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Abstract. Existing video prediction methods mainly rely on observing
multiple historical frames or focus on predicting the next one-frame. In
this work, we study the problem of generating consecutive multiple fu-
ture frames by observing one single still image only. We formulate the
multi-frame prediction task as a multiple time step flow (multi-flow) pre-
diction phase followed by a flow-to-frame synthesis phase. The multi-flow
prediction is modeled in a variational probabilistic manner with spatial-
temporal relationships learned through 3D convolutions. The flow-to-
frame synthesis is modeled as a generative process in order to keep the
predicted results lying closer to the manifold shape of real video sequence.
Such a two-phase design prevents the model from directly looking at the
high-dimensional pixel space of the frame sequence and is demonstrated
to be more effective in predicting better and diverse results. Extensive
experimental results on videos with different types of motion show that
the proposed algorithm performs favorably against existing methods in
terms of quality, diversity and human perceptual evaluation.

Keywords: Future prediction, conditional variational autoencoder, 3D
convolutions.

1 Introduction

Part of our visual world constantly experiences situations that require us to
forecast what will happen over time by observing one still image from a single
moment. Studies in neuroscience show that this preplay activity might constitute
an automatic prediction mechanism in human visual cortex [1]. Given the great
progress in artificial intelligence, researchers also begin to let machines learn
to perform such a predictive activity for various applications. For example in
Figure 1(top), from a snapshot by the surveillance camera, the system is expected
to predict the man’s next action which could be used for safety precautions.
Another application in computational photography is turning still images into
vivid cinemagraphs for aesthetic effects, as shown in Figure 1(bottom).

In this work, we mainly study how to generate pixel-level future frames in
multiple time steps given one still image. A number of existing prediction mod-
els [2,3,4,5] are under the assumption of observing a short video sequence (>1
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Fig. 1. Multi-step future sequences generated by our algorithm (t=1∼8) conditioned
on one single still image (t=0). Images are of size 128×128.

frame). Since multiple historical frames explicitly exhibit obvious motion cues,
most of them use deterministic models to render a fixed future sequence. In con-
trast, our single-image based prediction task, without any motion information
provided, implies that there are obvious uncertainties existed in both spatial
and temporal domains. Therefore we propose a probabilistic model based on a
conditional variational autoencoder (cVAE) to model the uncertainty. Our prob-
abilistic model has two unique features. First, it is a 3D-cVAE model, i.e., the
autoencoder is designed in a spatial-temporal architecture with 3D convolution
layers. The 3D convolutional layer [6], which takes a volume as input, is able
to capture correlations between the spatial and temporal dimension of signals,
thereby rendering distinctive spatial-temporal features for better predictions.
Second, the output of our model is optical flows which characterize the spatial
layout of how pixels are going to move step by step. Different from other meth-
ods that predict trajectories [7], frame differences [8] or frame pixels [5], the flow
is a more natural and general representation of motions. It serves as a relatively
low-dimensional reflection of high-level structures and can be obtained in an
unsupervised manner.

With the predicted flows, we next formulate the full frame synthesis as a
generation problem. Due to the existence of occlusions, flow-based pixel-copying
operations (e.g., warping) are obviously ineffective here. The model should be
capable of “imagining” the appearance of future frames and removing the un-
necessary parts in the previous frame at the same time. Therefore we propose a
generative model Flow2rgb to generate pixel-level future frames. Such a model
is non-trivial and is demonstrated to be effective in keeping the generated se-
quence staying close to the manifold of real sequences (Figure 5). Overall, we
formulate the multi-frame prediction task as a multiple time step flow predic-
tion phase followed by a flow-to-frame generation phase. Such a two-phase design
prevents the model from directly looking at the high-dimensional pixel space of
the frame sequence and is demonstrated to be more effective in predicting better
results. During the testing, by drawing different samples from the learned latent
distribution, our approach can also predict diverse future sequences.

