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Abstract. In video captioning task, the best practice has been achieved by attention-

based models which associate salient visual components with sentences in the

video. However, existing study follows a common procedure which includes a

frame-level appearance modeling and motion modeling on equal interval frame

sampling, which may bring about redundant visual information, sensitivity to

content noise and unnecessary computation cost. We propose a plug-and-play

PickNet to perform informative frame picking in video captioning. Based on

a standard encoder-decoder framework, we develop a reinforcement-learning-

based procedure to train the network sequentially, where the reward of each

frame picking action is designed by maximizing visual diversity and minimiz-

ing discrepancy between generated caption and the ground-truth. The rewarded

candidate will be selected and the corresponding latent representation of encoder-

decoder will be updated for future trials. This procedure goes on until the end of

the video sequence. Consequently, a compact frame subset can be selected to rep-

resent the visual information and perform video captioning without performance

degradation. Experiment results show that our model can achieve competitive

performance across popular benchmarks while only 6∼8 frames are used.

1 Introduction

Human are born with the ability to identify useful information and filter redundant

information. In biology, this mechanism is called sensory gating [6], which describes

neurological processes of filtering out unnecessary stimuli in the brain from all possible

environmental stimuli, thus prevents an overload of redundant information in the higher

cortical centers of the brain. This cognitive mechanism is essentially consistent with a

huge body of researches in computer vision [13].

As one of the strong evidences practicing on visual sensory gating, attention is intro-

duced to identify the salient visual regions with high objectness and meaningful visual

patterns of an image [21, 48]. It has also been established on videos that contains con-

secutive image frames. Existing study follows a common procedure which includes a

frame-level appearance modeling and motion modeling on equal interval frame sam-

pling, say, every 3 frames or 5 frames [29]. Visual features and motion features are

⋆ Corresponding author.



2 Yangyu Chen, Shuhui Wang, Weigang Zhang and Qingming Huang

extracted on the selected frame subset one by one, and they are all fed into the learning

stage. Similar to image, the video attention is recognized as a spatial-temporal saliency

that identifies both salient objects and their motion trajectories [27]. It is also recognized

as the word-frame association learned by sparse coding [41] or gaze-guided attention

learning [45], which is a de-facto frame weighting mechanism. This mechanism also

benefits many downstream tasks such as visual captioning and visual question answer-

ing for image and video [20, 43, 12].

(a) Equally sampled 30 frames from a video

(b) Informative frames

Fig. 1: An illustration of the tempo-

ral redundancy in video. Video always

contains many redundant information.

The whole video can be represented by

a small portion of frames (b), while

equally sampled frames still contain re-

dundant information (a).
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Fig. 2: The best METEOR score on the

validation set of MSVD and MSR-VTT

when using different number of equally

sampled frames. The standard encoder-

decoder model is used to generate cap-

tions.

Despite of the success on bridging vision and language achieved by existing attention-

based methods, there still exists critical issues to be addressed as follows.

– Frame selection perspective. As shown in Figure 1(a), there are many frames with

duplicated and redundant visual appearance information selected with equal inter-

val frame sampling. This will also involve remarkable computation expenditures

and less performance gain as the information from the input is not appropriately

sampled. For example, it takes millions of floating point calculation to extract a

frame-level visual feature for a moderate-sized CNN model. Moreover, there is no

guarantee that all the frames selected by equal interval sampling contain meaning-

ful information, so it tends to be more sensitive to content noise such as motion

blur, occlusion and object zoom-out.

– Downstream video captioning task perspective. Previous attention-based mod-

els mostly identify the spatial layout of visual saliency, but the temporal redun-

dancy existing in neighboring frames remains unsolved as all the frames are taken

into consideration. This may lead to an unexpected information overload on the

visual-linguistic correlation analysis model. For example, the dense-captioning-

based strategy [27, 17, 14] can potentially describe images/videos in finer levels

of detail by captioning many visual regions within an image/video-clip. With an
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increasing number of frames, many highly similar visual regions will be gener-

ated and the problem will become prohibitive as the search space of sequence-to-

sequence association becomes extremely large. We have conducted a preliminary

study to investigate how many frames is enough for video captioning on two bench-

marks. As shown in Figure 2, using more frames may not always lead to better per-

formance, since sampling more frames may be prone to contain noisy information,

and makes the training procedure more difficult.

