 10 11 12 99.50

1 98.39 0.00 0.07 0.15 0.00 0.13 0.08 0.63 0.55 0.00 0.00 N/A

2 0.16 84.03 3.67 0.00 0.00 3.35 5.59 0.00 0.48 0.00 2.72 N/A

3 0.00 0.08 97.31 0.00 0.00 2.37 0.01 0.00 0.10 0.02 0.11 N/A

4 1.01 0.00 0.00 98.07 0.00 0.01 0.00 0.51 0.41 0.00 0.00 N/A

5 8.64 3.70 14.81 0.00 0.00 59.26 7.41 1.23 4.94 0.00 0.00 N/A

6 0.45 0.15 31.42 0.00 0.00 67.39 0.04 0.04 0.45 0.00 0.07 N/A

7 0.02 0.03 0.00 0.00 0.00 0.03 99.86 0.02 0.00 0.00 0.04 N/A

8 0.06 0.00 0.00 0.13 0.00 0.04 0.07 99.70 0.00 0.00 0.00 N/A

9 0.06 0.00 0.13 0.01 0.00 0.02 0.00 0.00 99.76 0.01 0.00 N/A

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 N/A

11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 99.98 N/A

12 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 9: Results of test accuracy when question type is hidden with/without absurd questions

in training. We compare them with similar QTA models. * denotes training and testing without

absurd questions

CATL-QTAW CATLW∗ CATL-QTAW∗ CATL-QTA-M CATL-QTA-M∗ CAT11∗ [15]

Scene Recognition 93.80 93.46 93.62 93.74 93.82 72.75

Sport Recognition 95.55 94.97 95.47 94.80 95.31 89.40

Color Attributes 60.16 57.84 58.63 57.62 59.73 50.52

Other Attributes 54.36 53.90 53.44 52.05 56.17 51.47

Activity Recognition 60.10 57.38 59.43 53.13 58.61 48.55

Positional Reasoning 34.71 33.98 34.63 33.90 34.70 27.73

Sub. Object Recognition 86.98 86.62 86.74 86.89 86.80 81.66

Absurd 100.00 N/A N/A 98.57 N/A N/A

Utility and Affordances 31.48 27.78 34.57 24.07 35.19 30.99

Object Presence 94.55 93.87 94.22 94.57 94.60 69.50

Counting 53.25 52.33 52.20 53.59 55.30 44.84

Sentiment Understanding 64.38 64.06 65.81 60.06 61.31 59.94

Overall (Arithmetic MPT) 69.11 65.11 66.25 66.92 66.88 57.03

Overall (Harmonic MPT) 60.08 55.89 58.51 55.77 58.82 50.30

Simple Accuracy 85.03 79.79 80.13 84.33 80.95 63.30

question type categories such as “Activity Recognition”, “Utility” and “Counting” on

TDIUC dataset. We consider the case when we don’t have question type for test and

propose a multi-task model to overcome this limitation by adding question type predic-

tion task in the VQA task. We get around 95% accuracy for the question type prediction

while keeping the VQA task accuracy almost same as before.
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