The main contributions of this work are summarized as follows:
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– We propose a spatial-temporal conditional VAE model (3D-cVAE) to predict
future flows in multiple time steps. The diversity in predictions is realized
by drawing different samples from the learned distribution.

– We present a generative model that learns to generate the pixel-level ap-
pearance of future frames based on predicted flows.

– We demonstrate the effectiveness of our method for predicting sequences
that contain both articulated (e.g., humans) objects and dynamic textures
(e.g., clouds).

2 Related Work

Action prediction. The macroscopic analysis of prediction based on the given
frame(s) can be predicting what event is going to happen [9,10,11], trajectory
paths [12], or recognizing the type of human activities [13,14]. Some of early
methods are supervised, requiring labels (e.g., bounding boxes) of the moving
object. Later approaches [14] realize the unsupervised way of prediction by re-
lying on the context of scenes. However, these approaches usually only provide
coarse predictions of how the future will evolve and are unable to tell richer
information except for a action (or event) label.

Pixel-level frame prediction. Recent prediction methods move to the mi-
crocosmic analysis of more detailed information in the future. This is directly
reflected by requiring the pixel-level generation of future frames in multiple time
steps. With the development of deep neural networks, especially when recur-
sive modules are extensively used, predicting realistic future frames has being
dominated. Much progress has been made in the generated quality of future out-
puts by designing different network structures [15,16,2,17,18] or using different
learning techniques, including adversarial loss [19,20], motion/content separa-
tion [4,21,5], and transformation parameters [22,23].

Our work also aims at accurate frame predictions but the specific setting is
to model the uncertainties of multi-frame prediction given a single still image as
input. In terms of multi-frame predictions conditioning on still images, closest
work to ours are [24,25]. However, [24] only predicts the pose information and the
proposed model is deterministic. The work in [25] also estimates poses first and
then use an image-analogy strategy to generate frames. But their pose generation
step relies on observing multiple frames. Moreover, both approaches employ the
recursive module (e.g., recurrent neural networks) for consecutive predictions
which may overemphasize on learning the temporal information only. Instead,
we use the 3D convolutional layer [6] which takes a volume as input. Since both
spatial and temporal information are encoded together, the 3D convolution can
generally capture correlations between the spatial and temporal dimension of
signals, thereby rendering distinctive spatial-temporal features [6]. In addition,
both [24,25] focus on human dynamics while our work targets on both articulated
objects and dynamic textures.

In terms of modeling future uncertainties, two methods [8,7] are closely re-
lated. However, Xue et al. [8] only model the uncertainty in the next one-step
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Fig. 2. Architecture of the proposed multi-step prediction network. It consists of a 3D-
cVAE (left) for predicting consecutive flows and a Flow2rgb model to generate future
frame pixels (right). During the testing, the encoder (blue rectangle) of 3D-cVAE is no
longer used and we directly sample points from the distribution for predictions.

prediction. If we iteratively run the one-step prediction model for multi-step pre-
dictions, the frame quality will degrade fast through error accumulations, due
to the lack of temporal relationships modeling between frames. Though Walker
et al. [7] could keep forecasting over the course of one second, instead of pre-
dicting real future frames, it only predicts the dense trajectory of pixels. Also
such a trajectory-supervised modeling requires laborious human labeling. Dif-
ferent from these methods, our approach integrates the multi-frame prediction
and uncertainty modeling in one model.

Dynamic textures. The above-mentioned methods mainly focus on the move-
ment of articulated objects (e.g., human). In contrast, dynamic textures often
exhibit more randomness in the movement of texture elements. Both traditional
methods based on linear dynamical systems [26,27] and neural network based
methods [28] require learning a model for each sequence example. Different from
those methods, we collect a large number of dynamic texture video data and
aims at modeling the general distribution of their motions. Such a model can
immediately serve as an editing tool when animating static texture examples.