– Human perception perspective. The vision-to-language technique can be applied

to depict ambient information for human, such as describing the road conditions

through voice broadcast for drivers. Based on existing video captioning methods, a

naive way for generating such descriptions for endless visual streaming is to sam-

ple frames in every fixed time interval. However, it is problematic to determine

an appropriate interval. If the interval is too long, some useful information may

be missed and lead to wrong description. If the interval is too short, repeated de-

scriptions will be generated as the visual content may not change largely, which is

annoying for drivers as they focus on the change of surroundings. Therefore, it is

necessary to explore a more appropriate strategy to capture informative frames and

produce meaningful descriptions.

To deal with the above issues, we propose PickNet to perform informative frame

picking for video captioning. Specifically, the base model for visual-linguistic associ-

ation in video captioning is a standard encoder-decoder framework [2]. We develop

a reinforcement-learning-based procedure to train the network sequentially, where the

reward of each frame picking action is designed by considering both visual and tex-

tual cues. From visual perspective, we maximize the diversity between current picked

frame candidate and the selected frames. From textual perspective, we minimize the

discrepancy between the generated caption and the ground truth using current picked

candidate. The rewarded candidate will be selected and the corresponding latent rep-

resentation of encoder-decoder will be updated for future trials. This procedure goes

on until the end of the video sequence. Consequently, a compact frame subset can be

selected to represent the visual information and perform video captioning without per-

formance degradation.

To the best of our knowledge, this is the first study on online task-driven frame

selection for video captioning. Different from the previous work [46] that summarizing

the video before video captioning, our method selects frames under partially observed

settings and do not need any auxiliary annotation or information. It is very essential

for real-world applications, since the video summarization annotations are subjective

and expensive, and there is no trimmed video to summarize in real-world applications,

but only endless visual streams. In fact, our framework can go beyond the encoder-

decoder framework in video captioning task, and serves as a complementary building

block for other state-of-the-art solutions. It can also be adapted by other task-specific

objectives for video analysis. In summary, the merits of our PickNet include:

– Flexibility. We design a plug-and-play reinforcement-learning-based PickNet to

pick informative frames for video captioning. A compact frame subset can be se-

lected to represent the visual information and perform video captioning without

performance degradation.
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– Efficiency. The architecture can largely cut down the usage of convolution opera-

tions. It makes our method more applicable for real-world video processing.

– Effectiveness. Experiment shows that our model can achieve comparable or even

better performance compared to state-of-the-art while only a small number of frames

are used.

2 Related Works

2.1 Visual captioning

The visual captioning is the task translating visual contents into natural language.

Early to 2002, Kojima et al. [16] proposed the first video captioning system for describ-

ing human behavior. From then on, a series of image and video captioning studies have

been conducted. Early approaches tackle this problem using bottom-up paradigm [9,

18, 40, 8], which first generate descriptive words of an image by attribute learning and

object recognition, then combine them by language models which fit predicted words

to predefined sentence templates. With the development of neural networks and deep

learning, modern captioning systems are based on CNN, RNN and the encoder-decoder

architecture [35, 36].

An active branch of captioning is utilizing the attention mechanism to weigh the

input features. For image captioning, the mechanism is typically in the form of spatial

attention. Xu et al. [39] first introduced an attention-based model that automatically

learn to fix its gaze on salient objects while generating the corresponding words in the

output sequence. For video captioning, the temporal attention is added. Yao et al. [41]

took into account both the local and global temporal structure of videos to produce de-

scriptions, and their model is learned to automatically select the most relevant temporal

segments given the text-generating RNN. However, the attention-based methods, espe-

cially temporal attention, are operated on full observed condition, which is not suitable

in some real world applications, such as blind navigation. Our method do not require

the global information of videos, which is more effective in these applications.

2.2 Frame selection

Selecting informative video frames is the most studied in the field of video sum-

marization. This problem may be formulated as image searching. For example, Song

et al. [32] considered images related to the video title that can serve as a proxy for

important visual concepts, so they developed a co-archetypal analysis technique that

learns canonical visual concepts shared between video and images, and used it to sum-

marize videos. Other researchers use sparse learning to deal with this problem. Zhao et

al. [47] proposed to learn a dictionary from given video using group sparse coding, and

the summary video was then generated by combining segments that cannot be sparsely

reconstructed using the learned dictionary.

Some video analysis task cooperates with frame selection mechanism. For example,

in action detection, Yeung et al. [42] designed a policy network to directly predict the

temporal bounds of actions, which decreased the cost of processing the whole video,
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and improved the detection performance. However, the prediction made by this method

is in the form of normalized global position, which requires the knowledge of the video

length, making it unable to deal with real video streams. Different from the above meth-

ods, our model selects frames based on both semantic and visual information, and does

not need to know the global length of video.

3 Method

Our method can be viewed as inserting the play-and-plug PickNet into the stan-

dard encoder-decoder for video captioning. The PickNet sequentially picks informative

frames to generate a compact frame subset which properly represent the visual infor-

mation of input video. And the encoder-decoder uses this subset to generate sentence

description about the video.

3.1 Preliminary

Like most of video captioning methods, our model is built on the encoder-decoder-

based sentence generator. In this subsection, we briefly introduce this building block.

Fig. 3: The encode-decode procedure for

video captioning.

Pick!

Fig. 4: The PickNet uses the flattened dif-

ference gray-scale image as input and pro-

duces a Bernoulli distribution to indicate

picking the current frame or not.

Encoder. Given an input video, we use a recurrent video encoder which takes a se-

quence of visual features (x1,x2, . . . ,xn) as input and outputs a fixed size vector v

as the representation of this video. The encoder is built on top of a Long Short-Term

Memory (LSTM) [11] unit, which has been widely used for video encoding, since it is

known to properly deal with long range temporal dependencies. Different from vanilla

recurrent neural network unit, LSTM introduces a memory cell c which maintains the

history of the inputs observed up to a time-step. The update operations on memory cell

are controlled by input gate it that controls how the current input should be added into

memory cell, forget gate ft that controls what the current memory cell ct will forget

from the previous memory ct−1, and output gate ot that controls how the current mem-

ory cell should be passed as output. These gates all take the combination of the frame

feature xt and the previous hidden state ht−1 as input, and the sigmoid activation is

used to avoid gradient vanishing or exploding. The hidden state h and memory cell c
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are initialized to zero vector. And the last hidden state hT is used as the final encoded

video representation v.

Decoder and sentence generation. Once the representation of the video has been gen-

erated, the recurrent decoder can employ it to generate the corresponding description.

At every time-step of the decoding phase, the decoder unit uses the encoded vector v,

previous generated one-hot representation word wt−1 and previous internal state pt−1

as input, and outputs a new internal state pt. Like [2], our decoder unit is the Gated

Recurrent Unit (GRU) [5], a simplified version of LSTM, which is good at language

decoding. The output of GRU is modulated via two sigmoid gates: a reset gate rt which

determines how the previous internal state should be dropped to generate the next out-

puts, and an update gate zt which controls how much information of the previous in-

ternal state should be preserved. A softmax function is applied on pt to compute the

probability of producing certain word at current time-step:

pω(wt|wt−1,wt−2, ...,w1,v) = wT
t softmax(Wppt), (1)

where Wp is used to project the output of the decoder to the dictionary space and ω

denotes all parameters of the encoder-decoder. Also, the internal state p is initialized

to zero vector. We use the greedy decode routine to generate every word. It means that at

every time-step, we choose the word that has the maximal pω(wt|wt−1,wt−2, ...,w1,v)
as the current output word. Specifically, we use a special token <BOS> as w0 to start

the decoding, and when the decoder generates another special token <EOS>, the de-

coding procedure is terminated.