3 Proposed Algorithm

We formulate the video prediction as two phases: flow prediction and flow-to-
frame generation. The flow prediction phase, triggered by a noise, directly pre-
dicts a set of consecutive flow maps conditioned on the observed first frame.
Then the flow-to-frame phase iteratively synthesizes future frames with the pre-
vious frame and the corresponding predicted flow map, starting from the first
given frame and first predicted flow map.

3.1 Flow prediction

Figure 2(left) illustrates the architecture of our proposed model for predicting
consecutive optical flows. Formally, our model is a conditional variational au-
toencoder [29,30] with a spatial-temporal convolutional architecture (3D-cVAE).
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Fig. 3. Examples of our multi-step flow prediction. During the testing, by simply sam-
pling a noise from N ∼ (0, 1), we obtain a set of consecutive flows that describe the
future motion field in multiple time steps. Note that since we have a warp operation in
the later flow-to-frame step (Section 3.2) and the backward warping will not result in
holes in results, we predict the backward flow in this step, i.e., the motion from xt+1

to xt. This is just for convenience and we empirically do not find obvious difference
between predicting forward and backward flows.

Given a sequence X = {xi}
M
0 with x0 as the starting frame, we denote the set

of consecutive optical flows between adjacent frames in X as F = {fi}
M−1

0 . The
network is trained to map the observation F (conditioned on x0) to the latent
variable z which are likely to reproduce the F . In order to avoid training a de-
terministic model, we produces a distribution over z values, which we sample
from before the decoding. Such a variational distribution qφ(z|x0, F ), known as
the recognition model in [30], is assumed to be trained to follow a Gaussian
distribution pz(z). Given a sampled z, the decoder decodes the flow F from
the conditional distribution pθ(F |x0, z). Therefore the whole objective of net-
work training is to maximize the variational upper-bound [29] of the following
negative log-likelihood function:

L(x0, F ; θ, φ) ≈ −DKL(qφ(z|x0, F )||pz(z)) +
1

L

L∑

1

log pθ(F |x0, z), (1)

where DKL is the Kullback-Leibler (K-L) divergence and L is the number of
samples. Maximizing the term at rightmost in (1) is equivalent to minimizing
the L1 distance between the predicted flow and the observed flow. Hence the
loss L consists of a flow reconstruction loss and a K-L divergence loss.

Different from traditional cVAE models [30,8,7], our 3D-cVAE model em-
ploys the 3D convolution (purple blocks in Figure 2) which is demonstrated to
be well-suited for spatial-temporal feature learning [6,19]. In terms of network
architecture, the 3D convolutional network outputs multiple (a volume of) flow
maps instead of one, which can be used to predict multiple future frames. More
importantly, the spatial-temporal relationship between adjacent flows are implic-
itly modeled during the training due to the 3D convolution operations, ensuring
that the predicted motions are continuous and reasonable over time. In order to
let the variational distribution qφ(z|x0, F ) conditioned on the starting frame, we
stack x0 with each flow map fi in F as the encoder input. Meanwhile, learning
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Fig. 4. Comparisons between our Flow2rgb model and warping operation, given the
first frame and all precomputed flows (between adjacent ground truth frames). Starting
from the first frame and first flow, we iteratively run warping or the proposed Flow2rgb

model based on the previous result and next flow to obtain the sequence. Top: ground
truth, Middle: warping results, Bottom: our results.

the conditional distribution pθ(F |x0, z) for flow reconstruction also needs to be
conditioned on x0 in the latent space. Therefore, we propose an image encoder
(pink blocks in Figure 2) to first map x0 to a latent vector that has the same
dimension as z. Inspired by the image analogy work [31], we use a conditioning
strategy of combining the multiplication and addition operation, as shown in
Figure 2(left). After we obtain the flow sequence for the future, we proceed to
generate the pixel-level full frames.