Fig. 5: A typical frame picking and encoding procedure of our framework. F denotes

PickNet. E is the encoder unit and v is the encoded video representation. The design

choice is the balance between processing time and computation cost. The system can

simultaneously extract convolutional features and decide whether to pick the frame or

not at each time-step. If it decides not to pick the frame at certain time-step, the convo-

lutional neural network can stop early to save computation cost.

3.2 Our approach

Architecture. The PickNet aims to select informative video content without knowing

the global information. It means that the pick decision can only be based on the current



Less Is More: Picking Informative Frames for Video Captioning 7

observation and the history, which makes it more difficult than video summarization

tasks. The more challenging issue is, we do not have supervision information to guide

the learning of PickNet in video captioning tasks. Therefore, we formulate the problem

as a reinforcement learning task, i.e., given an input image sequence sampled from a

video, the agent should select a subset of them under certain policy to retain video con-

tent as much as possible. Here, we use PickNet to produce the picking policy. Figure 4

shows the architecture of PickNet.

Considering the computation efficiency, we use a simple two-layer feedforward neu-

ral network as the prototype of PickNet. The network has two outputs, which indicate

the probabilities to pick or drop the current observed frame. We model the frame picking

process as the glance-and-compare operation. For each input frame zt, we first convert

the colored image into grayscale image, and then resize it into a smaller image gt, which

can be viewed as a “glance” of current frame. Then we subtract the current glance gt

by the glance of the last picked frame g̃, to get a grayscale difference image dt; this can

be seen as the “compare”. Finally we flatten the 2D grayscale difference image into a

1D fixed size vector, and feed it to PickNet to produce a Bernoulli distribution that the

pick decision is sampled from:

st = W2(max(W1vec(dt) + b1,0)) + b2 (2)

pθ(at|zt, g̃) ∼ softmax(st), (3)

where W∗ are learned weight matrices and b∗ are learned bias vectors.

During training, we use stochastic policy, i.e., the action is sampled according to

Equation (3). When testing, the policy becomes determined, hence the action with

higher probability is chosen. If the policy decides to pick the current frame, the frame

feature will be extracted by a pretrained CNN and embedded into a lower dimension,

then passed to the encoder unit, and the template will be updated: g̃← gt.

We force PickNet to pick the first frame, thus the encoder will always process at

least one frame, which makes the training procedure more robust. Figure 5 shows how

PickNet works with the encoder. It is worth noting that the input of PickNet can be of

any other forms, such as the difference between optical flow maps, which may handle

the motion information more properly.

Rewards. The design of rewards is very essential to reinforcement learning. For the

purpose of picking informative video frames, we consider two parts for the reward: the

language reward and visual diversity reward.

Language reward. First of all, the picked frames should contain rich semantic infor-

mation, which can be used to effectively generate language description. In the video

captioning task, it is natural to use the evaluated language metrics as the language re-

ward. Here, we choose CIDEr [33] score. Given a set of picked frames Vi for video vi
and a collection of human generated reference sentences Si = {sij}, the goal of CIDEr

is to measure the similarity of the machine generated sentence ci to a majority of how

most people describe the video. So the language reward rl is defined as:

rl(Vi, Si) = CIDEr(ci, Si) (4)
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Visual diversity reward. Also, we want the picked frames that have good diversity in

visual features. Using only language reward may miss some important visual informa-

tion, so we introduce the visual diversity reward rv . For all the selected frame features

{xk ∈ R
D}, we use the pairwise cosine distance to construct the visual diversity re-

ward:

rv(Vi) =
2

Np(Np − 1)

Np−1
∑

k=1

Np
∑

m>k

(1−
xT

k xm

∥xk∥2∥xm∥2
), (5)

where Np is the number of picked frames, ∥ · ∥2 is the 2-norm of a vector.

Picks limitation. If the number of picked frames is too large or too small, it may lead to

poor performances in either efficiency or effectiveness. So we assign a negative reward

to discourage this situations. Empirically, we set the minimum picked number Nmin

as 3, which stands for beginning, highlight and ending. The maximum picked number

Nmax is initially set as the 1

2
of total frame number, and will be shrunk down along with

the training process, until decreased to a minimum value τ .