3.2 Frame generation

Given the flow information, a common way to obtain the next frame is warping
or pixel copying [32]. However, due to the existence of occlusions, the result is
often left with unnecessary pixels inherited from the previous frame. The frame
interpolation work [33] predicts a mask indicating where to copy pixels from
previous and next frame. But they require at least two frames to infer the oc-
cluded parts. Since we only observe one image, it is straightforward to formulate
this step as a generation process, meaning that this model can “imagine” the
appearance of next frame according to the flow and starting frame. The similar
idea is also applied in the task of novel view synthesis [34].

The architecture of the proposed frame generation model Flow2rgb is shown
in Figure 2(right). Given the input xt and its optical flow ft that represents the
motion of next time step, the network is trained to generate the next frame xt+1.
Since two adjacent frames often share similar information (especially in the static
background regions), in order to let the network focus on learning the difference
of two frames, we first warp the xt based on the flow to get a coarse estimation
x̃t+1. Then we design a Siamese-like [35] network with the warped frame and
the flow as two streams of input. The frame and flow encoders (blue and green
blocks) borrow the same architecture of the VGG-19 up to the Relu 4 1 layer,
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Fig. 5. Visualization of sequence (a chair turning around) manifold in deep feature
space. Staring from the same frame, each predicted frame of three sequences is visual-
ized as a 2-D point by applying t-SNE [39] on its deep features. The moving average is
shown as lines to imply the shape (or trending) of the manifold. For example in (a), the
GT rotating chair (blue) follows a “8” like manifold in pool5 feature space, which our
predicted sequence (yellow) follows closely but the warping sequence (green) deviates
much further.

and the decoder (yellow blocks) is designed as being symmetrical to the encoder
with the nearest neighbor upsampling layer used for enlarging feature maps. We
train the model using a pixel reconstruction loss and a feature loss [36,37] as
shown below:

L = ‖x̂t+1 − xt+1‖2 +

5∑

K=1

λ‖ΦK(x̂t+1)− ΦK(xt+1)‖2 , (2)

where x̂t+1, xt+1 are the network output and ground truth (GT), and ΦK is
the VGG-19 [38] encoder that extracts the Relu K 1 features. λ is the weight to
balance the two losses. This model is learned in an unsupervised manner without
human labels. Note that this is a one-step flow-to-frame model. Since we predict
multi-step flows in the flow prediction stage, starting with the first given frame,
we iteratively run this model to generate the following frame based on the next
flow and previous generated frame.

We show the effectiveness of our Flow2rgb model in Figure 4 with an example
of chair rotating sequence [40]. To verify the frame generation phase alone, we
assume that the flows are already available (computed by [41]). Then given the
first frame and future flows, the second row of Figure 4 shows the iterative
warping results where the chair legs are repeatedly copied in future frames as
the warping is unable to depict the right appearance of chair in difference views.
In contrast, our model iteratively generates the occluded parts and removed
unnecessary parts in the previous frame according to the flow at each time step.
As claimed in [40], the deep embeddings of objects under consecutively changing
views often follow certain manifold in feature space. If we interpret this changing
view as a type of rotating motion, our predicted results for different views also
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needs to stay close to the manifold shape of the GT sequence. We demonstrate
this by extracting the VGG-19 [38] features of each predicted frame, mapping it
to a 2-D point through t-SNE [39], and visualizing it in Figure 5. It clearly shows
that our predictions follows closely with the manifold of the GT sequence, while
the warping drives the predictions to deviate from the GT further and further.

4 Experimental Results

In this section, we first discuss the experimental settings and implementation
details. We then present qualitative and quantitative comparisons between the
proposed algorithm and several competing algorithms. Finally, we analyze the
diversity issue in uncertainty modeling.

Datasets. We mainly evaluate our algorithm on three datasets. The first one is
the KTH dataset [42] which is a human action video dataset that consists of six
types of action and totally 600 videos. It represents the movement of articulated
objects. Same as in [4,5], we use person 1-16 for training and 17-25 for testing.
We also collect another two datasets from online websites, i.e., the WavingFlag

and FloatingCloud. These two datasets represents dynamic texture videos where
motions may bring the shape changes on dynamic patterns. The WavingFlag

dataset contains 341 videos of 80K+ frames and the FloatingCloud dataset has
415 videos of 150K+ frames in total. In each dataset, we randomly split all videos
into the training (4/5) and testing (1/5) set.

Implementation details. Given the starting frame x0, our algorithm predicts
the future in next M = 16 time steps. Each frame is resized to 128×128 in
experiments. Similar to [14,43], we employ an existing optical flow estimator
SPyNet [41] to obtain flows between GT frames for training the 3D-cVAE. As
described in Section 3.1, we stack x0 with each flow map fi in F . Thus during the
training, the input cube to the 3D-cVAE is of size 16×5×128×128 where 5 = 2+3
(2-channel flow and 3-channel RGB). The dimension of the latent variable z

in the bottle neck is set as 2000. Another important factor for a successful
network training is to normalize the flow roughly to (0,1) before feeding it into
the network, ensuring pixel values of both flows and RGB frames are within
the similar range. Since the Flow2rgb model can be an independent module for
motion transfer with known flows, we train the 3D-cVAE and Flow2rgb model
separately in experiments.

Evaluations. Different prediction algorithms have their unique settings and as-
sumptions. For example, Mathieu et al. [2] requires four frames stacked together
as the input. Villegas et al. [4] ask for feeding the image difference (at least
two frames). Their following work [25], though based on one frame, additionally
needs multiple historical human pose maps to start the prediction. For fair com-
parisons, we mainly select prediction methods [5,8] that accept one single image
as the only input to compare. The work of [5] represents the typical recursive
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Fig. 6. Visual comparisons of different prediction algorithms. Top left: the starting
frame. From top to bottom in example: GT, Denton et al. [5], Xue et al. [8], Ours.
The GT sequence provides a sense of motion rightness, while the predicted sequence
is unnecessary to be exactly the same with GT.
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prediction pipeline, which builds upon a fully-connected long short-term memory
(FC-LSTM) layer for predictions. Their model is originally trained and tested by
observing multiple frames. Here we change their setting to one-frame observance
in order to be consistent with our setting. The work of [8] is the typical one-step
prediction method based on one given frame. To get multi-frame predictions, we
train their model and iteratively test it to get the next prediction based on the
previous prediction.

In Figure 6, we provide a visual comparison between the proposed algorithm
and [5,8]. In [5], a pre-trained and disentangled pose embedding is employed to
keep predicting the pose of the next frame through a FC-LSTM module. For
articulated objects, the pose is often compact and in low dimensions, which is
relatively easier to handle with a single LSTM module. However, for dynamic
textures (e.g., flag, cloud) where all pixels are likely to move, the global pose
becomes complex and is no longer a low-dimensional structure representation.
Therefore the capacity of recursive models is not enough to capture the spatial
and temporal variation trend at the same time. The first two examples in
Figure 6 show that the flag and cloud in predicted frames are nearly static.
Meanwhile, the pose only describes the static structure of the object in the
current frame and cannot tell as much information as the flow about the next-
step motion. In the third example of Figure 6, it is obvious that the human
is walking to the right. But the results of [5] show that the human is going in
a reverse direction. Moreover, since they directly predict frame pixels and use
the reconstruction loss only, their results are relatively blurry. In [8], as they
only predict the next one frame, the motion is often clear in the second frame.
But after we keep predicting the following frame using the previous predicted
frame, the motion gradually disappears and the quality of results degrades fast
during a few steps. Moreover, they choose to predict the image difference which
only shows global image changes but does not capture how each pixel will move
to its corresponding one in the next frame. In contrast, our results show more
continuous and reasonable motion, reflected by better generated full frames. For
example, in the first flag example, the starting frame indicates that the fold on
top right will disappear and the fold at bottom left will bring bigger folds. Our
predicted sequence presents the similar dynamics as what happens in the GT
sequence, which makes it look more realistic.