In summary, we merge the two parts of reward, and the final reward can be written

as

r(Vi) =

{

λlrl(Vi, Si) + λvrv(Vi) if Nmin ≤ Np ≤ Nmax

R− otherwise,
(6)

where λ∗ is the weighting hyper-parameters and R− is the penalty.

3.3 Training

The training procedure is splitted into three stages. The first stage is to pretrain the

encoder-decoder. We call it supervision stage. In the second stage, we fix the encoder-

decoder and train PickNet by reinforcement learning. It is called reinforcement stage.

And the final stage is the joint training of PickNet and the encoder-decoder. We call it

adaptation stage. We use standard back-propagation to train the encoder-decoder, and

REINFORCE [37] to train PickNet.

Supervision stage. When training the encoder-decoder, traditional method maximizes

the likelihood of the next ground-truth word given previous ground-truth words using

back-propagation. However, this approach causes the exposure bias [25], which results

in error accumulation during generation at test time, since the model has never been

exposed to its own predictions. In order to alleviate this phenomenon, the schedule sam-

pling [3] procedure is used, which feeds back the model’s own predictions and slowly

increases the feedback probability during training. We use SGD with cross entropy loss

to train the encoder-decoder. Given the ground-truth sentences y = (y1,y2, . . . ,ym),
the loss is defined as:

LX(ω) = −

m
∑

t=1

log(pω(yt|yt−1,yt−2, . . .y1,v)), (7)

where pω(yt|yt−1,yt−2, . . .y1,v) is given by the parametric model in Equation (1).
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Reinforcement stage. In this stage, we fix the encoder-decoder and treat it as the envi-

ronment, which can produce language reward to reinforce PickNet. The goal of training

is to minimize the negative expected reward:

LR(θ) = −E [r(Vi)] = −Eas
∼pθ

[r(as)] , (8)

where θ denotes all parameters of PickNet, pθ is the learned policy parameterized by

Equation (3), and as = (as
1
, as

2
, . . . , asT ) is the action sequence, in which ast is the action

sampled from the learned policy at the time step t. s is a superscript to indicate a certain

sampling sequence. ast = 1 means frame t will be picked. The relation between Vi and

as is:

Vi = {xt|a
s
t = 1 ∧ xt ∈ vi}, (9)

i.e., Vi are the picked frames from input video vi following the action sequence as.

We train PickNet by using REINFORCE algorithm, which is based on the obser-

vation that the gradient of a non-differentiable expected reward can be computed as

follows:

∇θLR(θ) = −Eas
∼pθ

[r(as)∇θ log pθ(a
s)] . (10)

Using the chain rule, the gradient can be rewritten as:

∇θLR(θ) =
n
∑

t=1

∂LR(θ)

∂st

∂st

∂θ
=

n
∑

t=1

−Eas
∼pθ

r(as)(pθ(a
s
t )− 1as

t
)
∂st

∂θ
, (11)

where st is the input to the softmax function. In practice, the gradient can be approxi-

mated using a single Monte-Carlo sample as = (as
1
, as

2
, . . . , asn) from pθ:

∇θLR(θ) ≈ −

n
∑

t=1

r(as)(pθ(a
s
t )− 1as

t
)
∂st

∂θ
. (12)

When using REINFORCE to train the policy network, we need to estimate a baseline

reward b to diminish the variance of gradients. Here, the self-critical [26] strategy is

used to estimate b. In brief, the reward obtained by current model under inferencing

used at test stage, denoted as r(â), is treated as the baseline reward. Therefore, the final

gradient expression is:

∇θLR(θ) ≈ −(r(a
s)− r(â))

n
∑

t=1

(pθ(a
s
t )− 1as

t
)
∂st

∂θ
. (13)

Adaptation stage. After the first two stages, the encoder-decoder and PickNet are well

pretrained, but there exists a gap between them because the encoder-decoder use the

full video frames as input while PickNet just selects a portion of frames. So we need

a joint training stage to integrate this two parts together. However, the pick action is

not differentiable, so the gradients introduced by cross-entropy loss can not flow into

PickNet. Hence, we follow the approximate joint training scheme. In each iteration,

the forward pass generates frame picks which are treated just like fixed picks when

training the encoder-decoder, and the backward propagation and REINFORCE updates

are performed as usual. It acts like performing dropout in time sequence, which can

improve the versatility of the encoder-decoder.
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4 Experimental Setup

4.1 Datasets

We evaluate our model on two widely used video captioning benchmark datasets:

the Microsoft Video Description (MSVD) [4] and the MSR Video-to-Text (MSR-VTT) [38].