We also quantitatively evaluate these prediction methods using three different
metrics, i.e., the root-mean-square error (RMSE), perceptual similarity [44], and
user preference. The RMSE is the classic per-pixel metric which measures the
spatial correspondence without considering any high-level semantics and is often
easily favored by smooth results. Based on this observation, the recent work of
[44] proposes a perceptual similarity metric by using deep network embeddings.
It is demonstrated to agree with human perceptions better. Lastly, we directly
ask the feedback from users by conducting user studies to understand their
preference towards the predicted results by different algorithms.

We start with the traditional RMSE to compute the difference between pre-
dicted sequence and GT sequence frame-by-frame and show the result in Fig-
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Fig. 7. Quantitative evaluations of different prediction algorithms. We start from the
per-pixel metrics (e.g., RMSE) and gradually take human perception into consideration.
Our method achieves the best performance under metrics (b)-(d).

ure 7(a). To understand how effective these prediction methods are, we design a
simple baseline by copying the given frame as multi-step predictions. However,
we do not observe obvious difference among all these methods. While the pre-
diction from one single image is originally ambiguous, the GT sequence can be
regarded as just one possibility of the future. The trending of motion may be
similar but the resulted images can be significantly different in pixel-level. But
the RMSE metric is actually very sensitive to the pixel spatial mismatch. Sim-
ilar observations are also found in [5,44]. That is why all these methods, when
comparing with the GT sequence, shows the similar RMSE results. Therefore,
instead of measuring the RMSE on frames, we turn to measure the RMSE on
optical flows because the optical flow represents whether the motion field is pre-
dicted similarly or not. We compute the flow maps between adjacent frames of
the GT sequence and other predicted sequences using the SPyNet [41] and show
the RMSE results in Figure 7(b). Now the difference becomes more clear and
our method achieves the lowest RMSE results, meaning that our prediction is
the closest to the GT in terms of the predicted motions.

However, the evaluation of prediction results still need to take human percep-
tion into consideration in order to determine whether sequences look as realistic
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Fig. 8. Comparison with a naive baseline which transfers a random motion field. (b)
The GT sequence follows a “C” like manifold in pool5 feature space, which our predic-
tion follows closely but the random prediction deviates much further.

as the GT sequence. Therefore we turn to the perceptual similarity metric [44].
We use the Alex-Net [45] for feature extraction and measure the similarity be-
tween predicted sequence and GT sequence frame-by-frame. Since this metric is
obtained by computing feature distances, we denote it as perceptual dissimilarity
so that small values means being more similar. The results in Figure 7(c) show
that the proposed method outperforms other algorithms with an even larger
margin than that in Figure 7(b), which means that the predicted sequence of
our method is perceptually more similar to the GT sequence.

Finally, we conduct the user study to get the feedback from human subjects
on judging different predicted results. We prepare 30 starting frames (10 from
each dataset) and generated 30 sequences (16-frame) for each method. For each
subject, we randomly select 15 sets of sequences predicted by three methods.
For each starting frame, the three predicted sequences are displayed side-by-side
in random order. Each subject is asked to vote one sequence that looks most
realistic for each starting frame. We finally collect 900 votes from 60 users and
report the results (in percentage) in Figure 7(d). The study results clearly show
that the proposed method receives the most votes for more realistic predictions
among all three categories. Both Figure 7(c) and (d) indicate that the proposed
method performs favorably against [5,8] in terms of perceptual quality.

Random motion. We also compare with a naive approach which uses ran-
dom flow maps (e.g., sampling from the Gaussian distribution N(0, 2) for each
pixel). We apply the proposed flow2rgb model to both random and the learned
motions by our method to generate frames. Figure 8(a) shows one example. In
Figure 8(b), we visualize the manifold of predicted sequences in the deep feature
space using the t-SNE scheme (as did in Figure 5). Both demonstrate that the
learned motion generates much better results than those by the random motion,
as the naive approach neither models the motion distribution nor considers the
temporal relationship between frames.

Diversity. Both [8] and the proposed method model the uncertainty in pre-
dictions, but are different in one-step [8] or multi-step uncertainties. By drawing
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Fig. 9. Comparisons between [8] and the proposed algorithm on uncertainty modeling
given the same starting frame. By drawing different samples, the generated predictions
by our method exhibits more diversities while still being more similar to GT.

different samples, we evaluate how the quality of predictions is affected by the
noise input and how diverse the predicted sequences are. While [8] uses a noise
vector of 3200 dimensions and we use that of 2000 dimensions, the noise inputs
of two models are not exactly the same but they are all sampled from N(0, 1).
We sample 10 noise inputs for each method, while ensuring that the two sets
of noise inputs have the similar mean and standard deviation. Then we obtain
10 sequences for each method, and compare them with the GT sequence. Fig-
ure 9(a) shows the mean and standard deviation of the perceptual metric over
each method’s 10 predictions when compared with the GT frame-by-frame. Un-
der different noise inputs, our method keeps generating better sequences that
are more similar to the GT. Meanwhile, the results of our algorithm show larger
deviation, which implies that there are more diversities in our predictions. To fur-
ther verify this, we show the embeddings of generated sequences in Figure 9(b).
For each sequence, we extract the VGG-19 [38] features (e.g., fc6 layer) of each
frame, stack them as one vector, and map it to a 2-D point through t-SNE [39].
Figure 9(b) shows that our 10 predictions are much closer to the GT sequence
while being scattered to be different from each other. In contrast, the 10 pre-
dictions of [8] huddle together and are far from the GT. Those comparisons
demonstrate that the proposed algorithm generates more realistic and diverse
future predictions. Figure 10 shows an example of two predicted sequences.

Bringing still images to life. Unlike previous video prediction methods [4,25,7]
that mainly focus on humans for action recognition, our algorithm is more gen-
eral towards bringing elements in the still image to life, i.e., turning a still image
into a vivid GIF for aesthetic effects. It can be an effective tool for video editing.

In Figure 11(a), we show a example of turning a photo into a vivid sequence.
We mask out the sky region, apply our model trained on the FloatingCloud
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Fig. 10. Given a still image, by sampling different noise in the latent space, our algo-
rithm synthesizes different future outcomes to account for the intrinsic uncertainties.
In the middle row, we show the difference of two generated sequences frame-by-frame.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

Fig. 11. Potential application of our algorithm in video editing.

dataset and generate the effect of clouds floating in the sky. This could further
benefit existing sky editing methods [46]. Moreover, if we replace our flow pre-
diction with known flows from a reference sequence, our flow-to-frame model
Flow2rgb becomes a global motion style transfer model. As the current random
sampling strategy for flow predictions is uncontrollable, future work may include
introducing more interactions from users to control detailed motions.

5 Conclusions

In this work, we propose a video prediction algorithm that synthesizes a set of
likely future frames in multiple time steps from one single still image. Instead
of directly estimating the high-dimensional future frame space, we choose to
decompose this task into a flow prediction phase and a flow-grounded frame
generation phase. The flow prediction models the future uncertainty and spatial-
temporal relationship in a 3D-cVAE model. The frame generation step helps
prevent the manifold shape of predicted sequences from straying off the manifold
of real sequences. We demonstrate the effectiveness of the proposed algorithm
on both human action videos and dynamic texture videos.

Acknowledgement. This work is supported in part by the NSF CAREER
Grant #1149783, gifts from Adobe and NVIDIA. YJL is supported by Adobe
and Snap Inc. Research Fellowship.