Microsoft Video Description (MSVD). The Microsoft Video Description is also known

as YoutubeClips. It contains 1,970 Youtube video clips, each labeled with around 40

English descriptions collected by Amazon Mechanical Turks. As done in previous

works [34], we split the dataset into three parts: the first 1,200 videos for training,

then the followed 100 videos for validation and the remaining 670 videos for test. This

dataset mainly contains short video clips with a single action, and the average duration

is about 9 seconds. So it is very suitable to use only a portion of frames to represent the

full video.

MSR Video-to-Text (MSR-VTT). The MSR Video-to-Text is a large-scale benchmark

for video captioning. It provides 10,000 video clips, and each video is annotated with

20 English descriptions and category tag. Thus, there are 200,000 video-caption pairs

in total. This dataset is collected from a commercial video search engine and so far it

covers the most comprehensive categories and diverse visual contents. Following the

original paper, we split the dataset in contiguous groups of videos by index number:

6,513 for training, 497 for validation and 2,990 for test.

4.2 Metrics

We employ four popular metrics for evaluation: BLEU [24], ROUGEL [19], ME-

TEOR [1] and CIDEr. As done in previous video captioning works, we use METEOR

and CIDEr as the main comparison metrics. In addition, Microsoft COCO evaluation

server has implemented these metrics and released evaluation functions1, so we directly

call such evaluation functions to test the performance of video captioning. Also, the

CIDEr reward is computed by these functions.

4.3 Video preprocessing

First, we sample equally-spaced 30 frames for every video, and resize them into

224×224 resolution. Then the images are encoded with the final convolutional layer

of ResNet152 [10], which results in a set of 2,048-dimensional vectors. Most video

captioning models use motion features to improve performance. However, we only use

the appearance features in our model, because extracting motion features is very time-

consuming, which deviates from our purpose that cutting down the computation cost for

video captioning, and the appearance feature is enough to represent video content when

the redundant or noisy frames are filtered by our PickNet.

1 https://github.com/tylin/coco-caption
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4.4 Text preprocessing

We tokenize the labeled sentences by converting all words to lowercases and then

utilizing the word tokenize function from NLTK toolbox to split sentences into words

and remove punctuation. Then, the word with frequency less than 3 is removed. As a

result, we obtain the vocabulary with 5,491 words from MSVD and 13,064 words from

MSR-VTT. For each dataset, we use the one-hot vector (1-of-N encoding, where N is

the size of vocabulary) to represent each word.

4.5 Implementation details

We use the validation set to tune some hyperparameters of our framework. The

learning rates for three training stages are set to 3 × 10−4, 3 × 10−4 and 1 × 10−4,

respectively. The training batchsize is 128 for MSVD and 256 for MSR-VTT, while

each stage is trained up to 50 epoches and the best model is used to initialize the next

stage. The minimum value of maximum picked frames τ is set to 7, and the penalty

R− is −1. To regularize the training and avoid over-fitting, we apply the well known

regularization technique Dropout with retain probability 0.5 on the input and output of

the encoding LSTMs and decoding GRUs. Embeddings for video features and words

have size 512, while the sizes of all recurrent hidden states are empirically set to 1,024.

For PickNet, the size of glance is 56×56, and the size of hidden layer is 1,024. The

Adam [15] optimizer is used to update all the parameters.

5 Results and Discussion

Ours: a cat is playing with a dog

GT: a dog is playing with a cat
Ours: a person is solving a rubik’s cube

GT: person playing with toy

Fig. 6: Example results on MSVD (left) and MSR-VTT (right). The green boxes indi-

cate picked frames. (Best viewed in color and zoom-in. Frames are organized from left

to right, then top to bottom in temporal order. )

Figure 6 gives some example results on the test sets of two datasets. As it can be

seen, our PickNet can select informative frames, so the rest of our model can use these

selected frames to generate reasonable descriptions. In short, two characteristics of

picked frames can be found. The first characteristic is that the picked frames are concise
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Model BLEU4 ROUGE-L METEOR CIDEr Time

Previous Work

LSTM-E [23] 45.3 - 31.0 - 5x

p-RNN [44] 49.9 - 32.6 65.8 5x

HRNE [22] 43.8 - 33.1 - 33x

BA [2] 42.5 - 32.4 63.5 12x

Baseline Models

Full 44.8 68.5 31.6 69.4 5x

Random 35.6 64.5 28.4 49.2 2.5x

k-means (k=6) 45.2 68.5 32.4 70.9 1x

Hecate [31] 43.2 67.4 31.7 68.8 1x

Our Models

PickNet (V) 46.3 69.3 32.3 75.1 1x

PickNet (L) 49.9 69.3 32.9 74.7 1x

PickNet (V+L) 52.3 69.6 33.3 76.5 1x

Table 1: Experiment results on MSVD. All

values are reported as percentage(%). L denotes

using language reward and V denotes using vi-

sual diversity reward. k is set to the average

number of picks N̄p on MSVD. (N̄p ≈ 6)

Model BLEU4 ROUGE-L METEOR CIDEr Time

Previous Work

ruc-uva [7] 38.7 58.7 26.9 45.9 4.5x

Aalto [28] 39.8 59.8 26.9 45.7 4.5x

DenseVidCap [27] 41.4 61.1 28.3 48.9 10.5x

MS-RNN [30] 39.8 59.3 26.1 40.9 10x

Baseline Models

Full 36.8 59.0 26.7 41.2 3.8x

Random 31.3 55.7 25.2 32.6 1.9x

k-means (k=8) 37.8 59.1 26.9 41.4 1x

Hecate [31] 37.3 59.1 26.6 40.8 1x

Our Models

PickNet (V) 36.9 58.9 26.8 40.4 1x

PickNet (L) 37.3 58.9 27.0 41.9 1x

PickNet (V+L) 39.4 59.7 27.3 42.3 1x

PickNet (V+L+C) 41.3 59.8 27.7 44.1 1x

Table 2: Experiment results on MSR-VTT. All

values are reported as percentage(%). C denotes

using the provided category information. k is

set to the average number of picks N̄p on MSR-

VTT. (N̄p ≈ 8)

and highly related to the generated descriptions, and the second one is that the adjacent

frames may be picked to represent action. In order to demonstrate the effectiveness of

our framework, we compare our approach with some state-of-the-art methods on the

two datasets, and analyze the learned picks of PickNet in consequent sections.

5.1 Comparison with the state-of-the-arts

We compare our approach on MSVD with four state-of-the-art approaches for video

captioning: LSTM-E [23], p-RNN [44], HRNE [22] and BA [2]. LSTM-E uses a visual-

semantic embedding to generate better captions. p-RNN use both temporal and spatial

attention. BA uses a hierarchical encoder while HRNE uses a hierarchical decoder to

describe videos. All of these methods use motion features (C3D or optical flow) and ex-

tract visual features frame by frame. Besides, we report the performance of our baseline

models, which include using all the sampled frames, and using some straightforward

picking strategies. In order to compare our PickNet with general picking policies, we

conduct trials that pick frames by randomly selecting and k-means clustering, respec-

tively. Specially, to compare with video summarization methods, we choose Hecate [31]

to produce frame level summarization and use it to generate captions. For analyzing the

effect of different rewards, we conduct some ablation studies on them. As it can be no-

ticed in Table 1, our method improves plain techniques and achieves the state-of-the-art

performance on MSVD. This result outperforms the most recent state-of-the-art method

by a considerable margin of 76.5−65.8
65.8

≈ 16.3% on the CIDEr metric. Further, we try

to compare the time efficiency among these approaches. However, most of state-of-the-

art methods do not release executable codes, so the accurate performance may not be

available. Instead, we estimate the running time by the complexity of visual feature ex-

tractors and the number of processed frames. Thanks to the PickNet, our captioning

model is 5∼33 times faster than other methods.
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(b) Distribution of the position of picks.