Flow-Grounded Spatial-Temporal Video Prediction from Still Images 15

References

1. Ekman, M., Kok, P., de Lange, F.P.: Time-compressed preplay of anticipated
events in human primary visual cortex. Nature Communications 8 (2017)

2. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. In: ICLR. (2016)

3. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting.
In: NIPS. (2015)

4. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content
for natural video sequence prediction. In: ICLR. (2017)

5. Denton, E., Birodkar, V.: Unsupervised learning of disentangled representations
from video. In: NIPS. (2017)

6. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV. (2015)

7. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: Forecasting
from static images using variational autoencoders. In: ECCV. (2016)

8. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual dynamics: Probabilistic future
frame synthesis via cross convolutional networks. In: NIPS. (2016)

9. Yuen, J., Torralba, A.: A data-driven approach for event prediction. In: ECCV.
(2010)

10. Lan, T., Chen, T.C., Savarese, S.: A hierarchical representation for future action
prediction. In: ECCV. (2014)

11. Hoai, M., De la Torre, F.: Max-margin early event detectors. IJCV 107(2) (2014)
191–202

12. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In:
ECCV. (2012) 201–214

13. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from
unlabeled video. In: CVPR. (2016)

14. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static
image. In: ICCV. (2015)

15. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using lstms. In: ICML. (2015)

16. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction
using deep networks in atari games. In: NIPS. (2015)

17. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic
variational video prediction. In: ICLR. (2018)

18. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. In: ICRA.
(2017)

19. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics.
In: NIPS. (2016)

20. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion gan for future-flow embedded
video prediction. In: ICCV. (2017)

21. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and
content for video generation. arXiv preprint arXiv:1707.04993 (2017)

22. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction
through video prediction. In: NIPS. (2016)

23. Vondrick, C., Torralba, A.: Generating the future with adversarial transformers.
In: CVPR. (2017)



16 Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, M.-H. Yang

24. Chao, Y.W., Yang, J., Price, B., Cohen, S., Deng, J.: Forecasting human dynamics
from static images. In: CVPR. (2017)

25. Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H.: Learning to generate
long-term future via hierarchical prediction. In: ICML. (2017)

26. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. IJCV 51(2)
(2003) 91–109

27. Yuan, L., Wen, F., Liu, C., Shum, H.Y.: Synthesizing dynamic texture with closed-
loop linear dynamic system. In: ECCV. (2004)

28. Xie, J., Zhu, S.C., Wu, Y.N.: Synthesizing dynamic patterns by spatial-temporal
generative convnet. In: CVPR. (2017)

29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR. (2014)
30. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep

conditional generative models. In: NIPS. (2015)
31. Reed, S.E., Zhang, Y., Zhang, Y., Lee, H.: Deep visual analogy-making. In: NIPS.

(2015)
32. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appear-

ance flow. In: ECCV. (2016)
33. Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep

voxel flow. In: ICCV. (2017)
34. Park, E., Yang, J., Yumer, E., Ceylan, D., Berg, A.C.: Transformation-grounded

image generation network for novel 3d view synthesis. In: CVPR. (2017)
35. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,

with application to face verification. In: CVPR. (2005)
36. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer

and super-resolution. In: ECCV. (2016)
37. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics

based on deep networks. In: NIPS. (2016)
38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR. (2015)
39. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. JMLR 9(Nov) (2008)

2579–2605
40. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:

A deep representation for volumetric shapes. In: CVPR. (2015)
41. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.

In: CVPR. (2017)
42. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm ap-

proach. In: ICPR. (2004)
43. Gao, R., Xiong, B., Grauman, K.: Im2flow: Motion hallucination from static images

for action recognition. arXiv preprint arXiv:1712.04109 (2017)
44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable

effectiveness of deep networks as a perceptual metric. In: CVPR. (2018)
45. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep

convolutional neural networks. In: NIPS. (2012)
46. Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Yang, M.H.: Sky is not the limit:

semantic-aware sky replacement. ACM Transactions on Graphics 35(4) (2016)
149–159