Fig. 7: Statistics on the behavior of our PickNet.

On MSR-VTT, we compare four state-of-the-art approaches: ruc-uva [7], Aalto [28],

DenseVidCap [27] and MS-RNN [30]. ruc-uva incorporates the encoder-decoder with

two new stages called early embedding which enriches input with tag embeddings, and

late reranking which re-scores generated sentences in terms of their relevance to a spe-

cific video. Aalto first trains two models which are separately based on attribute and mo-

tion features, and then trains a evaluator to choose the best candidate generated by the

two captioning model. DenseVidCap generates multiple sentences with regard to video

segments and uses a winner-take-all scheme to produce the final description. MS-RNN

uses a multi-modal LSTM to model the uncertainty in videos to generate diverse cap-

tions. Compared with these methods, our method can be simply trained in end-to-end

fashion, and does not rely upon any auxiliary information. The performance of these ap-

proaches and that of our solution is reported in Table 2. We observe that our approach is

able to achieve competitive result even without utilizing attribute information, while

other methods take advantage of attributes and auxiliary information sources. Also, our

model is the fastest among the compared methods. For fairly demonstrating the effec-

tiveness of our method, we embed the provided category information into our language

model, and better accuracy can be achieved (PickNet (V+L+C) in Table 2). It is also

worth noting that the PickNet can be easily integrated with the compared methods,

since none of them incorporated with frame selection algorithm. For example, Dense-

VidCap generates region-sequence candidates based on equally sampled frames. It can

alternatively utilize PickNet to reduce the time for generating candidates by cutting

down the number of selected frames.

5.2 Analysis of learned picks
We collect statistics on the properties of our PickNet. Figure 7 shows the distri-

butions of the number and position of picked frames on the test sets of MSVD and

MSR-VTT. As observed in Figure 7(a), in the vast majority of the videos, less than 10

frames are picked. It implies that in most case only 10

30
≈ 33.3% frames are necessary

to be encoded for captioning videos, which can largely reduce the computation cost.

Specifically, the average number of picks is around 6 for MSVD and 8 for MSR-VTT.

Looking at the distributions of position of picks in Figure 7(b), we observe a pattern
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of power law distribution, i.e., the probability of picking a frame is reduced as time

goes by. It is reasonable since most videos are single-shot and the anterior frames are

sufficient to represent the whole video.

5.3 Captioning for streaming video

a cat is playing → a rabbit is playing → a rabbit is being petted

→ a person is petting a rabbit ×3

Fig. 8: An example of online video captioning.

One of the advantage of our method is that it can be applied to streaming video. Dif-

ferent from offline video captioning, captioning for streaming video requires the model

to tackle with unbounded video and generate descriptions immediately when the visual

information has changed, which meets the demand of practical applications. For this

online setting, we first sample frames at 1fps, and then sequentially feed the sampled

frames to PickNet. If certain frame is picked, the pretrained CNN will be used to ex-

tract visual features of this frame. After that, the encoder will receive this feature, and

produce a new encoded representation of the video stream up to current time. Finally,

the decoder will generate a description based on the encoded representation. Figure 8

demonstrates an example of online video captioning with the picked frames and cor-

responding descriptions. As it is shown, the descriptions will be more appropriate and

more determined as the informative frames are picked.

6 Conclusion

In this work, we design a plug-and-play reinforcement-learning-based PickNet to

select informative frames for the task of video captioning, which achieves promising

performance on effectiveness, efficiency and flexibility on popular benchmarks. This

architecture can largely cut down the usage of convolution operations by picking only

6∼8 frames for a video clip, while other video analysis methods usually require more

than 40 frames. This property makes our method more applicable for real-world video

processing. The proposed PickNet has a good flexibility and could be potentially em-

ployed to other video-related applications, such as video classification and action de-

tection, which will be further addressed in our future work.
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